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Abstract
It is common belief that the Integrated Services architec-
ture (IntServ) is not scalable to large networks as, e.g. the
global Internet. This is due to the ambitious goal of provid-
ing per-flow QoS and the resulting complexity of fine-
grained traffic management. One solution to this problem is
the aggregation of IntServ traffic flows in the core of the
network. While one might suspect that aggregation leads to
allocating more resources for the aggregated flow than for
the sum of the separated flows if flow isolation shall be
guaranteed, we show in this paper that for IntServ’s Guar-
anteed Service flows this is not necessarily the case even if
flow isolation is retained. We compare different approaches
to describe the aggregated traffic and analyze their impact
on bandwidth consumption and ease of flow management.
Applications of these theoretical insights could be to use the
derived formulas for resource allocation in either a hierar-
chical RSVP/IntServ, IntServ over DiffServ (Differentiated
Services), or IntServ over ATM network.

Keywords: Integrated Services, Aggregation, Guaranteed Ser-
vice, Network Calculus.

1  Introduction

The provision of integrated services over a shared infrastruc-
ture is often seen as the “holy grail” of networking. It would
allow to save resources on a large scale and be more flexible
when the total traffic distribution varies as it, e.g., seems to do
right now. The IETF therefore developed the so-called Internet
Integrated Services architecture which proposes a set of service
classes (IntServ) and a resource reservation protocol (RSVP) to
“signal” users’ requirements with respect to service classes and
their parameters (see [WC97] for an overview). This architec-
ture is designed very general (though sometimes also consid-
ered complex), so that all sorts of applications shall be able to
benefit from the QoS offered by the network. However, due to
the provision of QoS on the level of application flows it is con-
sidered not to be scalable to large networks like the Internet.
The scalability problem is mainly due to the potentially large
number of flows in the core of the network and the correspond-
ing complexity of classifying and scheduling these flows at
interior nodes.

So, one obvious approach to this problem is the aggregation
of IntServ flows in the core of the network, so that interior rout-
ers only need to exert their traffic management on aggregated
flows. This approach has a dynamic and a static aspect. The
dynamic aspect is how the routers can coordinate themselves to
allow for the aggregation and segregation of flows. Here an
extension of RSVP is necessary (as e.g. described in [GBH97],
[BV98], or [TKWZ99]). The static aspect refers on the one

hand to the necessary resource allocations for an aggreg
flow and on the other hand to the question of which flow
should be grouped together.

In this paper, we look at the static aspect of aggregation
the specific case of IntServ’s Guaranteed Service flows. W
regard the Guaranteed Service class as particularly interes
due to its comparably strong guarantees on rate, delay and l
Furthermore, due to its mathematical description it allows f
an exact analysis with regard to the problem of resource allo
tion for aggregated flows.

1.1 Assumptions and Terminology

The part of the network that only “sees” aggregated flows w
further on be called “aggregation region”. Flows that shall b
aggregated must share the same path over the aggrega
region. We therefore constrain on unicast flows, since multic
flows are unlikely to share the same partial multicast tree ov
the aggregation region. However, if they did, e.g. because
partial multicast tree is the same tandem of nodes through
aggregation region, the results derived below would still app
Note that anyway unicast flows are considered to be mo
“evil” with respect to scalability since they are expected to b
much more numerous than multicast flows.

An important distinction for the line of argument of ou
paper is how we use the termsaggregationand grouping of
flows. By aggregation we mean the general problem of mergi
different flows over an aggregation region inside the netwo
By grouping of flows we refer to the restricted problem of th
whole network being the aggregation region, i.e. flows a
aggregated end-to-end. So, in our terminology grouping is
special case of aggregation.

1.2  Outline

In the next section we give a brief review of the semantics a
basic mathematical background of the IETF’s Guaranteed S
vice class. Then we derive some fundamental formulas for t
problem of grouping flows as defined above. Here we fir
quantify the effect of grouping flows onto resource allocatio
Next we suggest a way to characterize the grouped flow wh
allows for more efficient resource utilization, followed by som
numerical examples to illustrate these results. The results
flow grouping are then applied to the more general problem
aggregating flows. To do so we introduce a conceptual mo
of the aggregation problem and show what has to be done
make it conform to the prerequisites of flow grouping. Afte
giving again some numerical examples on the trade-offs for t
resource allocation inside and outside of the aggregat
region, we briefly discuss some of the issues when applying
results on concrete candidates for the aggregation region,
*. This work is sponsored in part by: Volkswagen-Stiftung, Hannover, Germany and by Deutsche Telekom AG, Darmstadt, Germany.
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an IntServ, DiffServ, or ATM cloud. Before concluding the
paper, we also give an overview of related work.

