
ABSTRACT

In this paper, we describe an approach to support
col1laborative working with unknown applets (source
code is not available). The general idea of the our
system is that user events occurring through the
interaction with the GUI of an applet can be caught,
distributed, and reconstructed, hence the system allows
for Java applets to be shared transparently. Our
approach differs from other collaborative systems in

modifying their source-code. The architecture
described here allows to make a lot of already existing
applets collaborative, which have been developed as
single user applications with no collaboration in mind.

1. Introduction

The simplicity of access to a variety of information
stored on remote locations led to the fact that the
World Wide Web has gained popularity over the last
decade. In this context Computer Supported
Collaborative Learning (CSCL) is becoming more and
more important. Collaborative systems allow users to
view and interact with a distributed application during
a session. The use of collaborative systems increases in
research and business as well as in education. A
problem of many cooperative applications is their
platform dependence leading to the fact that users
communicating in heterogeneous environments are
restricted in their choice of a cooperative application.
For example a user might choose a UNIX-workstation,
another might prefer Windows 95/98/NT or a Mac-

1 In Proc. Of Intelligent Multimedia and Distance
Education (ISIMADE '99), August Baden-Baden, Germany
1999.

intosh. The introduction of the platform-independent
programming language Java made it possible to over-
come these problems. Diverse approaches were used to
develop Java-based collaborative systems. Almost
every system described in the literature requires the use
of an Application Programming Interface (API). Others
are trying to replace some Java-components with self-
defined collaborative components in a transparent
manner.

The approach presented in this paper differs from other
approaches, in the way that we do neither propose a
new API for developing collaborative systems nor try
to replace components at run time. As a matter of fact a
great variety of well-designed applets exist distributed
in the World Wide Web which were developed to run
stand-alone. It would not be acceptable for many users
to re-implement or change these programs to make
them work in a collaborative way. The particularity of
our approach is that we propose to use JavaBeans [1]

capabilities of applets in a way that stand-alone applets
can be used in a collaborative way. Our approach does
not change the source code of an applet. The System
we developed is called KOM Collaborative Applets
Environment (KCAE). The principal idea of the
KCAE-system is that user events occurring through the
interaction with the GUI of an applet can be caught,
distributed, and reconstructed, hence allowing for Java
applets to be shared transparently. This form of
collaboration which is supported as long as a learning-
session takes part, enables users to interact in real-time,
working remote as a team without caring about low-
level issues such as networking details.

Figure 1 shows the overall approach of our KCAE-
system which can be described as follows: a Collabora-
tion client (KCAE-Client) instantiates applets or

Collaborative Working with Stand-Alone Applets

Abdulmotaleb El Saddik1, Oguzhan Karaduman1, Stephan Fischer1 and Ralf Steinmetz1,2

1 2
Industrial Process and System Communications GMD IPSI
Dept. of Electrical Eng. & Information Technology German National Research Center
Darmstadt University of Technology for Information Technology

{abed, oguzhan, fisch, rst }@kom.tu-darmstadt.de

llehmann
Textfeld
In Proc. of the 12th International Symposium on Intelligent Multimedia and Distance Education(ISIMADE'99), Baden-Baden, Germany, pages 203-209, August 1999. ISBN 0-921836-80-5

applications which are developed as stand-alone
applications. These applets or applications are then
used collaboratively with the aid of the KCAE-Client.
The KCAE-Client can be seen as a component adapter.
Every event occurring at the graphical user interface of
the application is sent to the adapter, which then sends
the events to the collaboration server (KCAE-Server).
When the KCAE-server receives an event, it multicasts
it to all other KCAE-clients in the session.

The rest of the paper is organized as follows. Section 2
describes the system design. The description of the
architecture (Section 3) is followed by the description
of the collaborative use of source code unavailable
applets in Section 4. Section 5 discusses related work
and Section 6 concludes the paper and gives an out-
look.

 Fig1: Overall System Architecture of KCAE

2. System Design

available applets collaborative, which are developed as
single user applications with no collaboration in mind,
without any change or modification of their respective
source code.

