
Americas Conference on Information Systems (AMCIS)

AMCIS 2009 Proceedings

Association for Information Systems Year 2009

Applied Service Engineering for Single

Services and Corresponding Service

Landscapes

Stefan Schulte∗ Kay Kadner†

Nicolas Repp‡ Ralf Steinmetz∗∗

∗TU Darmstadt, schulte@kom.tu-darmstadt.de
†SAP Research, kay.kadner@sap.com
‡TU Darmstadt, nrepp@kom.tu-darmstadt.de

∗∗Department of Electronic Engineering and Information Technology, Technische Univer-
sität Darmstadt, Germany, steinmetz@kom.tu-darmstadt.de

This paper is posted at AIS Electronic Library (AISeL).

http://aisel.aisnet.org/amcis2009/472

rst
Textfeld
Stefan Schulte, Kay Kadner, Nicolas Repp, Ralf Steinmetz:
Applied Service Engineering for Single Services and Corresponding Service Landscapes. In: 15th Americas Conference on Information Systems (AMCIS 2009), San Francisco, CA, USA, no. Paper 472, August 2009.
aisel.aisnet.org/amcis2009/472.

rst
Textfeld
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

Schulte et al. Applied Service Engineering

Proceedings of the Fifteenth Americas Conference on Information Systems, San Francisco, California August 6th-9th 2009 1

Applied Service Engineering for Single Services and
Corresponding Service Landscapes

Stefan Schulte

Multimedia Communications Lab, TU Darmstadt

schulte@kom.tu-darmstadt.de

Kay Kadner

SAP Research, Dresden

kay.kadner@sap.com

Nicolas Repp

Multimedia Communications Lab, TU Darmstadt

nrepp@kom.tu-darmstadt.de

Ralf Steinmetz

Multimedia Communications Lab, TU Darmstadt

rst@kom.tu-darmstadt.de

ABSTRACT

Building reusable and autonomous services that possess the proper degree of granularity is critical for the success of a

service-oriented architecture (SOA), especially for large and heterogeneous application landscapes. While there are a number

of approaches to service engineering, most of these approaches are designed with a special purpose or project context in

mind. This paper presents a pragmatic approach to service engineering that can be applied in scenarios where it is particularly

necessary to identify service interfaces with the right granularity. The approach is based on a comparison of service

engineering methodologies with special regard for their ability to connect different levels of an SOA. We apply concepts

from this approach to build single services and their service landscapes. We also suggest the utilization of service inventory

techniques to evaluate and assess the outcome of the proposed service engineering methodology.

Keywords

Service engineering, Service-oriented architectures, Service landscapes

INTRODUCTION

Service-orientation is based on well-known concepts such as autonomy and the loose coupling of software components.

However, the service-oriented architecture (SOA) paradigm has gained momentum in recent years primarily due to the

standardization of Web service technologies. SOA has evolved into one of the "hot" topics in both the software industry and

the research community (Bichler and Lin, 2000; Papazoglou, Traverso, Dustdar and Leymann, 2007).

One of the major requirements regarding application landscapes based on the SOA paradigm is the ability to build reusable

and autonomous services which possess the correct degree of granularity. This challenge must be met in order to achieve

desirable outcomes (i.e., reusability of software components and a clearly arranged application landscape) in the adaption of

service-oriented technologies (van den Heuvel, Zimmermann, Leymann, Lago, Schieferdecker, Zdun and Avgeroiu, 2009).

The approaches and techniques used to identify and design appropriate services are often labeled as "Service Design" (Erl,

2007) or "(Software) Service Engineering" (Margaria and Steffen, 2006, van den Heuvel et al., 2009). Many service

engineering methodologies are created in response to specific problems, and are therefore only applicable to specific goals,

purposes, and technologies. On the other hand, some approaches try to be so universally applicable that they lead to a rather

vague course of action which requires extensive adaptation to address the problem at hand.

In this paper, we propose an approach for applied service engineering for single services and corresponding service

landscapes, i.e., the collectivity of all services in a specified domain. Especially if software development is distributed among

different teams, it is not always possible to identify the functionalities offered by components in the whole IT infrastructure.

