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Abstract—The challenge of optimally selecting services from
a set of functionally appropriate ones under Quality of Service
(QoS) constraints – the Service Selection Problem – has been
extensively addressed in the literature based on deterministic
parameters. In practice, however, Quality of Service QoS
parameters rather follow a stochastic distribution. In the
work at hand, we present an integrated approach which
addresses the Service Selection Problem for complex workflows
in conjunction with stochastic Quality of Service parameters.
Accounting for penalty cost which accrue due to Quality
of Service violations, our approach reduces the impact of
stochastic QoS behavior on total cost significantly.

Keywords-Service Selection, Stochastic Quality of Service,
Optimization, Simulation

I. INTRODUCTION

The selection of services from a set of appropriate ones
that are able to provide the required functionality and thereby
best meeting cost and Quality of Service (QoS) require-
ments – the Service Selection Problem (SSP) – is widely
recognized in the literature, e.g., [1]–[4]. The optimization
of the SSP is thereby based on deterministic QoS values.
A solution to the SSP describes an execution plan, i.e., an
assignment of services to certain tasks of a workflow, which
satisfy the mentioned cost and QoS constraints.

But QoS, e.g., the response time of a service or its
availability, is not always deterministic in reality. Due to
network latency or server load, response times of services
may change dynamically. I.e., when the execution of the
computed execution plan actually takes place, the perceived
QoS might differ from the expected QoS which has previ-
ously been used for the calculation of the execution plan.
Thus, although having computed an optimal solution to the
SSP during design time which satisfies the constraints, it still
is possible that these constraints are violated during runtime.

The work at hand addresses this issue. Based on a service
broker scenario, which is presented in Section II, we describe
how QoS violations due to stochastic QoS behavior nega-
tively impacts total cost. In order to account for this impact
of stochastic QoS parameters, we present an integrated
approach comprising an optimization, a simulation, and an
adaptation step.

During the optimization step, we compute an optimal
solution to the SSP, i.e., an optimal execution plan, satisfying
the QoS constraints based on the deterministic QoS values
denoted by the respective service providers. In the simulation
step, we observe the expected runtime behavior of the
computed execution plan in terms of QoS. This way, we can
assess potentially occurring constraint violations. We thereby
assume that violating QoS constraints is penalized, i.e.,
penalty fees become due in addition to service invocation
cost. According to the results of the simulation, we apply a
greedy adaptation heuristic in order to reduce the impact of
potentially occurring constraint violations.

The remainder of this work is structured as follows. In
Section II, we present a motivating scenario, which will be
used throughout the paper. In Section III, we describe our
solution to the SSP, which is based on our previous work
in [5]. The applied simulation approach is presented in Sec-
tion IV. Based on the simulation results, we apply our greedy
adaptation heuristic which is described in Section V and
evaluated in Section VI. Finally, after having distinguished
our approach from related work in Section VII, we draw
conclusions and discuss future work in Section VIII.

II. SCENARIO

In this section, we present a scenario, which is used as
an example in the work at hand in order to illustrate the
impact of stochastic QoS parameters. The application of our
approach is not limited to this scenario.

Imagine a service broker who receives requests from its
customers. Paying the broker a fixed amount of money,
the customers require certain tasks and workflows, respec-
tively, to be executed. For this, they provide the broker
with a document which specifies the required tasks from
a functional perspective and indicates the ordering of the
tasks, i.e., the structure of the workflow. One of the broker’s
customers asks for instance for the workflow in Figure 1.
The process steps PSi thereby indicate the tasks which have
to be accomplished. Each task can be executed by a single
service.
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Figure 1: Example Workflow (in BPMN)

In addition to these functional requirements, the customers
also specify their QoS needs regarding the execution of the
respective workflow. For this, they provide restrictions in the
form of upper or lower bounds for specific QoS parameters,
the so-called Service Level Objectives (SLOs). With this
information, the broker tries to select those services among
functionally appropriate ones which satisfy the customers’
QoS requirements, as a violation of these requirements will
be penalized by the broker’s customers. Having selected re-
spective services, the broker pays and invokes these services
in order to execute the customers’ tasks and workflows, re-
spectively. If the customers’ QoS requirements are violated,
penalty fees become due, which also have to be paid by
the broker. In order to reach an optimized decision, the
broker models the selection of services as an optimization
problem aiming at minimizing invocation cost and satisfying
QoS constraints. I.e., the broker formulates an SSP, which
is described in the following Section III.

III. SERVICE SELECTION PROBLEM

In order to formulate an SSP and therewith to compute
an execution plan, it is necessary to aggregate the QoS and
cost values of eligible candidate services according to the
regarded workflow structures. For this, we specify a system
model in Section III-A and discuss respective aggregation
functions in Section III-B. Finally, we utilize the presented
aggregation functions and provide an optimization model in
Section III-C.