2.1 Requierements

Before describing the architecture of the system, we
first present a list of requirements which describe our
objective in more detail:

Applications using the standard Java-Core API should
be supported, that is no change in the API should be
necessary.

No source code is required to share an applet. Both
AWT and Swing components should be supported. A
solution restricted to only one kind of graphical user
interface is not acceptable.

The system should permit unanticipated collaboration.
Furthermore, a person who is interested in more than
one application running at the same time, should have
the opportunity to take part in more than one
application simultaneously.

be consumed.

2.2 Design Considerations

The delegation event model of JDK1.2 provides a
standard mechanism for a source component to
generate an event and send it to a set of listeners.
Furthermore, the event model even allows to send the
event to an adapter, which then works as an event
listener for the source and as a source for the listener.
Because the handling of events is the crucial task in
developing an application, this enhancement made the
development of applets much more flexible. Another
important enhancement of Java is the introduction of
the JavaBeans Technology and of the Remote Method
Invocation (RMI) which makes it possible to create
distributed Java-to-Java applications, in which the
methods of remote Java objects can be invoked from
other Java virtual machines, possibly running on
different hosts.

There are two main approaches for the design of
collaborative applications [15]. One possible approach
implies a centralized architecture, where a single
instance of an application is run on a host machine,
usually the server machine, and its graphical output is
distributed to all participants. This approach which is
illustrated in Figure 2 consumes substantial network
bandwidth (illustrated through bold arrows in
Figure 2), even if the graphical data is transmitted in a
compressed way [14].

Another approach is the replicated architecture which
allows the application to be downloaded to each
participant and to run locally. Consequently, the
bandwidth required for the collaboration is
substantially less than using a centralized architecture
[14]. Only input resulting from the interaction with the
graphical user interface is distributed, the graphical
output is generated locally for each participant.

The bandwidth savings become apparent when one
considers that the centralized approach also must

User #1

Java
Application#1

KCAE
Client

Java
Application#2

Java
Application#n

KCAE
Server

User #n

Events

Events

Java
Application#1

KCAE
Client

Java
Application#2

Java
Application#n

receive input from each user, but uses a considerable
amount of bandwidth to distribute the graphical infor-
mation.

Fig2: Interaction by transmission of graphical data

Our system is based on the replicated architecture
presented in Figure 3 in which an instance of each
appli
only the interaction of each user with the system is
distributed through events to all the participants passed
by the server.

It should be noted that our approach relies on the
particular properties of Java. The Java Virtual Machine
provided in each browser available nowadays offers a
homogeneous application environment across different
platforms. All participants in a collaborative session
have access to the applets which are downloaded and

of using Swing components the use of a Java-Plugin to

solution.

3. System Architecture

In this section, we describe our implementation of a
collaborative system according to the requirements and
design consideration described above. As we are
concerned with Java applets it should be mentioned
that we presume the availability of a web-server.
Therefore it is the part of the system to start with. It
should also be noted that there are two types of servers
running on the central machine. One is the Web-Server
which sends the HTML documents and the applets to
the requesting clients, the second one is a Java-RMI
server responsible for multicasting all events sent from
one client to all other clients.

When the user loads an HTML document that contains
a reference to a KCAE-Client, the browser loads the

applet and executes it. When the applet is started the

Fig3: The replicated distribution approach

user requests to join a specified session. If the session
does not exist, a new one is created. If no other
participants are in the session the unique person in the
session can interact with the applet s/he chose from a
list of all available applications and explore it as if s/he
were not be part of a collaborative environment. This is
done because applications are designed and imple-
mented as collaboration-unaware applications. Thus
the KCAE-client sends the received events to the
KCAE-Server, which finds out that there are no other
participants in the session and ignores the events.

Java Applications/Applets

It should be noted that Java applications/applets
instantiated by our KCAE-Client are not part of KCAE.
They are furthermore collaboration-unaware
applications developed using the standard Java
technology. As mentioned earlier in this paper, our
system supports both AWT- and Swing-based
applications. These applications are loaded
dynamically, after a client joined a session. In this
manner all possible applications/ applets a user can
invoke can be stored in a configuration file by the
KCAE-Client. Participants can invoke one or more of
these applications in a session if desired.