2 The IETF Guaranteed Service Class

Guaranteed Service (GS) as specified in [SPG97] provides an
assured level of bandwidth, a firm end-to-end delay bound and
no queuing loss for data flows that conform to a given traffic
specification (TSpec). The TSpec, which is essentially a double
token bucket, i.e. two token buckets in series, is characterized
by the following parameters:

• the token bucket rater (in bytes/s),
• the token bucket depthb (in bytes),
• the peak ratep (in bytes/s),
• the maximum packet sizeM (in bytes), and
• the minimum policed unitm (in bytes).*

Due to its mathematically provable bounds on end-to-end
queuing delay we consider GS to be of high importance for
time-critical applications as, e.g., in the domain of telemedi-
cine.

The mathematics of GS are originally based on the work of
Cruz [Cru95] (refined by others, see e.g. [Bou98]) on arrival
and service curves. In case of the IntServ specifications the
arrival curve corresponding to theTSpec(r,b,p,M) is

(1)

whereas the service curve for GS is

(2)

where  andR is the service rate.

assuming that the stability condition holds. Here, theC
andD terms represent the rate-dependent respectively rate-in-
dependent deviations of a packet-based scheduler from the per-
fect fluid model as introduced by ([PG93], [PG94]).

While the TSpec is a double token bucket it is sometimes
more intuitive to regard the mathematical derivations for a sim-
ple token buckettb=(r,b) (which is equivalent to assuming an
infinite peak rate). In this simplified case we obtain for the end-
to-end delay bound

(3)

While for the more complex TSpec as arrival curve it applies
that

(4)

From the perspective of the receiver desiring a maximum queu-
ing delaydmax, the rateR (in bytes/s) that has to be reserved at
the routers on the path from the sender follows directly from
(3) and (4):

for the simple token buckettb(r,b)

(5)

for the completeTSpec(r,b,p,M)

(6)

While the buffer to guarantee a lossless service for the sin
token bucket is simplyb, the buffer formula for the TSpec’s
double token bucket is more complicated:

(7)

To illustrate the meaning of theC andD terms we refer to their
values in case of a PGPS (Packetised General Processor S
ing) scheduler [PG93], because they also apply to many ot
scheduling algorithms [Zha95]

(8)

whereM is the maximum packet size of the flow,M’ is the
MTU and c is the speed of the link. In real routers, there a
potentially many other contributions to these error terms a
e.g., link layer overhead for segmentation and reassembly
the case of ATM or token rotation times for FDDI or token
ring.
There are two related problems with GS:

1. It may not be scalable enough to be used in the backbo
of the Internet since no aggregation mechanisms were p
vided (due to the stipulation of per-flow QoS and flow iso
lation). Thus, the number of queues is proportional to th
number of flows.

2. It wastes a lot of resources, especially for “low bandwidt
short delay”-type of flows. As an example consider a da
flow with TSpec=(1000, 2000, 2000, 1500), let us assume
5 hops (all withMTU=9188 bytesand link speedc=155
Mb/s) all doing PGPS. Then we haveC=7500 bytes,
D=2.371 ms. Let us further assume the receiver desires
maximum queueing delay ofdmax=50 ms. Then we obtain
from the formulas given above thatR=191489 bytes≈95*p
andB=1578 bytes.

By aggregating/grouping GS flows we address both problem
because less state has to be managed by routers and the re
ing aggregated flows are of higher bandwidth.

3  The Mathematics of Flow Grouping

In this section we derive some fundamental formulas abo
flow grouping. We show how grouping of flows can sav
resources when compared to isolated flows.

3.1  Grouping Gains from Sharing Error Terms

For the grouping of flows we need a concept of how to chara
terize the traffic of the grouped flow. In RFC 2212, the su
overn TSpecs is defined as

*. For our discussions we can omit this parameter of the TSpec fur-
ther on.
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In RFC 2216 [SW97], which gives the general requirements for
specifying service classes, the summation of TSpecs is
described as follows:

This function computes an invocation request which
represents the sum of N input invocation requests. Typi-
cally this function is used to compute the size of a ser-
vice request adequate for a shared reservation for N
different flows. It is desirable but not required that this
function compute the “least possible sum”.

