
[SKStOO] . Jens Schmitt, Martin Karsten, and Ra[fSteinmetz; Design and Implementation of a .
Flexible, QoS-Aware IPIATM Adaptation Module; Proceedings of ATM'2000.
IEEE, June 2000.

I Design and Implementation of a
Flexible, QoS-Aware IPIATM Adaptation Module

Jens Schmitt1, Martin ~ a r s t e n ' , and Ralf ~ t e i n m e t z ' . ~ ' Industrial Process and System Cornmunications, Darmstadt University of Technology, Germany
German National Research Center for Information Technology, GMD IPSI, Darmstadt, Germany

Email: {Jens.Schmitt,Martin.Karsten,Ralf.Steinmetz}@KOM.tu-darmstadt.de

Abstract -- The overlaying of IP-based networks onto ATM subnetworks is a network configuration pat-
tern found increasingly often. While IP networks traditionally only offer plain "best-effort" service they
are now evolving to offer more sophisticated services. Nevertheless, the exact mechanisms for providing
QoS in IP networks are not yet settled and essentially non-existing in today's production-level networks,
with the Internet being the most popular and important example. On the other hand, ATM networks have
been designed from their inception to offer a wide range of QoS mechanisms. Thus, given the configuration
of an IP overlay network over an ATM subnetwork, it is very attractive to leverage ATM's QoS mecha-
nisms to alleviate IP's QoS problem, at least partially. The invocation of those mechanisms will be done on
so-called IPIATM edge devices which are exactly a t the frontier between the IP and ATM network.
In this paper we describe the design and implementation of a flexible, QoS-aware IPIATM adaptation mod-
ule. This adaptation module allows an IPIATM edge device to forward IP datagrams depending on their
(header) contents onto specifically set up VCs in a performant manner. To achieve performance, it is neces-
sary to implement this module in kerne1 space, a t least partially. On the other hand, it should be easy to use,
for e.g., an RSVPnntServ over ATM, or a DiffServ over ATM mapping modiile. Therefore, the adaptation
module is split into two parts, a kernel-level part that handles all the time-critical tasks of data forwarding
and a user-level part which gives access to the functionality provided by the adaptation module.

Keywords: IPIATM edge device, QoS, RSVPnntServ, DiffServ.

1 Introduction grated Services) architecture onto ATM subnetworks

Most IP-based production networks essentially still
offer only best-effort service, and so does the largcst
IP-bascd network - the Internet. Howevcr, the Internet
is becoming or even already is a commercially used
ubiquitous communication infrastructure. A fact which
will eventually require the Internet (or also large IP-
based intranets) to be able to accurately predict its per-
formance for business-critical applications, i.e., deliver
stringent Quality of Service (QoS) guarantees for those
applications.

On the other hand, the Asynchronous Transfer Mode

[I].
In gencral, the problem of providing QoS in packet-

switched networks can be separated into the distinct
but related problems on the control and the data path.
Wliile the control path is very dependent on the utilized
solution for QoS provision in the IP network, the data
path issues are rather generic, Therefore, we developed
in a first step an IPIATM adaptation module that allows
to instruct the forwarding path inside an IPIATM edge
device to direct IP data flows according to certain char-
acteristics onto specifically set up ATM VCs.

(ATM) technology offers a rich set of QoS-enabling
facilities. However, due to its homogeneity stipulation,

2 Architecture and Design

it faces its degradation to a link layer which is being
used by TCP/IP in the core of the internetwork where

2.1. Overall Design Goals

its accurate QoS mechanisms are needed most.
A possible result of that discussion may be:

IP Iacks QoS, but lzas a wide distrihiition - ATM
/las QoS, but is not uvailable end-to-end. Hence
it seems ver? r-easonable that IP takes ATM's
assist in order- to provide QoS, so tllat its huge
user Oase can projt from ATM's facilities with-
out the need of intr-oducing ATM end-to-end.

This kind of interaction is often also termed overhy
rnodel with the important special case of mapping the
RSVPlIntServ (Resource Reservation Protocol/Intc-

We can distinguish between problern-specific and
general design goals for the IPIATM adaptation mod-
ule. Problem-specific goals T e related to what we actu-
ally Want to achieve with respect to the functionality of
our IPIATM adaptation module. General goals are
related to desirable characteristics any software system
is thrivinp to achieve, however we highlight those that
are of particular importance for the adaptation module.