3.1 KCAE-Server

The KCAE-Server is a Java based application. It is
entirely written in Java and can therefore be run

User
Interaction

Host A

display

Interaction
Collector

Interactions Server

Display-
distributer

User
Interaction

Host B

display

Data for user interactions

Data for Display informations

Application Server

User
Interaction

Host A

Interactions
Collector

Interaction Server

Event-
Distributer

User
Interaction

Host B

Data for user interactions

Application Application

Server

independently from the underlying platform. The
server works as an event multicaster. Each remote
client in the collaboration session registers itself with a
unique name at the server.

The communication between KCAE-clients and
KCAE-server is based on Java RMI and bi-directional.
With the help of the RMI-Callback mechanism, the
server communicates directly with the registered
clients. The server dispatches the external events
coming from registered clients in the session and
multicasts them. An event received by the server is
multicasted to all registered clients except of the client
which fired the event. Information about available
applications and applets, which can be used in a
collaborative way, are read from the configuration file
by the server and sent to participants who just joined,
so that the participants can load and run these
applications and applets. The configuration file, which
is organized as a properties file, contains the names of
the applications/applets and the full names of their
main class. The entries should have the following
syntax:

application.[n].name = [name]

application.[n].class = [class]

where:

n: number of the application in the list.

name: a suitable name for the application.

class: full name of the main class.

An example is in Figure 4 illustrated:

#Application entry

application.1.name=myTestApplication

application.1.class=kom.develop.apps.MyApp

Applet entry

applet.1.name=myTestApplet

applet.1.class=kom.develop.applets.TestApplet

Fig4: Excerpt of a configuration file

3.1 KCAE-Client:

The KCAE-client is a Java applet which consists of the
following components:

• Collaboration Manager
• Component Adapter
• Listener Adapter
• Event Adapter

Collaboration Manager

The Collaboration Manager is the main component on
the client side and provides the user with a graphical
interface offering the following options: Joining the
session, starting applications/applets and chatting with
all other participants. The collaboration manager
dispatches external events coming from the
collaboration server and forwards them to the
component adapter.

Components Adapter

The Component Adapter maintains a list of the GUI-
components of all applications and applets. This list is
created with the help of the java.awt.Container-class,
which allows to get references of all applet compo-
nents. With the help of the main window of an
application, a list of the GUI components in this
application can be created directly. For that reason, the
main window of an application loaded by the
Collaboration Manager is registered by the Component
Adapter. However, Java applets do not use stand alone
windows. They are an extension of the class
java.awt.Panel and can thus be easily located in a
window. The window containing the applet can then be
registered as main window by the Component Adapter.
As an example syntax of the registration by the
Component Adapter is shown in Figure 5. After the
registration the list of all the Swing and/or AWT-
components within the applet is created directly. This
task is done by each client in such an order, that the
components have the same reference by all clients. The
references are used to point the components, which are
the source of the events sent to the Server and after that
multicasted to all clients. With the help of references,
the source of the incoming events are located and the
event is reconstructed on each client, as if it occurred
locally.

.....

Class cl = Class.forName(className);

// If it is an applet, instantiate and locate
// it in a Frame

myApplet = (Applet)cl.newInstance();

myApplet.init();

myWindow.add("Center", myApplet);

// Otherwise instantiate it

myWindow = (Window)cl.newInstance();

// Register this Frame as main Frame

// by Components Adapter

ComponentsAdapter.addContainer(myWindow);

....

Fig5: Excerpt of the instantiation method

Listener Adapter

The Listener Adapter implements AWT listeners,
which listen to Mouse- and KeyEvent for all AWT-
components except of java.awt.Scrollbar,
java.awt.Choice and java.awt.List. For these
components the Listener Adapter listens to
AdjustmentEvent, ItemEvent and ActionEvent. If an
internal event occurred, The Listeners Adapter catches
and converts it to an external event which is then
forwarded to the Collaboration Manager. The Col-
laboration Manager sends these events to the
collaboration server that multicasts them.

