
s

t-
ct
th.
d
a
ed

s
e
r-

d
-

tu-
f
e
em
t

le.

o

Design and Implementation of a
Flexible, QoS-Aware IP/ATM Adaptation Module

Jens Schmitt1, Martin Karsten1, and Ralf Steinmetz1,2

1 Industrial Process and System Communications, Darmstadt University of Technology, Germany
2 German National Research Center for Information Technology, GMD IPSI, Darmstadt, Germany

Email: {Jens.Schmitt,Martin.Karsten,Ralf.Steinmetz}@KOM.tu-darmstadt.de

Abstract --The overlaying of IP-based networks onto ATM subnetworks is a network configuration pat-
tern found increasingly often. While IP networks traditionally only offer plain "best-effort" service they
are now evolving to offer more sophisticated services. Nevertheless, the exact mechanisms for providing
QoS in IP networks are not yet settled and essentially non-existing in today’s production-level networks,
with the Internet being the most popular and important example. On the other hand, ATM networks have
been designed from their inception to offer a wide range of QoS mechanisms. Thus, given the configuration
of an IP overlay network over an ATM subnetwork, it is very attractive to leverage ATM’s QoS mecha-
nisms to alleviate IP’s QoS problem, at least partially. The invocation of those mechanisms will be done on
so-called IP/ATM edge devices which are exactly at the frontier between the IP and ATM network.
In this paper we describe the design and implementation of a flexible, QoS-aware IP/ATM adaptation mod-
ule. This adaptation module allows an IP/ATM edge device to forward IP datagrams depending on their
(header) contents onto specifically set up VCs in a performant manner. To achieve performance, it is neces-
sary to implement this module in kernel space, at least partially. On the other hand, it should be easy to use,
for e.g., an RSVP/IntServ over ATM, or a DiffServ over ATM mapping module. Therefore, the adaptation
module is split into two parts, a kernel-level part that handles all the time-critical tasks of data forwarding
and a user-level part which gives access to the functionality provided by the adaptation module.

Keywords: IP/ATM edge device, QoS, RSVP/IntServ, DiffServ.
1 Introduction

Most IP-based production networks essentially still
offer only best-effort service, and so does the largest
IP-based network - the Internet. However, the Internet
is becoming or even already is a commercially used
ubiquitous communication infrastructure. A fact which
will eventually require the Internet (or also large IP-
based intranets) to be able to accurately predict its per-
formance for business-critical applications, i.e., deliver
stringent Quality of Service (QoS) guarantees for those
applications.

On the other hand, the Asynchronous Transfer Mode
(ATM) technology offers a rich set of QoS-enabling
facilities. However, due to its homogeneity stipulation,
it faces its degradation to a link layer which is being
used by TCP/IP in the core of the internetwork where
its accurate QoS mechanisms are needed most.

A possible result of that discussion may be:

IP lacks QoS, but has a wide distribution - ATM
has QoS, but is not available end-to-end. Hence
it seems very reasonable that IP takes ATM’s
assist in order to provide QoS, so that its huge
user base can profit from ATM’s facilities with-
out the need of introducing ATM end-to-end.

This kind of interaction is often also termedoverlay
modelwith the important special case of mapping the
RSVP/IntServ (Resource Reservation Protocol/Inte-

grated Services) architecture onto ATM subnetwork
[1].

In general, the problem of providing QoS in packe
switched networks can be separated into the distin
but related problems on the control and the data pa
While the control path is very dependent on the utilize
solution for QoS provision in the IP network, the dat
path issues are rather generic. Therefore, we develop
in a first step an IP/ATM adaptation module that allow
to instruct the forwarding path inside an IP/ATM edg
device to direct IP data flows according to certain cha
acteristics onto specifically set up ATM VCs.

2 Architecture and Design

2.1. Overall Design Goals

We can distinguish between problem-specific an
general design goals for the IP/ATM adaptation mod
ule. Problem-specific goals are related to what we ac
ally want to achieve with respect to the functionality o
our IP/ATM adaptation module. General goals ar
related to desirable characteristics any software syst
is thriving to achieve, however we highlight those tha
are of particular importance for the adaptation modu

2.1.1 Problem-Specific Goals
The first and foremost design goal is certainly t

offer a rich functionality , which is to have a means of

r

.

h
e

,

a
ce
art
h

n

g
ce

h
-
rs
t-

c
)
a-
rt
ss,
P

e

ed
e
-

using ATM’s mechanisms and characteristics for any
IP QoS related matters, examples of which could be:

• RSVP/IntServ (for an overview see [2]),
• ST-II+ [3],
• DiffServ(Differentiated Services) [4],
• Policy-based configurational/static QoS, e.g. using

COPS (Common Open Policy Service) [5],
• Secure communications (e.g. for virtual private

networks),
• Hybrid TCP/IP-ATM API, as, e.g. AREQUIPA

(Application Requested IP over ATM) [6] or a
similar scheme described in [7].