2.1.1 Problem-Specific Goals

The first and foremost design goal is certainly to
offer a rich functionality, which is to have a means of

using ATM's mechanisnis and characteristics for any
IP QoS related matters, exainples of which could be:

RSVPOntServ (for an overview see [2]),
ST-11+ [3],
I>iffServ(Differentiated Services) [4],
Policy-based configurationallstatic QoS, e.g. using
COPS (Coinmon Open Policy Service) [5] ,
Secure communications (e.g. for virtual private
networks),
Hybrid TCPnP-ATM API, as, e.g. AREQUIPA
(Application Requested IP over ATM) [6] or a
similar scheme described in [7].

Froin the pretty diverse potential uses of the IPIATM
adaptation module it follows that flexibility should be
one of the most important characteristics of its design.
Flexibility here is meant with regard to:

mapping of IP flows onto ATM VCs, i.e. many-to-
inany relationships between flows and VCs should
be possible,
description of what constitutes a flow, i.e., more or
less arbitrary rules on IP and higher level headers
should be possible to define a flow of data that
shall be forwarded using one or more VCs.

Another more technically motivated design goal is to
be independent of the IP convergence modules used
for best-effort IP traffic delivery, i.e., the adaptation
rnodule should be capable of interworking interchange-
ably with any of the following:

Classical IP over ATM (CLIP) [81,
Multi-Protocol over ATM (MPOA) [9], or
vendor-specific implementations, as c.g. ForeIP.

The idea behind the independence from the best-
effort IP convergence module is to be able to make use
of their different strengths when undertaking experi-
mental research in the area of IP and ATM interwork-
ing. Of course, this independence also expands the
general applicability of the adaptation inodule.

2.1.2 General Goals
Of course, the list of general design goals is virtually

endless, however what we Want to do here is to empha-
size those that are of special significance to the dcvcl-
opment of the IPIATM adaptation module. These are:

Reusability of the code, since some parts could
also be interesting to filtering software for fire-
walls or similar environments that need to deal
with customizable forwarding decisions within an
edge router.
-Minimization of kernel-level part, while maxi-
mizing the user-level part without sacrificing effi-
ciency on the data forwarding path, i.e. only the
most necessary changes to the rorwarding behav-
ior should be realized inside the kernel, while all
the control functionality should be handled by tlie
user-space part of the implementation. The ratio-
nale behind this goal is the ease of development
and coding in user-space when compared to kerne1

space.
Extensibility of the code is certainly a must, as for
example the rules constituting a QoS-worthy flow
will certainly experience changes and extensions.
Minimal invasiveness with respect to existing
kernel code. This is a pragmatic design goal which
shall allows us to make the code available to the
public dornain.
Simple, but flexible interface to the services pro-
vided by the IPIATM adaptation module.

2.2. Overall Architecture

We decompose the IPIATM adaptation module,
which we calledjexVCM (flexible VC Management),
into two separate parts:

a kernel nlodule, and
a user libraty.

2.2.1 The flexVCM Kernel Module
The JexVCM kernel module operates on the data

path between the IP and ATM sides of the edge device
and enforces the assignment of packets to VCs. Apart
from the design goals for the overall architecture which
also apply to theJexVCM kernel module, there are also
more specific design goals for the JexVCM kernel
module:

The functionality provided by theJexVCM kernel
module should be kept minimal, but complete
("keep i t lean and clean"). The goal was to design
atomic functions which can be coinposed to an
enhanced higher level service provided by theflex-
VCM User library. The rationale for this is the
Iiigher effort required for development and coding
i n kernel space when compared to User space
iinplementations.
Despite minimality, the JexVCM kernel module
should offer as much flexibility as possible, espe-
cially with regard to the specification of rules that
prescribe which packets belong to a flow for which
special VCs arc available (virtually any informa-
tion contained in IP and upper layer headers
should be possible to qualify for such special treat-
ment by the ATM network). In particular, different
kinds of granularity should be possible, c.g., traffic
froin certain subnets (identified by CIDR prefixes)
should be a possible criterion as well as applica-
tion subflows that are qualified by e.g. (transport
protocol, source address, destiiiation address,
source port, destination port, andlor even RTP
header fields).

A design decision we made was to implement the
JexVCM kernel module in C. This was motivated by
the fact that the kernel entry points are to be specified
in C anyway and that it would make only limited sensc
to have a hybrid design by introducing another lan-
guage, as e.g. C++.