Event Adapter

The Event Adapter converts incoming external events
to AWT events, which can be processed locally.
External events are extensions of the AWT events
denoted as remote (external) to let the Listener Adapter
be able to differentiate internal occurred events from
external (incoming) ones.

3.3 Data Flow

Figure 6 shows the overall event circulation of the
system. Applications are embedded in the client as
shown in the Figure 6. There are two main data paths
in the whole system. The first path is labelled with the
number 1,2 and 3. This path is used to send the internal
AWT events to the server, which multicasts them to all
other participants. The data flow works as follows:

Fig6: Events circulation

1) Any Event occurred in a Java-application is caught
by the Listener Adapter.

2) The Listener Adapter tests, whether the event is an
external or an internal event. It sends only internal
AWT events, which were not received from other
clients to the Collaboration Manager.

3) The Collaboration Manager sends incoming events
to the server via a RMI connection.

Via the second data path shown in Figure 6 labelled
with the numbers 4, 5, 6, 7 and 8, the external AWT
events sent from the server are caught by the
Collaboration Manager and the Component Adapter in
order to reconstruct the event locally. These events are
sent to the Java application in the following order:

4) The server sends the remote events to the client.

5) The client catches remote events and sends them to
the Component Adapter.

6) The Component Adapter extracts the information
about event sources and sends the informations
accomplished with the events to the Event
Adapter.

7) The Event Adapter converts these events to AWT
events and sends them to the Component Adapter.

8) The Component Adapter sends the event to the
application which reacts as if the user would
interact with the GUI.

4. Collaborative Use of Applets in KCAE

Figure 7 shows the graphical user interface of the
KCAE-client applet with a collaboration unaware
applet (ItBean Ethernet Frame) used collaboratively.

Fig7: The graphical user interface of the KCAE-Client
with a collaboration-unaware applet used
collaboratively

Java
Application

Fenster

K C A E
Server

Components
Adapter

Listeners
Adapter

Events
Adapter

Collaboration
Manager

KCAE Cl ient

1

2

3

6 57

4

8

In general we can summarize the functionality of the

Figure 7) as follows:

• users go to a specified URL (the web server
containing the HTML documents and applets to be
shared).

• they load an applet (KCAE-Client) which offers the
following properties:

• applets list: list of all available applets to be
shared. Choosing an applet will cause it to be
downloaded to run on the local machine.

• participants list: contains the names of participants
of a running session.

• each interaction with a collaborative applet is
transmitted to all participant via the RMI-server.

• users can chat with other participants.

• users may invoke more than one collaborative applet
at a time.

5. Related Work

developed a Java Remote Control Tool, which allows
to control and synchronize distributed Java applications
and applets. The drawback of this approach is that it is
necessary to have access to the original source code of
the application or applets in order to make it collabo-
rative. That means every applet must initiate a Remote-
Control-Client object which is usually done in the
constructor of the applet. Also the event handling
within the applet must be modified in order to receive
and/ or send events from / to remote applets.
The Multimedia Communications Research Laboratory
at the University of Ottawa has developed Java
Enabled Telecollaboration System (JETS) that supports
the development of collaborative applications. JETS
[4], [5] is an API, which implies that an application has
to be rewritten if it shall run in a collaborative way.
Habanero [6] is an approach that supports the
development of collaborative environments. Habanero
is in its terms a framework that helps developers to
create shared applications, either by developing a new
one from scratch or by altering an existing single-user
application which has to be modified to integrate the
new collaborative functionality. Instead of using
applets, which can be embedded in almost every
browser, the Habanero system uses so-called

downloaded and installed on the client site.
Java Collaborative Environment (JCE) has been
developed at the National Institute of Standards and
Technology (NIST) coming up with an extended

version of the Java-AWT [8] called Collaborative
AWT (C-AWT). In this approach AWT-components
must be replaced by the corresponding C-AWT
components [11].
All these approaches propose the use of an API, which
has the cost of modifying the source-code of an
application, re-implementing it or to design and
implement a new application from scratch in order to
make it collaborative.
Java Applets Made Multiuser (JAMM) [9] is a system
which is similar to our approach in terms of its
objective: The collaboration of single-user
applications. The difference between both approaches
is the way how the collaboration is achieved. In JAMM
[10] the set of applications that can be shared is
constrained to those that are developed using Swing
user interface components as part of Java Foundation
Classes which are part of the standard JDK since
version 1.2.
restricted to those which implement the Java
serializable interface.