From the pretty diverse potential uses of the IP/ATM
adaptation module it follows thatflexibility should be
one of the most important characteristics of its design.
Flexibility here is meant with regard to:

• mapping of IP flows onto ATM VCs, i.e. many-to-
many relationships between flows and VCs should
be possible,

• description of what constitutes a flow, i.e., more or
less arbitrary rules on IP and higher level headers
should be possible to define a flow of data that
shall be forwarded using one or more VCs.

Another more technically motivated design goal is to
be independent of the IP convergence modulesused
for best-effort IP traffic delivery, i.e., the adaptation
module should be capable of interworking interchange-
ably with any of the following:

• Classical IP over ATM (CLIP) [8],
• Multi-Protocol over ATM (MPOA) [9], or
• vendor-specific implementations, as e.g. ForeIP.
The idea behind the independence from the best-

effort IP convergence module is to be able to make use
of their different strengths when undertaking experi-
mental research in the area of IP and ATM interwork-
ing. Of course, this independence also expands the
general applicability of the adaptation module.

2.1.2 General Goals
Of course, the list of general design goals is virtually

endless, however what we want to do here is to empha-
size those that are of special significance to the devel-
opment of the IP/ATM adaptation module. These are:

• Reusability of the code, since some parts could
also be interesting to filtering software for fire-
walls or similar environments that need to deal
with customizable forwarding decisions within an
edge router.

• Minimization of kernel-level part, whilemaxi-
mizing theuser-level part without sacrificingeffi-
ciency on the data forwarding path, i.e. only the
most necessary changes to the forwarding behav-
ior should be realized inside the kernel, while all
the control functionality should be handled by the
user-space part of the implementation. The ratio-
nale behind this goal is the ease of development
and coding in user-space when compared to kernel

space.
• Extensibility of the code is certainly a must, as fo

example the rules constituting a QoS-worthy flow
will certainly experience changes and extensions

• Minimal invasiveness with respect to existing
kernel code. This is a pragmatic design goal whic
shall allows us to make the code available to th
public domain.

• Simple, but flexible interface to the services pro-
vided by the IP/ATM adaptation module.

2.2. Overall Architecture

We decompose the IP/ATM adaptation module
which we calledflexVCM(flexible VC Management),
into two separate parts:

• akernel module, and
• auser library.

2.2.1 The flexVCM Kernel Module
The flexVCM kernel module operates on the dat

path between the IP and ATM sides of the edge devi
and enforces the assignment of packets to VCs. Ap
from the design goals for the overall architecture whic
also apply to theflexVCMkernel module, there are also
more specific design goals for theflexVCM kernel
module:

• The functionality provided by theflexVCMkernel
module should be keptminimal , but complete
("keep it lean and clean"). The goal was to desig
atomic functions which can be composed to an
enhanced higher level service provided by theflex-
VCM user library. The rationale for this is the
higher effort required for development and codin
in kernel space when compared to user spa
implementations.

• Despite minimality, theflexVCM kernel module
should offer as muchflexibility as possible, espe-
cially with regard to thespecificationof rules that
prescribe which packets belong to a flow for whic
special VCs are available (virtually any informa
tion contained in IP and upper layer heade
should be possible to qualify for such special trea
ment by the ATM network). In particular, different
kinds of granularity should be possible, e.g., traffi
from certain subnets (identified by CIDR prefixes
should be a possible criterion as well as applic
tion subflows that are qualified by e.g. (transpo
protocol, source address, destination addre
source port, destination port, and/or even RT
header fields).