So, as a starting point we use the “summed TSpec” as arrival
curve for the grouped flow. We want to compare the rates for
grouped flows with the sum of the rates of the isolated flows.

Let us start by looking at the simplified model of using single
token buckets for the characterization of the isolated flows:

Let Sbe a set ofn receivers withtbi=(r i,bi) anddmax,i , then the
rate for the isolated system of thesen flows is

(10)

while for the grouped system of thesen flows, with the sum of
single token buckets defined analog to (9), it is

(11)

Now let us define the difference between the isolated and the
grouped system with respect to the allocated accumulated ser-
vice rate over flows1 to n as “Grouping Efficiency” (GE), i.e.:

(12)

Thus, we can state the problem of which flows to group
together as:
For a set ofn reservations (tbi=(r i,bi) or TSpec(ri,bi,pi,Mi) and
dmax,i), find a partitionR= {R1,...,Rk}

such that  andk are minimized.

It can be easily seen from (11) that it is advantageous if those
flows to be grouped together have equal or at least similar delay
requirements. Thus, we can order the flows by their delay
requirements and restrict the search to the space of ordered par-
titions for the optimal flow to group assignment since it can be
proven that the optimum must be an ordered partition:

Theorem: Let S={1,...,n} be a set of reservations (tbi=(r i,bi)

and dmax,i), i=1,...,n. Then the rate-optimal partition is ordered
after dmax,i . Here, the rate of a partitionP= {P1,...,Pk} is de-

fined as .

Proof: AssumeP= {P1,...,Pk} is rate-optimal, but unordered,
i.e. we have at least two reservationsh, l ∈ {1,...,n} with h≥l
andh∈Pu , l∈Pv whereu<v (we assume thePi to be ordered as-
cendingly indmax,i).

Then forQ=P\(Pu∪Pv) ∪ (Pu\{h}) ∪ (Pv∪{h}) we obtain

(13)

where the inequality holds due to the proposition thatu<v. This
however is a contradiction to the assumption that P is rate-op
mal and thus the theorem holds.❒

From now on let us suppose that there are enough flows
assume that those flows grouped together haveequaldelay. For
n such delay-homogeneous flows we obtain the following f
the simplified model:

 where .(14)

That means we obtain gains independent of the reserved
for delay-homogeneous flows, i.e. these gains are relativ
highest if the single flows have low bandwidth requirements.
can also be seen thatGE increases withn, C and D and
decreases withdmax. To illustrate how large the grouping gains
can be, let us look at an example:

We assume again 5 hops in the aggregation region, all us
PGPS as a service discipline, with anMTU=9188 bytesand
c=155 Mb/s. We have 10 flows withM=500 B, anddmax=50
msfor all of them. Then we obtain:GE(S)≈3.7 Mb/s, irrespec-
tive of the actual token buckets of the flows.

This effect of saving resources due to grouping of flows is
result of “sharing the error terms” for the group of flows, whil
for the isolated flows these error terms must be accounted
separately. Therefore we call this concept “Pay scheduli
errors only once” in analogy to the “Pay bursts only once” prin
ciple.
For the actual IntServ model with double token bucket TSpe
we obtain a more complex formula for the grouping efficienc
of n arbitrary flows (arbitrary with respect to partial delay, an
TSpec parameters), where we use the summed TSpec as ar
curve for the grouped flow:

(15)

The first term representsRI(S) and the secondRG(S), both for
the “usual” case that the reserved rateR is smaller than the
peak rate of the corresponding flow. While it is still true tha
equal delay requirements of the grouped flows are favorable
gaining resources by grouping, they are no longer a sufficie
condition to actually achieve a gain. However, for delay-hom
geneous flows with the same TSpec (TSpec-homogene
flows) it can be shown that alwaysGE>0 under weak condi-
tions:

Theorem: For a setS of n>1 delay- and TSpec-homogeneous
flowsGE>0 if C>Mr/(p-r) . [a very weak condition taking into
account that for many schedulersM is the rate-dependent error
term and that there may be other rate-dependent deviations

Proof: We have to distinguish two cases for isolated flows:
R≥p (1) or R<p (2). Analogously, there are two cases for th
grouped flow:R≥np (3) andR<np (4). The only possible com-
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binations are (1)+(3), (1)+(4) and (2)+(3). (2)+(4) is impossible
as can be verified easily.
“(1)+(3)”:

, for n>1

(as assumed).
“(1)+(4)”:

, simply as a result of condi-
tions (1) and (4).
“(2)+(3)”:

,

which implies that .❒

For TSpec-heterogeneous flows the summed TSpec may incur
a higher rate because it overestimates the arrival curve for the
group of flows. How to circumvent this effect will be discussed
in the next section.