Here, service engineers need an easy to use approach to identify functionalities which could be reused in the own applications

respectively service compositions. We want to extend the manifold research done in the field of identifying services on the

business level by linking the results of this identification process to the actual implementation of technical services. The aim

is to close the gap between the actual identification of single services (and hence, the service landscape) and the

implementation of services. A very important success factor if applying a quite new software paradigm as service-oriented

computing still is, is that the different parties know which higher steps are needed in the development process and what has to

be done in each step. Hence, we center on the desired outcome of each step and what needs to be done in order to accomplish

it.

Schulte et al. Applied Service Engineering

Proceedings of the Fifteenth Americas Conference on Information Systems, San Francisco, California August 6th-9th 2009 2

The remaining part of this paper is structured as follows. In the next section, we analyze different service engineering

approaches with respect to their ability to define single services as well as a service landscape. Then, we introduce an

application of service engineering methodologies. To evaluate the outcomes of our approach in service engineering, we

propose the use of service inventory taking. Finally, this paper concludes with a summary of our findings and an outlook on

our future work.

SERVICE ENGINEERING METHODOLOGIES

The scope of service engineering approaches ranges from the derivation of service functionalities from existing business

processes, to the technical implementation of services. To demonstrate this range, we present different service engineering

methodologies, compare them, and identify common characteristics of service engineering methodologies. Due to the

extensive variety of service engineering methodologies, it is not possible to consider every approach. Thus, the following

sample of methodologies has been chosen to represent those approaches who primarily affect our own work.

In 2005, SeCSE (Service Centric System Engineering
1
) defined service engineering as "the activity of specifying, designing,

implementing, and maintaining services offered by a service provider" (Sawyer, 2005). SeCSE is a long-running EU-

sponsored project, which tackles service and system engineering (amongst other topics). Their main focus is the definition of

a conceptual model for service engineering, including service description, service discovery, and service composition. The

former regards the application of semantic information in order to describe service functionalities and includes Quality of

Service aspects in the service description. However, the SeCSE-project focuses on the examination of different aspects of

service engineering instead of the deployment of an overall approach to service engineering.

Margaria and Steffen (2006) proposed the application of principles from the field of networks and telecommunication for

service engineering. The authors focus on the alignment of the business and IT levels based on services which link the two.

However, this happens on a quite coarse level of granularity. By adapting a "divide and conquer" based approach, a

taxonomy of services is constructed. Thus, the authors use a top-down approach for service definition. The model is

enhanced by formal verification of the entire design process. One particular strength of this approach is the continuous

support offered by tools.

Several companies (e.g., BEA, IBM, Oracle, SAP) were involved in the development of the Service Component Architecture

(SCA), a model used to implement and connect software components based on SOA principles (Chappell, 2007). SCA is

independent of any corporation, i.e., there are no restrictions regarding specific tools when adapting the proposed model.

SCA is only a model and does not include an implementation. SCA offers both a methodology to develop software

components, and a mechanism which addresses the interaction between different components. The definition of components

ranges from simple Java classes to complex software artifacts.

A comprehensive approach to the engineering of semantic Web services has been carried out by Bayer, Eisenbarth, Lehner

and Petersen (2008). Here, the authors provide a service engineering process that allows for the determination of service

landscapes as well as single services. Following principles from requirements engineering, the authors provide a top-down-

approach that makes use of information regarding the whole application landscape. Then, the requirements of single services

are identified, and services are designed and implemented. The process ends with the testing and registration of the services.

One particular strength of the proposed approach is the holistic process that covers all necessary stages of service

engineering. However, this methodology works best if information about the service landscape is centrally available. It would

be difficult to scope the service landscape of a more distributed approach where a central entity does not exist. Furthermore,

testing is only carried out on the implementation level, i.e., a test for the whole service landscape is missing. Nevertheless,

this approach comes closest to our requirements as will be presented in the following sections.

There are a number of other approaches, for example by Specht et al., that focus on the technical deployment of services with

special attention to the reusability of services (Specht, Spath and Weisbecker, 2005). An extensive model for the deduction of

business services, and the modeling of technical services and their implementation is provided by Erl (2005).

The incorporation of semantic information in service engineering has also been observed by some researchers. Tetlow et al.