A design decision we made was to implement th
flexVCMkernel module in C. This was motivated by
the fact that the kernel entry points are to be specifi
in C anyway and that it would make only limited sens
to have a hybrid design by introducing another lan
guage, as e.g. C++.

t.

s
ns
sk
s

ion
e
-
d
ct
for
to-

tic-
if

o
pt

er
.
is
n
n
-
s

a

i-
he

t
,
in

to

ast
y

ct
o-
2.2.2 The flexVCM User Library
TheflexVCMuser library acts on the control path by

doing the signalling for VCs and furthermore provides
the interface to users of the adaptation module. Besides
the overall design goals for theflexVCMmodule as a
whole, we also have some more specific design goals
for theflexVCM user library. Those are:

• The interface to theflexVCMuser library should
beflexible andeasyto use. It should beextensible
for user code since not all potential uses of the
flexVCM module can be anticipated now. There-
fore we decided to design it in anobject-oriented
fashion.

• The flexVCM user library shouldhide all the
details of the flexVCMkernel module. Therefore
one of the main tasks of theflexVCMuser library
is to enforce the rules implied by the overall
design of distributing the functionality into user
and kernel space and by the lean design of theflex-
VCM kernel module. Furthermore, theflexVCM
user libraryenriches the services provided by the
flexVCM kernel module.

• Another important goal when developing theflex-
VCM user library must be thedecent handling of
failure conditions, as, e.g. the case where a switch
breaks down and all the VCs are torn down. The
flexVCMuser library must be able to signal these
asynchronous events to a potential user of its ser-
vices and must be able to indicate which VCs are
actually affected.

• Concurrency of UNI signalling processing in
order not to block a user of the library.

With respect to the programming language we
decided to use C++, since we wanted an object-ori-
ented interface design to be accompanied with object-
oriented coding. However, since the system-level inter-
faces to theflexVCMkernel module and to the UNI ser-
vices are in C, the lower part of theflexVCM user
library is rather procedural. Therefore, C++ which sup-
ports both paradigms of programming, procedural and
object-oriented, was ideal for our case.

2.3. Interface to IP/ATM Adaptation Module

TheflexVCMuser library allows to set filters into the
forwarding path from the IP-side of an edge device to
the ATM-side. Here, filters consist of a number of rules
which map data flows on a number of ATM VCs that
can each be set up with a certain specified QoS. A user
of the library only needs to supply the logic for which
data flows there should be special treatment by the
ATM subnet. This logic is a simple restricted predicate
logic, where the predicates are based on arbitrary con-
ditions in the headers including and above the IP layer
and are combined by logical ANDs, thus constituting a
filter rule. An OR’ed concatenation of such filter rules
represents afilter. Each filter is mapped on a set of

VCs, where the sets of the VC endpoints are disjoin
In a more formal way, filters can be described as:

Let Ai,j(p), i=1,...,n, j=1,...,k, be predicates defined
on the contents of an IP packetp,

e.g.

then
constitutes a filter rule for j=1,...,k,
and
with endpoints(VCi) ∩ endpoints(VCj) = {} for all i,j
constitutes a filter.
Since flexibility is one of the most important design

goals for the interface towards theflexVCM, different
kinds of matching actual packet header’s partial field
against filters are introduced, i.e., predicate definitio
are very general. For example, it is possible to do ma
matches which is particularly suited to address field
that are structured, as, e.g. IP’s source and destinat
address fields, thus allowing for filter rules to b
defined on whole IP subnets (e.g. "all traffic from sub
net a.b.c shall take special VC v when being forwarde
to subnet d.e.f"). Other types of matching include exa
matches and range matches, where the latter could
example be used to specify a range of transport pro
col ports.

Due to the generality of filter rules it is well possible
that a certain IP packet matches several rules, in par
ular if theflexVCMis used by several instances, e.g.
DiffServ and RSVP/IntServ components are usingflex-
VCM at an IP/ATM edge device at the same time. T
resolve such conflicts we have introduced the conce
of a cost for filter rules, which has to be set by the us
of the flexVCM, as this represents a policy decision
TheflexVCMensures that always the least-cost filter
selected. A sample policy could e.g. be to assig
RSVP/IntServ-related filters always a lower cost tha
DiffServ-related filters, thus enforcing that RSVP/Int
Serv-related special treatment of IP flows is alway
given priority over DiffServ-related QoS provision.