2.2.2 The flexVCM User Library
TheflexVCM User library acts on the control path by

doing the sigrialling for VCs and furthermore provides
thc interface to uscrs of tlic adaptation module. Besides
thc overall design goals for theflexVCM module as a
whole, we also have some more specific design goals
for theflexVCM User library. Those are:

The interface to the flexVCM User library should
be flexible and easy to use. It should be extensible
for User code since not all potential uses of the
PexVCM module can be anticipated now. There-
fore we decided to design it in an object-oriented
fashion.
The flexVCM User library should hide all the
details of the flexVCM kernel module. Therefore
one of the main tasks of theflexVCM User library
is to enforce tlie rules implied by the overall
design of distributing tlie functionality into User
and kernel space and by the lean design of theflex-
VCM kernel module. Furthermore, the JlexVCM
User library enriches the Services provided by the
flexVCM kernel module.
Another important goal when developing theflex-
VCM User library must be the decent handling of
failure conditions, as, e.g. tlie case where a switch
breaks down and all the VCs are torn down. The
JexVCM User library must be able to signal these
asynchronous events to a potential User of its ser-
vices and must be able to indicate which VCs are
actually affected.
Concurrency of UNI signalling processing in
order not to block a User of the library.

With respect to the programming language we
decided to use C++, since we wanted an object-ori-
ented interface design to be accompanied with object-
oriented coding. However, since the system-level inter-
faces to theflexVCM kernel module and to the UNI ser-
vices are in C, the lower part of the flexVCM User
library is rather procedural. Therefore, C++ which sup-
ports both paradigms of programming, procedural and
object-oriented, was ideal for our case.

2.3. Interface to IPIATM Adaptation Module

TheJlexVCM User library allows to Set filters into the
forwarding path from the IP-side of an edge device to
the ATM-side. Here, filters consist of a number of rules
which map data flows on a number of ATM VCs that
can each be set up with a certain specified QoS. A User
of the library only needs to supply the logic for which
data flows there should be special treatment by the
ATM subnet. This logic is a simple restricted predicate
logic, where the predicates are based on arbitrary con-
ditions in the headers including and above the IP layer
and are combined by logical ANDs, thus constituting a
jilrer rule. An OR'ed concatenation of such filter rules
represents a jilter. Each filter is mapped on a set of

VCs, whcrc the sets of the VC endpoints are disjoint.
In a inore forinal way, filteis can be describcd as:

Let Aili@), i= l , ..., n, j=l , k , be predicates defined
on the contents of an IP packet p,

then F, = Al (p) A .. . A A,,(p)
constitutes a filter rule for j= l ,..., k ,
and F = (F I V ... V F,;VC„ ..., VC,.)
with endpoints(VCi) n endpoints(VC,) = (} for all i j
constitutcs a filter.
Since flexibility is one of the most important design

goals for the interface towards the flexVCM, different
kinds of matching actual packet header's partial fields
against filters are introduced, i.e., predicate definitions
are very general. For example, it is possible to do mask
matches which is particularly suited to address fields
that are structured, as, e.g. IP's source and destination
address fields, thus allowing for filter d e s to be
defined on whole IP subnets (e.g. "all traffic from sub-
net a.b.c shall take special VC V when being forwarded
to subnet d.e.fl). Other types of matching includc exact
matches and range matches, where the latter could for
example be used to specify a range of transport proto-
col ports.

Due to the generality of filter rules it is well possible
that a certain IP packet matches several d e s , in partic-
ular if theflexVCM is used by several instances, e.g. if
DiffServ and RSVPflntServ components are usingflex-
VCM at an IPIATM edge devicc at the same time. To
resolve such conflicts we have introduced the concept
of a cost for filter rules, which has to be Set by the User
of tlie JexVCM, as this represents a policy decision.
TheflexVCM ensures that always tlie least-cost filter is
selected. A sample policy could e.g. be to assign
RSVPAntServ-related filters always a lower cost than
DiffServ-related filters, thus enforcing that RSVPflnt-
Serv-related special treatment of IP flows is always
given priority over DiffServ-related QoS provision.

Let us now briefly discuss why we chose to have a
N:M relation between filter rules and VCs. The N, i.e.
multiple rules, is due to the fact that it should be possi-
ble to share a VC by aggregating several flows onto the
Same VC(s), something which will be particularly
required for e.g. supporting DiffServ over ATM, but
might also be considered for RSVPIIntServ over ATM,
especially for controlled load Service (as proposed in
[IO]). The M, i.e. multiple VCs, which however do not
share any endpoints, is because it should be possible to
Support a flexible way of combining IP with ATM mul-
ticast, as e.g. required if Iieterogeneous QoS multicast
as provided by RSVP shall be supported efficieritly by
an ATM subnetwork [I 11. The idea here is to construct
heterogeneous QoS multicast trees from several homo-
geneous ATM point-to-multipoint VCs. Also note here

that VCs might be sliared between filters, i.e. a VC inay 3.2. The flexVCM Kerne1 Module(s) .. ,

belong to several filters. This means that e.g. for IP
multicast groups that share only a subset of receivers it Tlie most important cornponent is the JlexVCM

is still possible to share VCs to comrnon subnet-receiv- STREAMS device multiplexing driver which is located

PI'C between the IP multiplexer and a convergeiice IP mod-
W..,.

ule (in the example Fore IP was taken).