Anyway, GE can be used as a hint towards the decision
whether a set of flows should be grouped together respectively
whether a new flow should be added to an existing group of
flows, simply by the fact whetherGE>0 or <0.

3.2  Tight Arrival Curves for Grouped GS Flows

We have shown in the previous section how grouping of flows
can reduce resource requirements. However, the flows had to
be homogeneous with respect to their TSpec and their delay
requirements to achieve a guaranteed reduction. Taking into
account that additionally the flows have to share the same path
through the aggregation region, these can be very restricting
prerequisites to the grouping of flows. Therefore, we now try to
relax the first prerequisite of TSpec-homogeneity by using a
tighter arrival curve than the summed TSpec for the character-
ization of the grouped flow.

Figure 1:Summed vs. Cascaded TSpecs.

Instead of the summed TSpec we use a series of token buckets
which can be shown to be an arrival curve for the grouped flow
and which allow for lower resource reservation for the grouped

flow when compared to the summed TSpec as arrival curve.
call this arrival curve “cascaded TSpec”.

This discussion is illustrated by the simple example in Fi
ure 1. Here we have two flows with differing TSpecs. It can b
seen that by using the summed Tspec we may give away so
bandwidth we “know” of that it will never be used. Therefore
we would like to use the exact sum of the arrival curves, th
cascaded TSpec.

Let us now take a more formal look at the problem. In gener
the tight arrival curvetac(t) for n TSpecs has the following
form

(16)

wherexj, the burst duration for flowj, is defined as:

andM=max(M1,...,Mn).

Here we have assumed without loss of generality th
.

This tight arrival curve for the grouping ofn GS flows is equiv-
alent to the concatenation of(n+1) token buckets (the cascaded
TSpec), i.e. (with⊗ as concatenation operator for token buck
ets)

If we apply the known results from network calculus [Bou98
on this tight arrival curve, assuming the GS service curve, w
obtain the delay bound

(17)

wherek ∈ {1,...,n} is such that: .(18)

If  (i.e. there is no such k), then . (19

In contrast, the delay bound for the summed TSpec ofn flows
is:
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It can be easily shown that, for a given rateR, dsum is always
greater than or equal todtac [Sch98], since the summed TSpec
“contains” the cascaded TSpec.

Let us now look at the formulas for the service rate when
given a certain delay. For the summed TSpec we obtain:
(whereM=max(M1,...,Mn) again)

, (21)

whereas for the cascaded TSpec we obtain for some
k ∈ {1,...,n}: (22)

case 1:

 ,

case 2:

 .

For the sake of completeness, we also give the buffer require-
ments for both arrival curves in Appendix A.

With these formulas it is now possible to compare the dif-
ferent resource allocation schemes for the isolated flows and
for the group of flows characterized by either the summed or
cascaded TSpec. Since the formulas are however not very intu-
itive, we want to illustrate the effects of flow grouping on delay,
rate and buffer requirements by presenting some numerical
examples.

3.3  Numerical Examples of the Grouping Gains

We want to contrast the different resource allocations with
regard to rate and buffer for the isolated flows(RISO,BISO)
against the grouped flow with either summed TSpec(RSUM,
BSUM) or cascaded TSpec(RCAS, BCAS). We assume an aggre-
gation region of 5 hops withMTU=9188 bytes,andc=155Mb/s
(“ATM hops”). Furthermore, it is assumed that 10 flows are to
be grouped together, with all of them having a delay bound

dmax=50ms.The TSpecs of the flows are as given in the follow
ing table:

Let us first assume that we want to group 10 flows with TSpe
1. Then we obtain:

So we can see that the gains from sharing the error terms ca
substantial. Since we have a case of delay- and TSpec-homo
neous flows, the summed and the cascaded TSpec achieve
same values because for that case they are actually the s
arrival curves. Now we relax the assumption of TSpec-hom
geneous flows and group all the different flows from the tab
above. We obtain