Let us now briefly discuss why we chose to have
N:M relation between filter rules and VCs. TheN, i.e.
multiple rules, is due to the fact that it should be poss
ble to share a VC by aggregating several flows onto t
same VC(s), something which will be particularly
required for e.g. supporting DiffServ over ATM, bu
might also be considered for RSVP/IntServ over ATM
especially for controlled load service (as proposed
[10]). TheM, i.e. multiple VCs, which however do not
share any endpoints, is because it should be possible
support a flexible way of combining IP with ATM mul-
ticast, as e.g. required if heterogeneous QoS multic
as provided by RSVP shall be supported efficiently b
an ATM subnetwork [11]. The idea here is to constru
heterogeneous QoS multicast trees from several hom
geneous ATM point-to-multipoint VCs. Also note here

Ai j, p() 1 if IP dest-addr = a.b.c.d

0 otherwise



=

F j A1 p() … An p()∧ ∧=

F F1 … Fk∨ ∨ VC1 … VCv, ,;()=

d-

nto
e
g

IP
e

e

er
he
to

p

PI

C
e

e

e

he
e

e

n-

e
et

o

-

that VCs might be shared between filters, i.e. a VC may
belong to several filters. This means that e.g. for IP
multicast groups that share only a subset of receivers it
is still possible to share VCs to common subnet-receiv-
ers.

3 Implementation

Due to space restriction we are not able to present all
the implementation details here. The interested reader
is referred to [12] for a very detailed description.

3.1. Overall View

Our development environment is Sun work stations
running Solaris 2.6/2.7 as the IP/ATM edge devices.
The work stations are equipped with Fore’s SBA200E
resp. PCA200E ATM network interface cards. There-
fore theflexVCMis realized as STREAMS implemen-
tation and for the VC control part we are able to use
Fore’s SDAPI (Signalling Driver API) as a means to
interface directly to UNI 3.1 signalling. As ATM
switches we used Fore’s LE155, as well as ASX-200
and ASX-1000 switches.

The components realizing the functionality of our IP/
ATM adaptation module are depicted inFigure 1 with
bold frames, whereas the other components represent
the Solaris TCP/IP stack implementation and the ATM
driver implementation by Fore.

3.2. The flexVCM Kernel Module(s)

The most important component is theflexVCM
STREAMS device multiplexing driver which is located
between the IP multiplexer and a convergence IP mo
ule (in the example Fore IP was taken).

The task of theflexVCMdevice is to multiplex the IP
data streams according to configurable parameters o
ATM VCs. The IP multiplexer essentially does not se
the Fore IP driver any more but is now communicatin
directly to the flexVCM multiplexer which however
provides the same (DLPI) interface as the Fore
device driver so that the IP multiplexer does not realiz
it "talks" to someone else.

The flexVCMmultiplexer examines the IP datagram
against a set of filters that are configured into it. Th
configuration of the filters is possible via anioctl

interface of theflexVCMmultiplexer. If any of the filter
rules applies, theflexVCMmultiplexer directs the data-
gram onto the respective VCs of the least-cost filt
rule which have been set up beforehand. If none of t
filter rules apply then the datagram is just passed on
the best-effort IP convergence module driver.

For the redirection of the data over specifically set u
VCs, theflexVCMmultiplexer hands the successfully
matched datagrams over to theflexVCM STREAMS
module, which has been pushed on the SDA
STREAMS device. In theflexVCMmodule the IP data-
grams are prepared for being sent over their ATM V
by prepending an internal header required for th
SDAPI driver. That is what has to be done for th
ingress to the ATM network.

For the egress from the ATM network, the invers
has to be done by theflexVCMmodule: stripping off
the internal header and putting the IP datagram into t
upward directed stream to the IP multiplexer. Thes
actions are depicted inFigure 1 by the dotted arrows
from the flexVCMdevice to theflexVCMmodule and
from the flexVCMmodule to the data stream leading
into the IP multiplexer.

The remaining question certainly is: who sets up th
VCs and controls the filter configuration in theflex-
VCM device. This is done by theflexVCMuser library.
It uses the SDAPI provided by Fore to setup and ma
age VCs. These actions are recorded by theflexVCM
STREAMS module and thus it is able to construct th
required internal headers for use of the specifically s
up VCs. The other task of controlling theflexVCM
device by managing its filter set configurations is als
done by theflexVCM user library.