A. System Model

In this section, we describe the system model utilized in
the work at hand. The set of all tasks of a workflow is
labeled with I , i ∈ I = {1, ..., i#}. The set of services
appropriate to accomplish a certain task i is labeled with Ji,
j ∈ Ji = {1, ..., j#i }. The decision variables xij ∈ {0, 1}
indicate whether a service j is selected to accomplish task i.
According to our running example, we consider cost c
(charge for invoking a service in cent applying a pay-per-
use pricing model), response time r (time elapsed between
invoking a service and receiving its response), availability
a (probability that a service is available), and throughput d
(number of requests a service is able to serve within a certain
time interval). These parameters – in fact, even a subset of
these parameters – are sufficient to cover the aggregation
types summation, multiplication, and min/max-operator (cf.

Section III-B). Further QoS parameters can be integrated
into the optimization problem straightforwardly. Bounds for
these parameters are labeled with bc, br, ba, bd.

Regarding branchings, we label the set of paths with
L, in which l ∈ L = {1, ..., l#} indicates the respective
path number. Referring to the workflow in Figure 1, there
are two paths l within the AND-block, thus L = {1, 2}.
Different sets of paths will be distinguished by utilizing
additional indices, i.e., La, Lx for AND/XOR. We refer to
them as branching La, Lx. The tasks within a branching are
covered by the set IL ⊆ I , whereas Il ⊆ IL represents
the set of tasks within path l. We label the set of the
remaining tasks, which are not located within a branching,
with Is = I \ (Il | l ∈ L). Utilizing this system model, we
develop aggregation functions in the following.

B. Aggregation Functions

As previously stated, it is necessary to aggregate the
QoS and cost values of candidate services according to
regarded workflow patterns in order to compute the overall
cost and QoS for a specific workflow. Regarding our ex-
ample scenario, this actually is a prerequisite for comparing
workflow QoS with respective bounds issued by the broker’s
customers. As previously stated, violation of the customers’
bounds will result in additional penalty cost. Thus, the
broker has a high interest in making sure that the customers’
bounds are satisfied. For this, the broker performs a worst-
case analysis as opposed to a best-case or average-case
analysis. While probabilities for the execution of certain
paths of a branching would be considered in an average-
case analysis, the worst (best) paths of each branching in
terms of aggregated cost and QoS are considered in a worst-
case (best-case) analysis for the computation of an optimal
solution to the SSP. Respective aggregation functions for
sequences, AND-blocks, and XOR-blocks are indicated in
Table I.

Table I: Worst-Case Aggregation Functions

Sequence AND-block XOR-block∑
i∈Is

∑
j∈Ji

rijxij max
l∈L

∑
i∈Il

∑
j∈Ji

rijxij max
l∈L

∑
i∈Il

∑
j∈Ji

rijxij∏
i∈Is

∑
j∈Ji

aijxij
∏
l∈L

∏
i∈Il

∑
j∈Ji

aijxij min
l∈L

∏
i∈Il

∑
j∈Ji

aijxij

min
i∈Is

∑
j∈Ji

dijxij min
l∈L

(min
i∈Il

∑
j∈Ji

dijxij) min
l∈L

(min
i∈Il

∑
j∈Ji

dijxij)∑
i∈Is

∑
j∈Ji

cijxij
∑
l∈L

∑
i∈Il

∑
j∈Ji

cijxij max
l∈L

∑
i∈Il

∑
j∈Ji

cijxij

For a sequence, the cost and QoS values of all services
selected to accomplish certain tasks i have to be aggregated
according to the respective aggregation type, e.g., summed
up for cost. Regarding AND-blocks, it has to be noted that
for response time r only the path with the highest aggregated
response time – the critical path – requires consideration, as
the tasks within the different paths are executed in parallel.



Regarding the other non-functional parameters, the cost
and QoS values of all services have to be aggregated as
all selected services are executed in the end (similar to a
sequence). For XOR-blocks, where only one of the potential
paths is executed, we consider the path with the worst
aggregated cost and QoS values according the respective
aggregation types as we pursue a worst-case analysis.

In the work at hand, we stick to these patterns for the
sake of simplicity. The interested reader may refer to our
former work in [5] for further structured workflow patterns
(OR-blocks, Repeat Loops) as well as for unstructured pat-
terns of Directed Acyclic Graphs and respective aggregation
functions, which could have additionally been utilized.

Applying the presented aggregation functions, we formu-
late the SSP as an optimization problem in the following.

C. Optimization Model

In this section, we formulate the SSP in Model 1 –
accounting for the example workflow in Figure 1. For
this, we specify an objective function in (1) and a set of
restrictions in (2)–(10) by applying the aggregation functions
from Table I.