3 Implementation The task of theJlexVCM device is to multiplex the IP
data streams according to configurable Parameters onto

Due to space restriction we are not able to present all ATM VCs. The IP multiplexer essentially does not see

the implementation details here. The interested reader the Fore driver any more but is now communicating
is refened to [I21 Sor a very detailed description. directly to the JlexVCM inultiplexer which however

provides the same (DLPI) interface as the Fore IP
3.1. Overall View device driver so that the IP multiplexer does not realize

Our development environmeiit is Sun work stations
running Solaris 2.612.7 as the IPIATM edge devices.
The work stations are equipped with Fore's SBA200E
resp. PCA200E ATM network interface cards. There-
fore thefixVCM is realized as STREAMS implemeii-
tation and for the VC control part we are able to use
Fore's SDAPI (Signalling Driver API) as a ineans to
iiiterl'ace directly to UNI 3.1 signalling. As ATM
switches we used Fore's LE155, as well as ASX-200
and ASX- 1000 switches.

The componeiits realizing the functionality of our IPI
ATM adaptation module are depicted in Figure 1 with
hold frarnes, whereas the other components represeiit
tlie Solaris TCPIIP stack implementation and the ATM
drivcr implementation by Fore.

Eltieriict Controller AT.M Coiiiroller

- - - : STREAMS cnnnections - : non-STREb\hlS device - : non-STREAivlS conneclions ~Iriverlniodiile

0 : STREAhlS device clriver 0 : STREAMS mociiile
*:Hcre wr could also use tlie classical IP or MPOA driver

Figure 1: Implementation ofJiexVCM.

i t "talks" to soineone else.
The JlexVCM multiplexer examines the IP datagrain

against a set of filters that are configured into it. The
configuratiori of the filters is possible via an ioctl
interface of thejexVCM multiplexer. If any of the filter
rules applies, theJlexVCM multiplexer directs the data-
gram onto the respective VCs of the least-cost filter
rule which have been sec up beforehand. If none of the
filter rules apply then the datagram is just passed 011 to
the best-effort IP convergence module driver.

For the redirection of the data over specifically set up
VCs, the JexVCM multiplexer hands the successfully
matched datagrams over to the jYexVCM STREAMS
niodule, wliich has been pushed on the SDAPI
STREAMS device. In theJlexVCM module the IP data-
grams are prepared for being sent over their ATM VC
by prepending an internal header required for the
SDAPI drivei: That is what has to be doiie for the
ingress to the ATM network.

For the egress from the ATM network, the inverse
has to be done by the j7exVCM module: stripping off
the internal header and putting the IP datagram into the
upward directed stream to the IP multiplexer. These
actions are depicted in Figure 1 by the dotted arrows
from theJlexVCM device to the JlexVCM module and
from the JlexVCM module to the data stream leading
into the IP multiplexer.

The remaining question certainly is: who Sets up the
VCs and controls tlie filter configuration in the flex-
VCM device. This is done by thejexVCM User library.
It uses the SDAPI provided by Fore to setup and man-
age VCs. These actions are recorded by the JlexVCM
STREAMS module and thus it is able to construct the
required internal headers for use of the specifically set
up VCs. The other task of controlling tlie Jle,vVCM
device by managing its filter set configurations is also
done by thePexVCM User library.

3.3. The flexVCM User Library

3.3.1 Global View
In Figure 2, the relevant part of the overall architec-

ture for the JexVCM User library is shown. Theyex-

Manager ,%G in
User Interface
h y e r

Kernei Interface
Layer

User Space

Kernel Space

Figure 2: Global View ofJlexVCM User Library.

VCM User library caii on a niacroscopic level be
divided into two layers:

The iiser interface layer which is directed towards
a User of theJexVCM services as, e.g. the RSVP
daemon that "talks" via an extended Traffic Con-
trol Interface to theJlexVCM rnodule in order to set
up Special VCs for RSVP-signalled IP data flows
according to the IntServ specifications carried by
the RSVP rnessages. Another example (as
depicted in Figure 2) could be a DiffServ SLA
(Service Level Agreements) Manager that rnaps
the given SLAs into specific ATM VCs.
The kerne1 interface laj~er on the other hand is
directed towards tlie kernet-level rnodules, respec-
tively their user-space interface for managing the
data forwarding inside the kernel and the setup and
tear down, etc. of the especially custornized VCs.
Along those two different tasks it can be divided
even further into subcomponents:

UNI c o n t r o i , which handles everything that is
concerned with the UNI-signalled VCs and
which therefore uses the services provided by
the user-level front-end to the SDAPI device
(which itself cornrnunicates to the SDAPI device
via the STREAMS concept), and
fiexvm c o n t r o i , which handles all the nec-
essary actions in order to invoke the JlexVCM
kernel module functionality of directing IP data-
grarns on specifically setup VCs depending on
the (header) contents of these datagrams. Again
the cornrnunication across the user-kerne1 space
barrier is based on the STREAMS rnechanisrn.