3.3. The flexVCM User Library

3.3.1 Global View
In Figure 2, the relevant part of the overall architec

arp

ip

arp

IP

TCP UDP

udptcp

arp

ip

arp

flexVCM

le0

RSVPd exTCI
flexVCM Library

flexVCM
Control

UNI
Control

vcm

SDAPI

UNISPANS

fatm0

Ethernet Controller ATM Controller

ForeIP*

O
pe

ra
tin

g
S

ys
te

m
 K

er
ne

l
U

se
r

S
pa

ce
H

ar
dw

ar
e

RAPIRSVP-VIC

: STREAMS connections
: non-STREAMS connections

: STREAMS device driver

: non-STREAMS device

: STREAMS module

driver/module

*:Here we could also use the classical IP or MPOA driver
Figure 1: Implementation offlexVCM.

ate
e

er-

so

d/

nt
ep-
ld
that
r-

st
an
he
s

ng
d
no-
.
-

in
y
le
e

ri-

n
se

-

er

s
p

l

ture for theflexVCMuser library is shown. Theflex-

VCM user library can on a macroscopic level be
divided into two layers:

• Theuser interface layerwhich is directed towards
a user of theflexVCMservices as, e.g. the RSVP
daemon that "talks" via an extended Traffic Con-
trol Interface to theflexVCMmodule in order to set
up special VCs for RSVP-signalled IP data flows
according to the IntServ specifications carried by
the RSVP messages. Another example (as
depicted inFigure 2) could be a DiffServ SLA
(Service Level Agreements) Manager that maps
the given SLAs into specific ATM VCs.

• The kernel interface layeron the other hand is
directed towards the kernel-level modules, respec-
tively their user-space interface for managing the
data forwarding inside the kernel and the setup and
tear down, etc. of the especially customized VCs.
Along those two different tasks it can be divided
even further into subcomponents:
• UNI Control , which handles everything that is

concerned with the UNI-signalled VCs and
which therefore uses the services provided by
the user-level front-end to the SDAPI device
(which itself communicates to the SDAPI device
via the STREAMS concept), and

• flexVCM Control , which handles all the nec-
essary actions in order to invoke theflexVCM
kernel module functionality of directing IP data-
grams on specifically setup VCs depending on
the (header) contents of these datagrams. Again
the communication across the user-kernel space
barrier is based on the STREAMS mechanism.

Since the SDAPI library provides an upcall-based
interface that requires a user to "listen" on specific file
descriptors periodically, it was decided to put this
"polling" into an extra thread in order to not lock a user
of the flexVCMwhile doing signalling for VCs in the

ATM network. That means theUNI Control subcom-
ponent of the kernel interface layer runs as a separ
thread whereas all the other functionality runs as th
main thread (separating theflexVCM Control sub-
component is possible but not necessary since the int
face to the flexVCM kernel module works in a
synchronous, immediate request-response fashion
that blocking for substantial periods is not an issue).

3.3.2 Static Model
A quite detailed static model, according to the Coa

Yourdon notation (see [13]), of theflexVCM user
library is given inFigure 3.

The division between those classes that impleme
the kernel interface layer versus those classes that r
resent the user interface layer is illustrated by the bo
dashed frame which encompasses all the classes
compose the kernel interface layer, while all the su
rounding classes belong to the user interface layer.

Let us briefly look at the relations between the mo
important classes, where by the term relation we me
here: inheritance, aggregation and object relations. T
classKernelIF represents the kernel interface layer’
interface. It inherits its functionality from theflexVC-

Mcontrol and theUNIcontrol class which have a
direct correspondence to the subcomponents formi
the kernel interface layer’s functionality as describe
above. Theses classes are implemented quite mo
lithic in a style that is not object-oriented in nature
That is due to their proximity to system-level inter
faces, and actually the main task of these classes lies
building a convergence "layer" towards the purel
object-oriented user-interface layer from the C-sty
system-level commands applying to the use of th
SDAPI library and theflexVCM kernel module.

The user interface layer is composed of a larger va
ety of classes. The most important one being theFil-

ter class.Filter ’s consist of an arbitrary number
(but at least one) ofFilterRule ’s and an arbitrary
number ofVC’s1, thus storing the association betwee
the rules on which IP datagrams are allowed to u
which set of VCs.Filter ’s have a relationship to the
KernelIF in order to access its functionality for set
ting up kernel filters.

The VC class is an abstract base class for eith
PointToPointVC or MultipointVC . It has a one-to-
one relation to the classQoSand a relation to theKer-

nelIF in order to access its services for setting up VC
via UNI signalling. Furthermore, it has a relationshi
to the classVCDVCTuple, whose instances are kept in a
container calledVCList in order to track all the VCs
irrespective of whether they were built up by the loca

RSVPd

User Space

Kernel Space

DS SLA
Manager

DS
over
ATM

Stream to
SDAPI

Stream to
flexVCM

exTCI

Kernel Interface

User Interface

Figure 2: Global View offlexVCM User Library.