In conclusion, what we gain from grouping flows is the sharin
of error terms, so we know that for delay- and TSpec-homog
neous flows grouping always leads to a gain. For TSpec-hete
geneous flows however there is also a negative contribution
grouping due to overestimating the arrival curve when adheri
to the summed TSpec characterization for the grouped flow,
effect that depends upon how heterogeneous the isolated fl
really are (heterogeneity here is mainly captured by two ch
acteristics of bursts, length(b-M)/(p-r) and intensityp/r). This
effect can “mask” the positive effect of sharing the error term
as shown in the last example. To avoid this negative effect,
exact arrival curve of the grouped flows, the cascaded TSp
can be used for the calculations of rate and buffer and thus
have again only the positive effect. The downside of this is th
the traffic specification is often used for purposes like resha
ing or policing, and with many heterogeneous flows bein
grouped together this can lead to a very complicated arriv
curve which, while it theoretically does not violate the wors
case delay bound, is complicated to handle and might in rea
add some delay after all. So, we address this issue in the n
section.
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9 30000 30000 45000 500

10 10000 15000 220000 500

x Rx Bx

ISO 629868 13410
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3.4  Policing/Shaping the Grouped Flow

Once the service rate is calculated from (22), it is possible to
achieve the desired delay bound with a much simpler arrival
curve. It can be shown [Sch98] that the following arrival curve
is sufficient for achieving the same delay bound for a givenR
as the tight arrival curve:

(23)

or, as token bucket concatenation:

That meansa(t) can also be described as

.

Hence, we can reduce policing/shaping complexity dramati-
cally without compromising resource allocation efficiency. The
idea is, not to take the complete piecewise linear arrival curve
of the cascaded TSpec, but only those two adjacent segments at
which angular point (xk) the delay bound is actually taken on.
This can be done after the service rate is calculated from the
cascaded TSpec and it is thus known that those two segments
are “responsible” for the delay bound.

While the delay bound remains the same as for the cas-
caded TSpec, the buffer requirements depend on whether
V<=xk+1 or V>xk+1. For the first case they are the same,
while in the second case the buffer requirements ofa(t) are
higher. If the buffer requirements shall also be kept equal for
the latter case this “costs” another token bucket for the linear
segment of the cascaded TSpec for which applies thatxk+h <
V< xk+h+1, whereh ∈ {1,...,n-k}, or more formally:

or, as token bucket concatenation:

While being a little bit more work on policing/shaping, this tri-
ple token bucket offers the same delay boundand buffer
requirements at a given service rate as the exact arrival curve,
the cascaded TSpec, which is composed ofn+1 token buckets.

4  Application of Grouping to Aggregation

After having established some results on the problem of grou
ing flows, we now apply these results to the more general pro
lem of aggregating flows. We first present a conceptual mod
of how aggregation could be achieved and give some numer
examples on how that scheme would perform. Afterwards w
take a short look at the application of the model to emergi
network technology supporting QoS.

4.1  Conceptual Model

We view the conceptual model for aggregation as a two-lev
resource allocation system, corresponding to inside and outs
the aggregation region (AR). Outside the AR resource alloc
tions are done for individual flows, while inside the AR it is
done for aggregated flows. Flows that shall be aggregated m
share the same path over the AR, but can follow differe
routes outside the AR.

When we want to apply the results for grouping to that ge
eral model of aggregation we face three problems:

1. A fixed delay over the AR is required, i.e. a portion of th
end-to-end queuing delay bound of each flow must
devoted to the AR.

2. There are possibly distorted (with respect to their TSpe
i.e. non-conforming, incoming flows at the ingress to th
AR. These could occupy the shared buffer of their grou
and destroy the guarantees on rate, delay and lossless
vice for other flows of that group.

3. A possible distortion of the grouped flow might lead t
overflows in the routers behind the egress of the AR.

Our approach to the first problem is the partitioning of th
delay into two parts, delay inside and outside the AR. Th
question however is how to assign these two parts of the ove
delay. While it is not possible to determine exactly the parti
delaydp of a flow which is available for the subpath over th
AR, we have the following relationship:

(24)

whereCsum and Dsum are the accumulated error terms of th
subpath over the AR. The lower bound corresponds to the p
simistic assumption that packets “pay their burst” outside t
AR, while the upper bound represents the case where a bur
paid inside the AR. Due to the worst-case nature of the guar
tees given by GS we must however assume the lower bound
the available partial delay. The partial delay may thus becom
very small if the error terms are comparably small to the fir
term (“the burst term”) of the upper bound. This would lead t
a relatively high allocation of resources in the AR. A protoco
mechanism to circumvent this is to advertise a highD error
terms for the AR. From the perspective outside the AR, the A
could thus be regarded as a fixed delay element on the p
from the sender to the receiver. The drawback of this approa
is that the routers outside the AR would need to reserve m
resources than in the case of non-aggregated flows. Ther
obviously a trade-off between saving resources inside the A
by advertising a higherD and allocating more resources out
side the AR. This trade-off should probably be weighted b
how scarce the resources inside and outside the AR really a
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Alternatively to increasingD, the slack term could be used
by the AR to increase its “delay budget”. This would however
require the receiver to be aware of his resource requests being
possibly aggregated.

The solution to the second problem is to reshape the individual
flows to their original TSpec at the ingress to the AR. While
this may increase the average delay of the packets of a GS flow,
it has been shown that the delay bound is not violated by
reshaping [Bou98].

The third problem can be solved by reshaping the aggregate
against the cascaded TSpec of the grouped flows. Alternatively,
the reshaping at the egress could be executed on the individual
flows. This would however be more costly since for a group of
n flows 2*n token buckets have to be passed, whereas for the
first alternative it is onlyn+1 token buckets. Note that the
reshaping cannot be done using the simplified arrival curves
introduced in Section 3.4. These are only for use inside the AR.

Under these prerequisites it is now possible to utilize the for-
mulas derived for the grouping of flows for resource allocation
inside the AR. To illustrate how the aggregation model com-
pares to the model of resource allocation for individual flows
we give some numerical examples in the next section.

4.2 Numerical Examples

For the AR let us assume the same setting as in Section 3.3, i.e.
we use the same 10 flows as specified there and 5 “ATM hops”
inside the AR. For outside the AR we assume 2 hops in front
and 2 hops behind the AR, all of them withMTU=1500bytes
and c=100Mb/s (“Fast Ethernet hops”). Furthermore, we
assume that all flows have the same requirements for the end-
to-end delay bounddmax=100ms.

In Figure 2, the accumulated rate, i.e. the rate over all hops
and all flows is depicted, in relation to the delay inside the AR
(note that the delay outside the AR=100-delay inside AR), i.e.
depending on the delay partition. The dotted line represents the
accumulated rate for the segregated system.

Figure 2:Segregated flows vs. Aggregated Flow.

Here we can see that aggregation can be beneficial in terms of
resource usage if the delay partitioning is done carefully. The
exact values for the accumulated rate and buffer consumption
of the segregated and the aggregated system can be found in
Appendix B. From those it can be seen that a delay bound of 40
ms inside the AR is optimal with respect to the accumulated
rate, it gives a reduction of~13.74%with respect to the accu-

mulated rate while for the accumulated buffer it is less than h
(~46.67%) what is required for the segregated system (wi
respect to the accumulated buffer this delay partition is n
optimal, however the buffer variations between different dela
partitions are not very significant). Even if the simple approa
of using the lower bound of the delay inside the AR (in our se
ting this is 22,949 ms) is taken (from (24)), maybe because
might be considered too time-consuming to search for the op
mal delay partition or because not all the relevant informatio
is available, a significantly better accumulated rate and buf
can be achieved than for the segregated system (~9.81%for the
accumulated rate and~53.78% for the accumulated buffer).

4.3  Application To Emerging Technology

While we have assumed RSVP/IntServ as the technology be
used outside the AR, we could in principle utilize the resul
for any of the following technologies inside the AR:

• ATM,
• Differentiated Services,
• RSVP/IntServ (Hierarchical RSVP/IntServ), or
• any connection-oriented technology that gives rate guara

tees.

There are many issues to be dealt with when using aggrega
RSVP-based requests over one of these technologies. Th
dynamic aspects of the aggregation are however not the fo
of this paper and we refer to other work in this area (for hiera
chical RSVP/IntServ see [GBH97], [BV98], [TKWZ99], for
DiffServ see [BYF+99], for ATM see [SDMT97]). However,
one of these issues, the “marking” of excess packets at
ingress into the AR, is related to the static aspects of aggre
tion we looked at in this paper. This marking is required i
order to not destroy the flow isolation stipulated by the G
specification. So, if the AR is a(n)

• DiffServ cloud then the DS byte could be used, e.g. by mar
ing conformant traffic with the EF PHB and excess traffi
with the DE PHB, furthermore the simplified arrival curve
of Section 3.4 could be used as a profile.