Since the SDAPI library provides an upcall-based
interface that requires a User to "listen" on specific file
descriptors periodically, it was decided to put this
"polling" into an extra thread in order to not lock a User
of theJexVCM while doing signalling for VCs in the

ATM network. That rneans the UNI controi subcoin-
ponent of the kernel interface laycr runs as a separate
thread whereas all tlie other Sunctionality runs as the
niain ihread (separating thc f l exVCM Control sub-
componeiit is possible but not necessary since the inter-
facc to the j?exVCM kernel module works in a
synchronous, immediate request-response fashioii so
that blocking for substantial periods is not an issue).

3.3.2 Static Model
A quite detailed static rnodel, according to the Coadl

Yourdon notation (see [13]), of the j7exVC1M User
library is given in Figure 3.

The division between those classes that implernent
the kernel interface layer versus those classes that rep-
resent the User interface layer is illustrated by the hold
dashed franie which encornpasses all the classes that
cornpose the kernel interface layer, while all the sur-
rounding classes belong to the User interface layer.

Let us briefly look at the relations between the rnost
irnportant classes, where by the terrn relation we mean
here: inheritance, aggregation and object relations. The
class K e r n e l I F represents the kernel interface layer's
interface. It inherits its functionality frorn the fiexvc-
Mcont ro l and the UNicontrol class which have a
direct correspondence to the subcornponents forming
the kernel interface layer's functionality as described
above. Theses classes are irnplemented quite rnono-
lithic in a style that is not object-oriented in nature.
That is due to their proxirnity to system-level inter-
faces, and actually the rnain task of these classes lies in
building a convergence "layer" towards the purely
object-oriented user-interface layer frorn tlie C-style
systern-level cornrnands applying to the use of the
SDAPI library and theJexVCM kernel rnodule.

The User interface layer is composed of a larger vari-
ety of classes. The rnost important one being the F i l -

ter class. F i l t e r ' s consist of an arbitrary nuinber
(but at least one) of F i l t e r ~ u l e ' s and an arbitrary
nurnber of VC's', thus storing the association between
the rules on which IP datagrarns are allowed to use
which set of VCs. F i l t e r ' s have a relationship to the
Kerne l IF in order to access its functionality ior sct-
ting up kernel filters.

The vc class is an abstract base class for either
PointToPointVC or M u l t i p o i n t v c . It has a one-to-
one relation to the class QOS and a relation to the xer-
nelIF in order to access its services for setting iip VCs
via UNI signalling. Furtherrnore, it has a relationship
to the class V C D V C T U ~ ~ ~ , whose instances are kept in a
container called V c L i s t in order to track all the VCs
irrespective of whether they were built up by the local

If the number of VCs is equal to 0. then the semantic of
that filter is to discard a rnatching IP datagrarn, thus
accornplishing rhe usual fiinctionaiity of a packet filter Sor
firewalling piirposes.

JlexVCM module or by another remote JexVCM mod-
ulc, i.e. for the foriner case they are outbound while for
thc latter case they are inbound. Only the outbound
VCs are instaiices of ihe class vc which explains [hat a
VCDVCTuple objcct does not iiecessarily have a rela-
tion to a vc object. The class MultipointVC which
represents a specializatioii of vc contains an arbiirary
nuinber (but at least one) of AddrPartyIDTuple
objects in order to track the association between ATM
addresses and party IDs within a point-to-multipoint
VC.

Isolated from the above classes of the User interface
layer are the abstract base class AddrResolver and its
speciaiization CLIPAddrResolver, whose task i t is to
resolve an IP address into the corresponding ATM
address. The base class AddrResolver just specifies
the abstract interface how such a request is to be made,
whereas CLIPAddrResolver impiements a simple
way of eliciting the ATM address for a given IP address
by using the CLIP'S address resolution service. By sep-
arating the interface from the implernentation, we are
able to easily extend this to other address resolution
mechanisms.