(2006) presents some potential uses of Semantic Web technologies in systems and software engineering. Even though they

consider the use of semantic information to enhance the retrieval of Web services, it does not contribute directly to service

engineering itself. Hepp and Roman present an ontology framework for semantic business process management which should

1
 European Commission, Information Society and Media Directorate-General, Network and Communication Technologies,

Software Technologies. www.secse-project.eu

Schulte et al. Applied Service Engineering

Proceedings of the Fifteenth Americas Conference on Information Systems, San Francisco, California August 6th-9th 2009 3

be incorporated into the work at hand, as it provides possible ontologies to represent business processes (Hepp and Roman,

2007). Once again, the authors have not taken the service engineering process itself into account.

Comparison and Common Characteristics of Service Engineering Approaches

○ – Integrated

● – Partially integrated

× – Not integrated

SeSCE (Margaria and

Steffen, 2006)

SCA (Bayer et al.,

2008)

Top-down approach × ○ × ○

Bottom-up approach ○ × ○ ×

Definition of single

services
○ ○ ○ ○

Verification/Testing of

single services
○ ○ × ○

Definition of service

landscape
● × ○ ○

Verification/Testing of

service landscape
× ○ × ×

Semantic description of

services
○ × × ○

Usage of ontologies ● × × ○

Table 1. Comparison of Selected Service

Engineering Technologies

Table 1 shows a comparison of the approaches mentioned, and identifies characteristic service engineering elements in each

of them.

Service engineering approaches can be divided into top-down or bottom-up approaches. This characteristic normally depends

on the scope of the approach. While methodologies based on the business process model often provide a top-down approach,

methodologies which primarily address single services logically follow a bottom-up approach. Thus, single services are often

not related to the actual business processes (or similar constructs) they are used in and vice versa. This makes the retrieval

and usage of services difficult, especially in large, heterogeneous service landscapes.

Another distinguishing feature of a methodology is the definition and verification of either single services or service

landscapes. Naturally, the definition of single services is part of almost every service engineering methodology. However, a

single service can range from concrete instructions on the implementation of services, to the non-technical identification of

services. Furthermore, service landscapes should also be defined using the same service engineering approach used for the

identification of single services.

Although the SeSCE project considers the semantic description of services with respect to service retrieval, none of the

above-mentioned methodologies has applied this information in order to enhance the service engineering process. In Bayer et

al. (2008), semantic information is used to describe pre- and post-conditions of service invocations – however, this approach

does not allow the linkage between the service landscape and single services by semantic information.

APPLIED SERVICE ENGINEERING FOR SINGLE SERVICES AND CORRESPONDING SERVICE LANDSCAPES

Even though the abovementioned service engineering approaches provide important means to design and implement services,

the realization of services and service landscapes is often constrained by the project context. If a large number of project

partners is involved and a project is following a bottom-up approach, it is particularly necessary to follow a pragmatic

approach to service engineering and incorporate most of the methods presented in Table 1 at the same time. In the following,

we present the simple and pragmatic approach to service engineering which was proposed for the project SoKNOS

Schulte et al. Applied Service Engineering

Proceedings of the Fifteenth Americas Conference on Information Systems, San Francisco, California August 6th-9th 2009 4

(www.soknos.de) but can be easily applied to other project contexts as well. Before we present the four steps of this process,

we introduce the different service levels we consider in our work.

Service Levels

In our opinion, service engineering should be regarded at four different levels. This classification has been derived from the

common understanding of SOA in scientific literature, (e.g., Krafzig, Banke and Slama, 2004; Papazoglou et al., 2007). On

the one hand, it is necessary to deploy a technological infrastructure in order to implement elementary functionalities such as

communication between services. On the other hand, this infrastructure is predetermined by external conditions and thus

technical services have to be implemented according to these circumstances. Last but not least, services are a counterpart for

an entity in a real-world system.

Technical services are services on the infrastructure level. They possess a relatively fine granularity and offer functionalities

which vary from specific business actions to data services (e.g., connection to a database). While the reusability of this kind

of service is very high, technical services are bound to specific IT systems which make them unlikely to be invoked by

people unfamiliar with them. Furthermore, the number of technical services can grow very fast in large heterogeneous

application landscapes, which further decreases the clarity of the service landscape.

Composite services combine functionalities from two or more technical services. They may possess direct business value and

can be directly related to a task or subprocess in a business process; hence, it is necessary that these services are easily found.