• ATM cloud then a separate VC for the conformant part of th
aggregated flow should be used, while the best-effort V
(setup by e.g. Classical IP over ATM) could be used fo
excess traffic,

• Aggregated IntServ cloud there is a problem, since no ma
ing mechanism is provided; while the individual flows coul
be policed strictly at their entrance to the AR and be force
to conform, this would disobey the GS specification’s recom
mendation of sending excess traffic as best-effort.

5 Related Work

The use of piecewise linear functions as traffic envelopes h
been suggested before, e.g. in [KWLZ95], to give a better uti
zation of network resources for bursty sources like compress
video than the use of simple token buckets. While in the
cases empirical evidence showed the utility of piecewise line
arrival curves with multiple segments, we looked at the case
a group of regulated flows were the gain can be shown anal
cally.
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There is also some work on the generic problem of multi-
plexing regulated traffic onto shared resources (see e.g.
[EMW95], [LZTK97], [GBTZ97]). However, all of these do
not treat the case of delay-constrained flows and are thus not
directly applicable to GS flows.

The problem of resource allocation for the grouping of GS
flows has also been addressed by [RG97]. The discussion there
is however restricted to the case of the simple token bucket
model and homogeneous flows. We go one step further with
our analysis for the model of TSpec-characterized flows and
the inclusion of TSpec-heterogeneous flows. Furthermore, we
do not restrict to grouping but also discuss how aggregation can
be achieved (in terms of our terminology).

6 Conclusion and Future Work

We believe that aggregation of stateful application flows inside
the network is a necessary mechanism to retain scalability for
large networks as, e.g., the Internet. We have looked at the
static aspects of aggregation, i.e. which flows to aggregate and
how much resources to allocate for the aggregated flow, for the
specific case of IntServ’s GS class. We have shown how it is
possible to ensure the strong per-flow guarantees given by GS
despite aggregation in the core of the network. Furthermore,
we found out that aggregation can offer interesting resource
trade-offs between the AR and the non-AR part of the network
if flow grouping and resource allocation is done carefully. We
have given an example where the aggregated system even per-
formed superior to the segregated system, whereas intuitively
one might have thought that aggregation would only come at a
price of more resources being required. Though an example is
not a proof, it is at least a hint that aggregation could offer more
efficient network resource usage, a further argument for aggre-
gation besides its main attraction of reducing state in the core
of a large network.

For future work there is certainly the necessity of a more
formal investigation under which circumstances aggregation
offers more efficient resource usage in comparison to the segre-
gated system. We derived the necessary formulas, but a detailed
analysis of the parameter space of possible topologies, different
flow mixes, different scheduling disciplines remains to be
done. In addition, it has to be noted that aggregation is a
dynamic problem, i.e. in general there are some already estab-
lished groups of flows, so if new ones arrive, they must be
assigned to these groups or groups must be reorganized. The
derived formulas could be good tools to aid such decisions, but
how exactly is for further study.
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Appendix A - Buffer for Summed and Cas-
caded TSpec

For the buffer of thesummed TSpec we obtain:

case 1:

case 2:

case 3:

For the buffer of thecascaded TSpec we obtain (k ∈ {1,...,n}):

case 1:

case 2:

case 3:

case 4:

Appendix B - Accumulated Rate and Buffer

We denote the accumulated rate and buffer as aRx and aBx (in
bytes/s respectively bytes), where x∈{SEGGR, AGGR,y}, i.e.
the segregated and aggregated system, and y stands for
delay inside AR (in ms). MIN denotes the minimum availabl
delay inside AR as obtained from (24), which is for the give
example 22.949 ms.
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x aRx aBx

SEGGR 6524362 587925

AGGR,MIN 5884343 271761

AGGR,10 6319383 257940

AGGR,15 6128250 264860

AGGR,20 5967073 269729

AGGR,25 5833865 272862

AGGR,30 5730647 274542

AGGR,35 5660979 275250

AGGR,40 5627958 274973

AGGR,45 5629268 273696

AGGR,50 5669737 271530

AGGR,55 5773221 270084

AGGR,60 5935809 268507

AGGR,65 6169384 266233

AGGR,70 6484611 263128

AGGR,75 6933713 259144

AGGR,80 7693418 254275
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