4 Example Use

We have used thej7exVCM to irnplement two options
for achieving differentiated treatment of IP flows over
an ATM subnetwork:

RSVPIintserv, and
static provisioning.

4.1. RSVPAntServ over ATM

We have impleinented an extended Traffic Control
Interface (TCI) for NBMA networks like ATM which
uses the JlexVCM to grant reservations at an IPIATh4
edge device a preferential treatment by the ATM sub-
network (for a detailed discussion of that TCI, see [14],
which is based on [15]). This is achieved by installing
PexVCM filters in response to RESV messages arriving
at the ingress IPIATM edge device, where the filter is
cornposed of one or several filter rules (for shared
explicit filter style reservation) defined by the 5-tuple
(source IP address, destination IP address, source port,
destination port, protocol). Due to the flexibility ofJlex-
VCM, this was easily possible. Furtherrnore, our RSVP
over ATM impleinentation can interchangeably inter-
work with CLIP, ForeIP, or MPOA for the transport of
best-effort-traffic (in particular for the transport of
RSVP control rnessages), as it is independent of the
utilized best-effort IP convergence module. As we are
particularly interested in RSVPIIP multicast over ATM.
we also implemented for CLIP a very simple way of
supporting best-effort IP rnulticast. In any edge device
a filter for all multicast traffic (224.*.*.*) is installed to
use a point-to-multipoint VC to all other edge devices.

This means of Course, rnulticast traffic is essentially
broadcast over the ATM subnetwork. While this is cer-
tainly not the most efficient way of supporting IP mul-
ticast over ATM, i t is extrcmely easy to implement by
the use ofJlexVCM (a few lines of code), which shows
again the potential of the adaptation module.

4.2. Static Provisioning

The other example "application" of theJlexVCM we
iinplernented is an interactive coiisole program for the
JlexVCM, which allows to install filters at an IPIATM
edge device exactly as they were described above. This
can be considered as a way of statically provisioning
resources inside the ATM subnetwork for certain IP
flows by a network managenient operation. Due to the
flexible way of specifying filters, this kind of provi-
sioning can be done on almost arbitrary characteristics
of IP flows, e.g. all IP telephony traffic could iake an
especially setup CBR VC using AALI, whereas nor-
mal traffic would keep on using the configured IP con-
vergence module and would therefore, e.g. be delivered
over UBR VCs and AALS. As it is also possible to use
the TOS byte, or now the DS field, in order to discrimi-
nate between IP flows, thej7exVCM console can also be
viewed as a way of static coiifiguration for an internal
DiffServ node representing a particular ingress to an
ATM subnetwork of a larger DiffServ domain.

5 Related Work

The issues surrounding the interworking between IP
and ATM have been and are still dealt with extensively.
However, directly related to our work, there are two
main areas. One of them, is the general idea of so-
called layer 4 or everi layer 5 switching, as e.g.
described in [I61 or [17]. While this work is very inter-
esting and partially complements our work with regard
to the filtering algorithms described there, we are in
contrast to these especially concerned with diflerenti-
ated treatment of IP traffic entering an ATM subnet-
work. The other area of related work is ahout
interworking IP QoS architectures witli ATM. With
regard to approaches for RSVPAntServ over ATM, see
for exarnple [18], [19], or [20], for DiffServ over ATM
there is inostly conceptual work, as e.g. [21]. All of
these focus very much on the control path issues and, if
tliey provide implementation details at all, they solve
the data path issues specifically for their regarded QoS
architecture. In our Paper, we provide an insight into
the data path issues when implernenting a flexible IPI
ATM adaptation module that can in principle be used
for any IP QoS related interworking with ATM.

6 Conclusion

We designed and irnplemented an IPIATM adapta-
tion module that is capable of supporting many situa-

'8661 isnDnv 'lpt?lSuiJEa n8010uq3a-L
JO Li!s.ia~!un '~0-8661-iy0>1-8~ i~oda8 lr!3!u
-q3aL 'Sy.IOMlaN iyLV U0 lSe3!1lniy dI pUV dAS8
Dii!Lr!1.1a~o U! SanssI 'q3!iuv 'i pue ii!wq3~ '1 [ZZ]

.ssa~Do.~d U! 7.10~ 'ijr!q iaumi
-UI .666 1 .iaquiaAoN 'a.rni3ai!q3.1~ sa3!~.1ag pair!!i
-uaJajj!a .IOJ a3!~1as JO sassr!l3 iy~v 01 Bu!ddr!iy
's!leiy 'V pur! 'Ltli~nuieuqs!.q .V 'qapueLv .s [I z]