The reusability of composite services depends on how specific their outcomes are – generally speaking, less specific

outcomes are per se more likely to be reusable in different contexts. However, this does not apply to every context and has to

be considered when assessing the value of a service.

Business processes can be composed of technical or composite services, and can be very complex. While a business process

is usually not a service on its own, it might be reasonable to provide a service interface for a business process, e.g., in order to

make a process available to other departments within a company. Business processes possess direct business value and are

the most complex of the services mentioned so far.

Public services are all services that are made available to parties outside of the company. They may be technical services,

composite services or even complete business processes. While the three aforementioned types of services (including

business processes) do not overlap, public services are combinations of other sorts of services, meeting the functional

requirements regarding accounting, security, as well as non-functional requirements like availability and other Quality of

Service attributes.

The different kinds of services show the need to interrelate the different levels of services in order to accomplish a clearly

arranged service landscape. In the following, we proceed on the assumption that business processes such as workflows are

available or can be constituted based on existing information. After that, composite services and service interfaces (i.e., single

services) are constructed, and finally enriched with semantic information in order to link the different service levels.

Application of a Domain Model

Instead of "structuring" a heterogeneous application landscape based on monolithic systems, the SOA paradigm implies the

composition of an application landscape by services. These services possess clearly defined standardized interfaces which

make the communication and use of single services very easy. In this way, the complexity of interfaces is radically reduced.

If interfaces are not standardized, a component in the application landscape has to be adapted to each interface in order to use

the functionalities offered. In the worst case, each component has to adapt n (number of functionalities in the domain)

different interface standards, leading to n×k (k = number of components in the domain) different adaptations. If applying

service-oriented concepts and standards, the number of adaptations is reduced to k (one adaptation per component) if all

components use the same service interface standard.

However, in order to achieve the possible advantages of applying service-oriented concepts, it is necessary to base the

application landscape (i.e., the service landscape) upon a commonly accepted foundation. If a business process model is

available, this could be used as a foundation. Another possibility is the utilization of an existing domain ontology. Despite the

possible benefits of industry-specific domain ontologies, a shortage of such ontologies exists. Thus, it is necessary to derive a

domain model from an existing business process model or similar sources.

http://www.soknos.de/

Schulte et al. Applied Service Engineering

Proceedings of the Fifteenth Americas Conference on Information Systems, San Francisco, California August 6th-9th 2009 5

Derivation of Composite Services from a Domain or Process Model

The derivation of composite or business-oriented services from a process model has been regarded in various publications,

(e.g., Erl, 2005; Krafzig et al., 2004; Bell, 2008). Hence, we will restrict this section to two major aspects of this process.

First, business-oriented services are usually used to map exactly one (major) aspect of the business (Krafzig et al., 2004) and

vice versa, making it possible to identify necessary services based on the processes available. Secondly, a service repository

needs to be established in order to identify appropriate services for potential consumers (Bell, 2008). Of course, it is

necessary to limit the visibility of certain services, as not every service is intended for all users such as external customers.

If a process model is not available, services have to be defined based on other data sources, one method being to list which

workflows make use of each software component (Alonso, Casati, Kuno and Machiraju, 2004). While these methods may

produce good results, the lack of a process model yields to the loss of an important piece of (semantic) information which is

essential in order to understand and model a service landscape.

As a result of the derivation of composite services, an application designer should possess a number of composite services,

workflows, or business processes which have been split into singular steps. Now, it is possible to identify the service

interfaces required to deliver the functionalities of each process step.

Identification of Service Interfaces

Estimate number of accommodation facilities

Show helpers on map

Assign helpers to quarters

Equip quarters

Resource

Management

Figure 1. Placement of Helpers

With regard to the construction of service landscapes, the internal implementation of services is rather irrelevant as long as it

does not affect the ability to provide services with reasonable granularity. Far more important is the identification of

functionalities and data that a service needs to provide to other components within an application landscape. Thus, it is first

and foremost necessary to identify the dependencies which exist between different components in a landscape.

Our approach for the identification of service interfaces can be applied both bottom-up as well as top-down with regards to

the underlying business process model. For an existing application landscape without a corresponding business process

model (i.e., the model and the applications have not been mapped to each other), it is necessary to identify interactions in

which the applications were used so far. This step is redundant if an explicitly defined business process model exists. In this

case, necessary services and their granularity can be identified based on the model.