6. Conclusion and Future Work

In this paper we described a mechanism that enable us
to use almost all single-user applets and applications in
a collaborative way. We used the replicated approach
and keep track of the components to be able to
reconstruct user events on the remote side. We hence
developed an architecture that allows to collaborate via
collaborative-unaware applications without modifying
the source code.
We have successfully tested our system on a number of
applets, including educational applets (Figure 7)
implemented with JDK 1.1, and Swing. A chat
functionality is supported directly in our environment.
In general, these applets work well with a few minor
difficulties related to some limitations described below.
A part of these restrictions we encountered is that
Frames, Dialogs and FileDialogs created within a
collaborative-made application at run time can not be
used collaboratively, as long as they are not registered
by the Component Adapter explicitly. This leads to the
fact that collaboration is only possible for first level
windows. Some of the interesting aspect in
collaborative environment which we did not consider
yet are session control and floor control. Floor control
means if a user wants to control the applet, S / he
should be able to apply for the control. The
collaboration manager on the server sends the request
to the owner of the session (if available) to get a
permission for handing the control over to the
requested user. Losing and gaining a control can be
seen as a simple task where gaining the control means

the ability to interact with the whole applet, and losing
the control is losing the ability to interact with it. As
our architecture allows us to know exactly the
components in the applets such a task can be achieved
by enabling, disabling the components of the applet if
the floor control is gained or lost respectively.

References

[1] J. JavaBeans Programming from the
Osborne, 1998.

[2] Javasoft Websites: http://www.java.com/products/rmi,
1999.

[3] C. Fuhrmann, and G.
Teachware - The Java Remote Control Tool and its

 In procceding of ED-MEDIA'98, 1998.

[4] S. Shirmohammadi, J. C. Oliveira, and N. D. Georganas,
"Java-Based Multimedia Collaboration: Approaches and
Issues", Proc. International Conference On
Telecommunications (ICT '98), Vol. I, Porto Carras, Greece,
1998.

[5] S. Shirmohammadi and N. D. Georganas, "JETS: a Java-
Enabled Telecollaboration System", Proc. IEEE Conference
on Multimedia Computing and Systems (ICMCS '97), 1997.

[6] NCSA Habanero Home Page:
http://www.ncsa.uiuc.edu/SDG/Software/Habanero/ NCSA
Software Development Division, 1996.

[7] Java Shared Data Toolkit,
http://www.sun.com/software/jsdt/index.html, 1999.

[8] H. Abdel-Wahab, J. Favereau, O. Kim and P. Kabore

 IEEE Computer Society Workshop on Future

1997.

[9] J. Begole, C. Struble, C. Shaffer and R. Smith:

. Proceeding of the 1997 Symposium on User

NY, 1997.

[10] J. Begole and C. Shaffer,"Flexible Collaboration
Transparency", Virginia Tech, Department of Computer
Science, Technical Report TR-98-11, 1998.

[11] H. Abdel-Wahab, B. Kvande, S. Nanjangud, O. Kim, J.
Favreau,

 PROMS'96, Madrid, Spain, 1996.

[12] R. Steinmetz, and K. Nahrstedt:
, Prentice Hall

1995.

[13] G. Hamilton : , Sun
Microsystems, 1997.

[14] J.C. Lauwers, T.A. Joseph, K.A. Lantz and A.L.
Romanow,

 Proceedings of Office Information
Systems 1990.

[15] J.Grudin, Cooperative Work:
, IEEE Computer, Vol.27, No. 5, 1994.