'666 1 auni '(61~~ 's1'0!1
-n3!unzuzuo~ .ralncliiro3 .iio!ienleAg uo!leiuaw
-aldu11 :sinnJoqS iy~~ J~AO d~s8 rli!~ iau.iaiu1
sa3!AJag pa1e.18aiu1 .e!nJef)-uoay .V pur! ~oq3 .H [OZ]

'8661 OZ
-8 1 "SIdS 'PtlulJJ2j!MS 'Y3!.lElZ '(86, ~38~s)
sy.ronuaN unado.rn3 punqpno.rg zro zunlsodur~~~
lnllO~~~ll.lalll~ S, BIdS SO ~~ll!p2a30.ld U1 'SyJOM
-iaN iy~vld~ snoauaOo.iaia~ U! suo!ssag auoaiy
JO y3eqLr!ld pue Bu!p.i03a~ JOJ a3!~.1as jo Xi!lr!n()
'ZlauiU!alS '8 PU" 'JIOM '7 'YlJ!Z 'iy 'll!lliq3S 'f [6[]

'L661 L"n.193d 'L6,
SAI)I ay150 '~o.rd 111 'iy~~ J~AO smold ,-JI JOJ 1~od
-dns a3!~.1a~ JO /(i!~r!n() '!llamo!f).s pur! une.~g.~ [8 11

.i.iodax q3.li?aSaa '666 1
1!.1dv 'uosie~ ['-L iya~ ' 19~1~ 38 i~oda8
-!uq3a~ .ipi!~s-~-~aLr!y 4u!u~r!a? jlas V 'r!qr!S 'a
pur! 'ur!qpr!.id .d 'suad .A 'solnodoloisodv .f) [L 11

'866 1 Jaq~alda~ 'N3V
'86,~~03fl1~ SO sSzt!paa3o.rd UI .Du!~~~!Ms
.in03 -iaLey a1qele3~ pi~e lsed 'laDo~ple~ .iy

piie '!.rnS 'S 'asaqD~e~ .f) 'iieser\!ii!.rS 'S [9 I]
~/d~~.i/a~~ip~l~ui1~~-~l~~~~l~3~l-~~ui0~~~~~

//:diiq UIOJJ 319E[!r!Ar! aJEMlJOS 'SS~J~OJ~ U! y.IOM
'6661 'au!Dug [03oloJd dASa-iyO>I 'Ual"e>I 'iy [S 11

'UO!)t?3!1

-qnd .ioj paidamv '000~ L~ni 'ZJ~ZJI .(sdoyq.ro~)
szuarsks parnq!.rrs!a pun lallvJ'-'nd uo a311a~aJ1103
1tnropnu.rarul qj~ JYI 50 sBu!paa30.rd UI 'a3.l
-1aiuI [OJ~UO~ h![od PUB 31jje.1~ S~~AS~ Du!z!le
-1auaf) .ziauiu!alS '8 pue 'N!LU~~S '1 'ua]s.wy 'iy [PI]

'SJJI13 ~OOM~~SUCJ 'IICH 33!lUa.id ' 166 1 'SI"

-Lleiiv paluar.10-i3a[qo .uopmoA .g pur! peo3 .d [E 1]
'666 1 .13quia33a

'~~~[~lil~~~ J0 /C]!SJ~A!LI~ lpr!lSuiJr!a '90-666 1
-iy0>1-8~ i~odax le31uq3a~ .alnpom uoiieide
-PV NLVI~I a.lr!~v-soO 'alq!xald V 'ii!ui113s 'f [ZII

'666 1 q3.Riy '2aSSall
-112L '2ll!AL/SnN '~ll!ll~~O~ PliD S~SI(~DIIV 'SIU~~SI(S
suo~jn~~un111~1103a~a~ uo anua~aSuo3 iwuo!jnlcral
-111 i/i~ ayr SO sSu!l?aa30.rd UI ~suo~ss!ursur!~~ ise3
-!i~niy so() snoaiiaDo~aiaH JOJ iiiauiaZeueiy 3~
'ziauiurais '8 pur! 'uais.ie)~ 'iy 'JIOM '7 'ii!u1q3~ '1 [I 11

',I66 1 Lr!iy '.Y8ll!p2230.ld d0yS

-Y.'"M Lh, WL V 3331 1'1 'syJoMlaN iyLV sso.'3v
s~old d~ 10 i~odwe.~~ iua!n!jjg '!P.IO~"L'A

pur! .!uo.iaiy .r) 'o31eiyaa .iy '1[[a~e8les '7 [OI]
'L66 I Llni '0' 1 A iyLV JaAo 103