flexVCM Library

flexVCM
Control

UNI
Control

Interface Layer

Layer

1. If the number of VCs is equal to 0, then the semantic of
that filter is to discard a matching IP datagram, thus
accomplishing the usual functionality of a packet filter for
firewalling purposes.

callbackOnAsync

Filter

addRule
addVC
changeRule
changeVC
removeRule
removeVC
changeRuleSet
changeVCSet

VCSetupOrder

kernelFilter

FilterRule

setIPSrcAddr
setIPSrcAddrMask
setIPDstAddr
setIPDstAddrMask
setIPProto
setTPSrcPort
setTPSrcPortOffset
setTPDstPort
setTPDstPortOffset

VC
partyID
VCD

setup
sendData
close
asyncHandler
setFilterinCharge

destAddr
filterInCharge
open

AddrResolver

resolve

MultipointVC

setup
addDest
deleteDest
asyncHandler

AddrPartyIDTuple

addr
partyID

operator<
getAddr
getParty

operator!=

KernelIF
running

SDAPIHandle
cardAddress
controlThreadID

UNIcontrol

getAPI
getCardAddress

VCMdevHandle
IPcmIPHandle

VCMcontrol

newFilter
addVC2Filter

IPcmARPHandle

changeFilter
addFilter
changeVC4Filter
deleteVCfromFilter
deleteFilter
filterExists
flush
listFilter

QoS

SDU

getSDU

VCDVCTuple
VCD

operator<
getVC
setVC

operator!=

CLIP
AddrResolver

resolve

PointToPointVC

setup

VCList

Figure 3: The static model of the
flexVCM user library.

1

0,m

1,m

1

1

0,m

1

0,1

1

1

0,m

1

1,m

1

0,m

1

Kernel Interface
Layer

User Interface
Layer

ly
r-
-

e

his
g

P
he

ics
n
r-
-
ed

-

l
n

IP
y.
o
o-
.

d
in
ti-
t-
t

e

f
, if
e
oS
o
P/
d

a-
a-
flexVCMmodule or by another remoteflexVCMmod-
ule, i.e. for the former case they are outbound while for
the latter case they are inbound. Only the outbound
VCs are instances of the classVCwhich explains that a
VCDVCTuple object does not necessarily have a rela-
tion to a VC object. The classMultipointVC which
represents a specialization ofVC contains an arbitrary
number (but at least one) ofAddrPartyIDTuple

objects in order to track the association between ATM
addresses and party IDs within a point-to-multipoint
VC.

Isolated from the above classes of the user interface
layer are the abstract base classAddrResolver and its
specializationCLIPAddrResolver , whose task it is to
resolve an IP address into the corresponding ATM
address. The base classAddrResolver just specifies
the abstract interface how such a request is to be made,
whereasCLIPAddrResolver implements a simple
way of eliciting the ATM address for a given IP address
by using the CLIP’s address resolution service. By sep-
arating the interface from the implementation, we are
able to easily extend this to other address resolution
mechanisms.

4 Example Use

We have used theflexVCMto implement two options
for achieving differentiated treatment of IP flows over
an ATM subnetwork:

• RSVP/Intserv, and
• static provisioning.

4.1. RSVP/IntServ over ATM

We have implemented an extended Traffic Control
Interface (TCI) for NBMA networks like ATM which
uses theflexVCM to grant reservations at an IP/ATM
edge device a preferential treatment by the ATM sub-
network (for a detailed discussion of that TCI, see [14],
which is based on [15]). This is achieved by installing
flexVCMfilters in response to RESV messages arriving
at the ingress IP/ATM edge device, where the filter is
composed of one or several filter rules (for shared
explicit filter style reservation) defined by the 5-tuple
(source IP address, destination IP address, source port,
destination port, protocol). Due to the flexibility offlex-
VCM, this was easily possible. Furthermore, our RSVP
over ATM implementation can interchangeably inter-
work with CLIP, ForeIP, or MPOA for the transport of
best-effort-traffic (in particular for the transport of
RSVP control messages), as it is independent of the
utilized best-effort IP convergence module. As we are
particularly interested in RSVP/IP multicast over ATM,
we also implemented for CLIP a very simple way of
supporting best-effort IP multicast. In any edge device
a filter for all multicast traffic (224.*.*.*) is installed to
use a point-to-multipoint VC to all other edge devices.

This means of course, multicast traffic is essential
broadcast over the ATM subnetwork. While this is ce
tainly not the most efficient way of supporting IP mul
ticast over ATM, it is extremely easy to implement by
the use offlexVCM(a few lines of code), which shows
again the potential of the adaptation module.