For either the bottom-up or top-down approach, we use activity diagrams to identify necessary services and the entity in the

application landscape which must provide them. It is possible to adapt and apply similar notations, especially if a business

process model has already been defined in an appropriate notation. The use of activity diagrams is only recommended in

Schulte et al. Applied Service Engineering

Proceedings of the Fifteenth Americas Conference on Information Systems, San Francisco, California August 6th-9th 2009 6

relatively small scenarios. For large application landscapes, the identification of service interfaces needs to be supported by

more sophisticated tools.

If services are identified bottom-up, it is necessary to distinguish all the functionalities of an application that this software

component needs to provide to other software components. Our methodology is based on the principle of path testing

(Howden, 1976), but instead of using control flow graphs, we use activity diagrams. While control flow graphs usually

feature a fine granularity, activity diagrams match the comparatively coarse granularity of business processes and workflows

much better. Paths are identified by determining the interactions where the applications have been used so far, or will be used

in the future.

The principle of path testing implies that instead of constructing all possible paths and activity diagrams, only independent

paths have to be considered. When the independent paths are combined, they represent all the functionalities an application

must provide to be an equivalent system to what it was before service-oriented principles were applied. In the following, we

will show the identification of service interfaces based on a simple example which is taken from the project SoKNOS. This

research project aims to develop concepts that are valuable in the support of governmental agencies, private companies, and

other organizations active in managing disastrous events in the public security sector. Hence, there are many components

involved in the provisioning of particular processes. In a simplified illustration, we use the Resource management component

and the workflow Placement of helpers.

As seen in Figure 1, this workflow contains several different activities. The activity "Estimate number of accommodation

facilities" has already been connected to the resource management component. Next, it is necessary to identify and define

dependencies on other components of the application landscape. Attention should be paid to the fact that "dependencies" here

are not regarded in terms of software engineering as the components are loosely coupled. If an activity is attached to more

than one component, or only parts of necessary functionalities are covered by a component, it is necessary to divide the

activity. In the example (Fig. 2), the activity "Equip quarters" is assigned to two different components. Hence, it is necessary

to split this activity.

Estimate number of accommodation facilities

Show helpers on map

Assign helpers to quarters

Equip quarters

Resource

Management

GIS

Resource

Management

Yellow Pages

Resource

Management

Figure 2. Annotation with Supporting Components

The result of the annotation with supporting components is that a number of interfaces are needed to model a business

process. Based on this information, it is possible to develop services with the right degree of granularity, i.e., the

functionalities desired have to be written down in a standardized form and need to incorporate further requirements, e.g.,

security standards. Service interfaces should be enriched with semantic information in order to ease their retrieval and

integrate single services into the service landscape, which represents the next step in our service engineering approach.

Schulte et al. Applied Service Engineering

Proceedings of the Fifteenth Americas Conference on Information Systems, San Francisco, California August 6th-9th 2009 7

Enrichment of Service Interfaces with Semantic Information

While different authors have proposed the use of automatic annotation mechanisms in order to enrich service descriptions

with semantic information (e.g., Patil, Oundhakar, Sheth and Verma, 2004), we suggest that above all the data from the

process model and domain ontology (if at hand) be used to annotate services. Thus, it is possible to interrelate services on

different levels with each other. However, if there is no link between services on the technical and business process level, for

example, it is not possible to reuse semantic information from one level on another level. The actual integration of services

on different levels using semantic information will be a subject of our future work. Currently, the plan calls for services (e.g.,

technical and composite services, and business processes) to be made available through a service repository. Through

references to semantic data (i.e., an ontology) in the description of service interfaces and corresponding entities, it is possible

to identify which services are related to each other, are part of a composite service, or constitute a business process.

The result of this step is a detailed draft of service interfaces and the service landscape. Now, the services need to be

implemented with consideration to predetermined technologies.

EVALUATION APPROACH: SERVICE INVENTORY

Figure 3. Overview of the Service Inventory Process

In our previous work (Repp, Schulte, Eckert, Berbner and Steinmetz, 2007)
2
, we presented the concept of service inventory

taking being used to evaluate existing enterprise service ecosystems and their services. As our service inventory process can

be used to enhance SOA and service development methodologies, it is possible to apply this process to the service

engineering approach as well.