-oio.rd-!i[niy :aaii!iriruo3 [F~LUL~~~L uin~od NLV [6]
'LLS I 3rItI 'P66 1 Lflnuvi

'WV JaAo d8V PU'! dI 1"3!SSr!13 'q3Wnr!? 'W [8]
'8661 PZ-ZZ aUili 'ZJggI '23UDJd '.I?7UllO3

'(86,,14~.~31) WLV uo a3ua.raJuo3 Inuopnlr.ra)ul
3331 ISI aqj 50 sXu!paa30.rd u1 .laAay uo!i
-r!yddv aqi ir! so0 i.roddng oi iy~v .iar\o d~ 1123
-!ssr!l3 JO uo!sualxg 'lauqn>I'L pur! !uouZ!i.ir!iy 'S [L]

'OLL Z 3- 'L66 1 Llni '(Vd
-1nO88v) MLV "~0 d~ pal~anOw uo!ir!3!1ddv
~u~lsq~ao .d pue '3apnoaay 'JaZlaqsaiulv 'M [9]

'OOOZ n-"3
-nur?['8PLZ 3d8 '1030101d (a3!~.Ia~ k3!10d uado
UOWUIO~) sd03 3q~ '~JIWS PU" '~c.8 '8
'Boz~a~ .S 'uaqo3 -8 'alLoa 'uieqma .a [s]
'PLPZ 3a '866 1 laqura3aa 'sa3!~.1as pair!!iiia~a~

-j!a 103 a~ni3ai!q3.1~ uv .ss!aM .M pur! 'Due~ 'Z
'sa!Aea .g 'uospe3 'ayr!la 'S 'y3ela '(I [P]

.6 18 1 3rM 'S66 1 lsngnb' '+Z.LS uo!s
-1aA - uo!ir!3!~!3adg lO3OlO.Id (ZLS) Z UOIS13A 103

-0io.id weaJiS lauJalu1 .~a4~aa .y pur! !sso.i8laa .? [E]
'~661 ~aqura3aa '(ZI)s8

'gy31J0 sS~paa30~d .i~v aqi JO aieis :iau1aiuI arli
U! W~IAJ~S pair!~Daiu~ .~JOJ~MO.I~ pur! al!qM 'd [z]

'866 1
PZ-ZZ aUni '8991 'a31'n.id 'Jn1U103 '(86, WL ~31)
WJV iro a2ua.raJro3 lntro!lnwalul 3331 rs~ "Y/

SO sSlr!paa~o.rd u~ .sa.ininai!qsJv so0 iy~v piie
iau1aiuI JOJ saq3eo~ddv uo!i3e~aiu1 .laqa!S '3 pus
'L3.101 .0-.~ 'ziauiu!ais "8 'JIOM "7 'ii!~uq3~ 'r [I]

.33r!ld
1s.q aql U! alnpoui uo!iadvpr! T/\ILV/~I aqi uo ~JOM

i~els oi uo!ieA!loui leu!8!.10 aqi sem lalle1 aqL .[zz]
ii! .%3 'saq3r!o~dde uo!in[os lr!nida3uo3 pas!Aap aM
q3!q~ JOJ 'suialqo~d qied lo.1iuo3 pleq auios q31c.asa.1
Ll1eiua~u!~adxa oi iur!~ aM fl3~xagjo dlaq aqi qi!~
'aJoLu.raq1.q ,alq!ssod w apo:, la~al-lau~ay Bu~ls!xa ali
-111 se aDueq:, 01 say ieqi uD!sap r! U! pailnsa1 pue Zulu
-u!Saq aqi iuo.1~ slmD uS!sap Jno JO auo iiaaq sr!q q3!q~
'u!ciuop 31lqnd aqi 01 a[qr!l!r!Ae alernijos paiuauialdui!
3211 ayr!ui 01 S! ur!ld mo %!uni-auy qmur U! iInsa1
L[u!r!i.ia3 ll!~ yqi wog y3eqpaa~ aqi pur! Su!isal anueui
-.ioj.'ad Japun L~iiialrnn s! alnpou uo!ir!idepe arlL

.suialqo.id T/\ILV .iaAo SO() d~ 1e.n
-Aas -101 pasn aq 01 smollr! piie paapu! alq!xag s! uS!sap
ai111eq1 p3~0qs 3~ 'alnpotir uo!ieldepe ieqi jo ,'suo!)e3
-!ldde,, alduicxa aiuos Du!iuaiualdui! Lg ynpoui aql jo
Li!l!q!xa~ aql 110 ind seM s!sr!rlcluia 1~3ads V sy1oM)au
iy~v oiuo p!r!l.iaAo aq oi s! so0 d1 q31q~ U! suo!~