4.2. Static Provisioning

The other example “application” of theflexVCMwe
implemented is an interactive console program for th
flexVCM, which allows to install filters at an IP/ATM
edge device exactly as they were described above. T
can be considered as a way of statically provisionin
resources inside the ATM subnetwork for certain I
flows by a network management operation. Due to t
flexible way of specifying filters, this kind of provi-
sioning can be done on almost arbitrary characterist
of IP flows, e.g. all IP telephony traffic could take a
especially setup CBR VC using AAL1, whereas no
mal traffic would keep on using the configured IP con
vergence module and would therefore, e.g. be deliver
over UBR VCs and AAL5. As it is also possible to use
the ToS byte, or now the DS field, in order to discrimi
nate between IP flows, theflexVCMconsole can also be
viewed as a way of static configuration for an interna
DiffServ node representing a particular ingress to a
ATM subnetwork of a larger DiffServ domain.

5 Related Work

The issues surrounding the interworking between
and ATM have been and are still dealt with extensivel
However, directly related to our work, there are tw
main areas. One of them, is the general idea of s
called layer 4 or even layer 5 switching, as e.g
described in [16] or [17]. While this work is very inter-
esting and partially complements our work with regar
to the filtering algorithms described there, we are
contrast to these especially concerned with differen
ated treatment of IP traffic entering an ATM subne
work. The other area of related work is abou
interworking IP QoS architectures with ATM. With
regard to approaches for RSVP/IntServ over ATM, se
for example [18], [19], or [20], for DiffServ over ATM
there is mostly conceptual work, as e.g. [21]. All o
these focus very much on the control path issues and
they provide implementation details at all, they solv
the data path issues specifically for their regarded Q
architecture. In our paper, we provide an insight int
the data path issues when implementing a flexible I
ATM adaptation module that can in principle be use
for any IP QoS related interworking with ATM.

6 Conclusion

We designed and implemented an IP/ATM adapt
tion module that is capable of supporting many situ

.
i-

s
n-

,

-

r-

s

.
/

d
r

d
-

-

f
t-

ks

s

-

g

tions in which IP QoS is to be overlaid onto ATM
networks A special emphasis was put on the flexibility
of the module. By implementing some example “appli-
cations” of that adaptation module, we showed that the
design is flexible indeed and allows to be used for sev-
eral IP QoS over ATM problems.

7 Outlook and Future work

The adaptation module is currently under perfor-
mance testing and the feedback from this will certainly
result in much fine-tuning. Our plan is to make the
implemented software available to the public domain,
which has been one of our design goals from the begin-
ning and resulted in a design that tries to change as lit-
tle existing kernel-level code as possible. Furthermore,
with the help offlexVCMwe want to experimentally
research some hard control path problems, for which
we devised conceptual solution approaches, e.g. in
[22]. The latter was the original motivation to start
work on the IP/ATM adaptation module in the first
place.

8 References

[1] J. Schmitt, L. Wolf, R. Steinmetz, Y.-O. Lorcy,
and C. Siebel. Interaction Approaches for Internet
and ATM QoS Architectures. InProceedings of
the 1st IEEE International Conference on ATM
(ICATM’98), Colmar, France. IEEE, June 22–24
1998.

[2] P. White and J. Crowcroft. Integrated Services in
the Internet: State of the Art.Proceedings of IEEE,
85(12), December 1997.

[3] L. Delgrossi and L. Berger. Internet Stream Proto-
col Version 2 (ST2) Protocol Specification - Ver-
sion ST2+, August 1995. RFC 1819.

[4] D. Black, S. Blake, M. Carlson, E. Davies,
Z. Wang, and W. Weiss. An Architecture for Dif-
ferentiated Services, December 1998. RFC 2474.

[5] D. Durham, J. Boyle, R. Cohen, S. Herzog,
R. Rajan, and A. Sastry. The COPS (Common
Open Policy Service) Protocol. RFC 2748, Janu-
ary 2000.

[6] W. Almesberger, J. LeBoudec, and P. Oechslin.
Application REQUested IP over ATM (AREQUI-
PA), July 1997. RFC 2170.

[7] S. Martignoni and T.Kühnel. Extension of Classi-
cal IP over ATM to Support QoS at the Applica-
tion Level. In Proceedings of the 1st IEEE
International Conference on ATM (ICATM’98),
Colmar, France. IEEE, June 22–24 1998.