It is important to distinguish between two facets of the "service inventory" concept. On the one hand, this term describes the

actual service inventory, which is the result of a service inventory taking. This could be, for example, a service repository

enriched with information about the value of the services. On the other hand, the stocktaking of existing services, their

analysis, and evaluation is also called "service inventory" (see Fig. 3). Contrary to the inventory process in financial

accounting, no monetary value is assigned to a service during service inventory. Instead, the value of a service is measured

based on its ability to be integrated into a service landscape.

The actual assessment of single services has to incorporate the type of the service as mentioned above and is achieved by a

questionnaire (Repp et al., 2007). The questionnaire or criteria catalog is based on the definition of a scope which could be,

e.g., to estimate which services could be offered to external partners. After the criteria catalog is completed, deviations from

the required values need to be identified and further analyzed. If necessary, counteractions need to be taken in order to fix

identified flaws.

Depending on the scope of the service inventory process, there are different service aspects that should be considered. These

aspects have been derived from different sources, such as the common principles of service-orientation presented by Erl

(2005), the rules for architectural design of enterprise IT by Engels, Hess, Humm, Juwig, Lohmann, Richter, Voß, and

Willkomm, (2008), the standardized specification of business components by Ackermann et al. (2002), and our experience in

various SOA projects.

Using these sources as guides, we evaluate services based on the following service aspects (Repp et al., 2007):

2
 In order to make this paper self-contained, we include a summary of some materials already presented in (Repp et al., 2007)

in here.

Schulte et al. Applied Service Engineering

Proceedings of the Fifteenth Americas Conference on Information Systems, San Francisco, California August 6th-9th 2009 8

• Reusability

• Granularity

• Autonomy

• Degree of coupling

• Information hiding

• Discoverability

• Context independence

The results of the service inventory process show which services do not possess the needed degree of granularity, are not

detectable, or are not reusable in a different context. Thus, the outcome of a service inventory process can be used for the

evaluation and design of a service landscape, as it evaluates single services and their importance in an overall service

landscape.

CONCLUSION

In this paper, we have presented a conceptual model for service engineering which has been applied in a research project.

Through the analysis of different service engineering methodologies it was possible to identify characteristic elements of

service engineering. Compared with Table 1, the applied service engineering process involves all aspects mentioned. When

necessary, we incorporated semantic information in the service engineering process (e.g., to arrange the service landscape). In

addition, we applied service inventory practices in order to evaluate the service landscape and assess the outcome of the

proposed service engineering methodology.

Even though the proposed approach to service engineering has been applied in the context of SoKNOS, the research

presented here has been largely carried out on a conceptual level. We are currently working on an implementation of our

approach to service engineering which will be presented in a publication in the near future. This implementation specifically

addresses the support provided by tools concerning the identification of service interfaces and the linking of services at

different service levels.

ACKNOWLEDGEMENTS

This work is supported in part by the BMBF
3
-sponsored project SoKNOS (www.soknos.de) and the E-Finance Lab e. V.

(www.efinancelab.de).

REFERENCES

1. Ackermann, J., Brinkop, F., Conrad, S., Fettke, P., Frick, A., Glistau, E., Jaekel, H., Kotlar, O., Loos, P., Mrech, H.,

Ortner, E., Raape, U., Overhage, S., Sahm, S., Schmieten, A., Teschke, T. and Turowski, K. (2002) Standardized

specification of business components. Memorandum of the working group 5.10.3, Component Oriented Business

Application Systems.

2. Alonso, G., Casati, F., Kuno, H. and Machiraju, V. (2004) Web Services – Concepts, Architectures and Applications,

Springer-Verlag, Berlin, Heidelberg, New York.

3. Bayer, J., Eisenbarth, M., Lehner, T. and Petersen, K. (2008) Service Engineering Methodology, in Dominik Kuropka,

Peter Tröger, Steffen Staab and Mathias Weske (Eds.) Semantic Service Provisioning, Springer, Berlin/Heidelberg, 185-

201.

4. Bell, M. (2008) Service-Oriented Modeling - Service Analysis, Design, and Architecture. John Wiley & Sons, Inc.,

Hoboken, NJ, USA.