[8] M. Laubach. Classical IP and ARP over ATM,
January 1994. RFC 1577.

[9] ATM Forum Technical Committee: Multi-Proto-
col over ATM v1.0, July 1997.

[10] L. Salgarelli, M. DeMarco, G. Meroni, and

V. Trecordi. Efficient Transport of IP Flows
Across ATM Networks. InIEEE ATM ‘97 Work-
shop Proceedings, May 1997.

[11] J. Schmitt, L. Wolf, M. Karsten, and R. Steinmetz
VC Management for Heterogeneous QoS Mult
cast Transmissions. InProceedings of the 7th In-
ternational Conference on Telecommunication
Systems, Analysis and Modelling, Nashville, Te
nessee, March 1999.

[12] J. Schmitt. A Flexible, QoS-Aware IP/ATM Ad-
aptation Module. Technical Report TR-KOM-
1999-06, Darmstadt University of Technology
December 1999.

[13] P. Coad and E. Yourdon. Object-Oriented Analy
sis, 1991. Prentice Hall, Englewood Cliffs.

[14] M. Karsten, J. Schmitt, and R. Steinmetz. Gene
alizing RSVP’s Traffic and Policy Control Inter-
face. In Proceedings of the 7th International
Conference on Parallel and Distributed System
(Workshops). IEEE, July 2000. Accepted for pub-
lication.

[15] M. Karsten. KOM-RSVP Protocol Engine, 1999
Work in Progress. Software available from http:/
www.kom.e-technik.tu-darmstadt.de/rsvp/.

[16] S. Srinivasan, G. Varghese, S. Suri, an
M. Waldvogel. Fast and Scalable Layer Fou
Switching. In Proceedings of SIGCOMM’98.
ACM, September 1998.

[17] G. Apostolopoulos, V. Peris, P. Pradhan, an
D. Saha. A Self Learning Layer-5-Switch. Techni
cal Report RC 21461, IBM T.J Watson, April
1999. Research Report.

[18] T.Braun and S.Giorcelli. Quality of Service Sup
port for IP Flows over ATM. InProc. of the KIVS
’97, February 1997.

[19] J. Schmitt, M. Zink, L. Wolf, and R. Steinmetz.
Quality of Service for Recording and Playback o
MBone Sessions in Heterogeneous IP/ATM Ne
works. In Proceedings of SPIE’S International
Symposium on Broadband European Networ
(SYBEN’98), Zürich, Switzerland. SPIE, May 18–
20 1998.

[20] H. Chow and A. Leon-Garcia. Integrated Service
Internet with RSVP over ATM Shortcuts: Imple-
mentation Evaluation.Computer Communica-
tions, 22(9), June 1999.

[21] S. Ayandeh, A. Krishnamurthy, and A. Malis.
Mapping to ATM Classes of Service for Differen-
tiated Services Architecture, November 1999. In
ternet Draft, work in progress.

[22] J. Schmitt and J. Antich. Issues in Overlayin
RSVP and IP Multicast on ATM Networks. Tech-
nical Report TR-KOM-1998-03, University of
Technology Darmstadt, August 1998.

	1 Introduction
	2 Architecture and Design
	2.1. Overall Design Goals
	2.1.1 Problem-Specific Goals
	2.1.2 General Goals

	2.2. Overall Architecture
	2.2.1 The flexVCM Kernel Module
	2.2.2 The flexVCM User Library

	2.3. Interface to IP/ATM Adaptation Module

	3 Implementation
	3.1. Overall View
	Figure 1: Implementation of flexVCM.

	3.2. The flexVCM Kernel Module(s)
	3.3. The flexVCM User Library
	3.3.1 Global View
	Figure 2: Global View of flexVCM User Library.

	3.3.2 Static Model
	Figure 3: The static model of the flexVCM user library.

	4 Example Use
	4.1. RSVP/IntServ over ATM
	4.2. Static Provisioning

	5 Related Work
	6 Conclusion
	7 Outlook and Future work
	8 References
	Design and Implementation of a Flexible, QoS-Aware IP/ATM Adaptation Module
	Jens Schmitt1, Martin Karsten1, and Ralf Steinmetz1,2
	1 Industrial Process and System Communications, Darmstadt University of Technology, Germany
	2 German National Research Center for Information Technology, GMD IPSI, Darmstadt, Germany
	Email: {Jens.Schmitt,Martin.Karsten,Ralf.Steinmetz}@KOM.tu-darmstadt.de