5. Bichler, M. and Lin, K.J. (2006) Service-oriented computing, IEEE Computer Magazine, 39, 3, 99-101.

3
 German Federal Ministry of Education and Research

Schulte et al. Applied Service Engineering

Proceedings of the Fifteenth Americas Conference on Information Systems, San Francisco, California August 6th-9th 2009 9

6. Chappell, D. (2007) Introducing SCA. Whitepaper,

http://www.davidchappell.com/articles/Introducing_SCA.pdf, accessed at 2008-09-18.

7. Erl, T. (2005) Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall PTR, Upper Saddle

River, NJ, USA.

8. Engels, G., Hess, A., Humm, B., Juwig, O., Lohmann, M., Richter, J.-P., Voß, M. and Willkomm, J. (2008) A Method

for Engineering a true Service-Oriented Architecture, in José Cordeiro, Joaquim Filipe (Eds.): Proceedings of the 10th

International Conference on Enterprise Information Systems (ICEIS 2008), Volume 2 Information Systems Analysis and

Specification, Barcelona, Spain, 272-281.

9. Erl, T. (2007) SOA – Principles of Service Design. Prentice Hall PTR, Upper Saddle River, NJ, USA.

10. Hepp, M. and Roman, D. (2007) An ontology framework for semantic business process management, in Andreas

Oberweis, Christof Weinhardt, Henner Gimpel, Agnes Koschmider, Victor Pankratius and Björn Schnizler (Eds.)

eOrganisation: Service-, Prozess-, Market-Engineering: 8. Internationale Tagung Wirtschaftsinformatik (WI 2007),

February 28 – March 2, Karlsruhe, Germany, Universitätsverlag Karlsruhe, 423-440.

11. Howden, W.E. (1976) Reliability of the path analysis testing strategy, IEEE Transactions on Software Engineering, 2, 3,

208-215.

12. Krafzig, D., Banke, K. and Slama, D. (2004) Enterprise SOA: Service-Oriented Architecture Best Practices (The Coad

Series). Prentice Hall PTR, Upper Saddle River, NJ, USA.

13. Margaria, T. and Steffen, B. (2006) Service engineering: Linking business and IT, IEEE Computer Magazine, 39, 10, 45-

55.

14. Papazoglou, M.P., Traverso, P., Dustdar, S. and Leymann, F. (2007) Service-oriented computing: State of the art and

research challenges, IEEE Computer Magazine, 40, 11, 38-45.

15. Patil, A., Oundhakar, S., Sheth, A. and Verma, K. (2004) METEOR-S web service annotation framework, in Stuart I.

Feldman, Mike Uretsky, Marc Najork and Craig E. Wills (Eds.) Proceedings of the 13th International Conference on

World Wide Web. (WWW2004), May 17-20, New York, NY, USA, ACM Press, 553-562.

16. Repp, N., Schulte, S., Eckert, J., Berbner, R. and Steinmetz, R. (2007) An approach to the analysis and evaluation of an

enterprise service ecosystem, in Proceedings of the ICSOFT'07 Workshop on Architectures, Concepts and Technologies

for Service Oriented Computing (ACT4SOC), Barcelona, Spain, INSTICC Press, 42-51.

17. Sawyer, P. (2005) Service specification state of the art, WP1.1. Report, Service Centric System Engineering (SeCSE).

18. Specht, T., Spath, D. and Weisbecker, A. (2005) Framework-based IT service engineering, in Peter Kokol (Ed.) IASTED

International Conference on Software Engineering, part of the 23rd Multi-Conference on Applied Informatics, February

15 – 17, Innsbruck, Austria, IASTED/ACTA Press, 202-207.

19. Tetlow, P., Pan, J.Z., Oberle, D., Wallace, E., Uschold, M. and Kendall, E. (2006) Ontology driven architectures and

potential uses of the semantic web in systems and software engineering. W3C Working Draft Working Group Note

2006/02/11.

20. van den Heuvel, W.-J., Zimmermann, O., Leymann, F., Lago, P., Schieferdecker, I., Zdun, U. and Avgeriou, P. (2009)

Software Service Engineering: Tenets and Challenges, in Proceedings of the ICSE 2009 Workshop “Principles of

Engineering Service Oriented Systems (PESOS), IEEE Computer Society Los Alamitos, CA, USA.

http://www.davidchappell.com/articles/Introducing_SCA.pdf