Model 1 Service Selection Problem for Example Workflow
Objective Function

minimize
∑
i∈Is

∑
j∈Ji

cijxij +
∑
l∈La

(c′l +
∑
i∈Il

∑
j∈Ji

cijxij) (1)

so that∑
i∈Is

∑
j∈Ji

rijxij +max
l∈La

(r′l +
∑
i∈Il

∑
j∈Ji

rijxij) ≤ br (2)

(
∏
i∈Is

∑
j∈Ji

aijxij) · (
∏
l∈La

(a′l ·
∏
i∈Il

∑
j∈Ji

aijxij)) ≥ ba (3)

min(min
i∈Is

∑
j∈Ji

dijxij ,min
l∈La

(d′l,min
i∈Il

∑
j∈Ji

dijxij))) ≥ bd (4)

max
lx∈Lx

(
∑
i∈Ilx

∑
j∈Ji

rijxij) = r′l ∀l ∈ La| interlaced (5)

min
lx∈Lx

(
∏
i∈Ilx

∑
j∈Ji

aijxij) = a′l ∀l ∈ La| interlaced (6)

max
lx∈Lx

(min
i∈Ilx

(
∑
j∈Ji

dijxij)) = d′l ∀l ∈ La| interlaced (7)

max
lx∈Lx

(
∑
i∈Ilx

∑
j∈Ji

cijxij) = c′l ∀l ∈ La| interlaced (8)∑
j∈Ji

xij = 1 ∀i ∈ I (9)

xij ∈ {0, 1} ∀i ∈ I, ∀j ∈ Ji (10)

Note that the considered workflow in Figure 1 contains
an XOR-block within the AND-block. As the aggregation
functions indicated in Table I assume the tasks within splits
and corresponding joins to be arranged sequentially (cf. [6]),
we have to account for this interlaced structure. Referring to
our former work in [6], we abstract from the interlacing and
insert additional variables r′l, c

′
l, a

′
l, d

′
l and their respective

aggregation functions (i.e., for XOR-blocks in this case)
into Model 1. As the broker receives a fixed amount of
money from his/her customers for satisfying their needs,
(s)he maximizes his/her profit by selecting and invoking
the services with minimal cost. Thus, the objective function
in (1) aims at minimizing service invocation cost. The
customers’ restrictions on cost and QoS are indicated in (2)–
(7). In (9), we make sure that only one service is selected
for each task, and (10) represents the integrality condition
for the decision variables.

Model 1 constitutes a non-linear optimization problem as
it contains non-linear aggregations of decision variables xij ,
i.e., multiplication and min/max-operator in (2), (3), (4) for
instance. We transform it into a linear one by linearizing the
non-linear restrictions in (3)–(7). Due to space restrictions,
we omit describing the linearization in the work at hand
and refer the interested reader to our former work in [5],
[6]. The optimal solution to the obtained linear optimization
problem can then be computed by applying Integer Linear
Programming (ILP) techniques from the field of Operations
Research [7].

Thus, having computed an optimal execution plan mini-
mizing service invocation cost and (presumably) satisfying
the customers’ constraints, the broker would apply this
solution and invoke the respective services while assuming
that they actually hold the constraints. But as the invoked
services may show a different behavior during runtime than
expected during design time, the application of the computed
execution plan could lead to violations of the customers’
constraints. This would result in additional cost for the
broker as, in this case, penalty fees will become due.

In order to assess the impact of stochastic QoS values,
we propose to perform an additional simulation step, which
is described in the following Section IV.

IV. SIMULATION

A. General Concept

The simulation approach presented in the work at hand
is substantially inspired by findings from the domain of
project management. In our former work in [8], we outlined
the conceptual similarities between workflows and project
networks, specifically, generalized activity networks [9]: a
complex workflow can easily be interpreted as a project
network, which consists of comparable entities, such as tasks
and branches.

Based on the work in [10], we argued in [8] that simula-
tion provides the best means to assess the risk of breaking



given QoS constraints in practical application. Referring to
[10], deterministic methods regularly fail to correctly quan-
tify such risks, specifically if large and complex networks
and workflows, respectively, are concerned.

Thus, regarding our example scenario, an optimization
approach based on deterministic QoS values does not capture
the risk of violating QoS constraints. For instance, if a
selected service experiences unusually high demand, it may
not be able to provide a certain response time, even if a
corresponding bound has been guaranteed by the service
provider. Thus, in turn, an execution plan may not satisfy
the QoS requirements in some cases. The existence of
substantial QoS fluctuations – specifically with respect to
Web service response times – has been empirically shown,
for instance by Rosario et al. [11] and Miede et al. [12]. In
the work at hand, we quantify these inherent risks through
simulation, i.e., repeated “virtual” execution of a workflow.

B. Stochastic QoS Parameters

As previously stated, it is assumed in most related ap-
proaches addressing the SSP that a “hard” – deterministic
– QoS guarantee is specified for each service candidate and
QoS parameter. In order to perform a simulation, we further
assume that probabilistic QoS specifications are available.

In accordance with the notation in Section III-A, Rij , Aij ,
and Dij represent random variables for the QoS parameters
response time, availability, and throughput of service j
for task i. These random variables may follow arbitrary
probability distributions. For instance, the response time of
a service may be modeled using a normal distribution, i.e.,
Rij ∼ N(100, 20). For an overview of common probability
distributions, we refer to corresponding compendiums [13].

Probability distributions can be deduced in at least two
principle ways: First, they may be explicitly provided by a
service provider as part of contracted guarantees in terms of
Service Level Agreements (SLA), following the idea of “soft
contracts” [11]. Second, they may be inferred by mining the
monitoring data from past service executions.

C. Execution of the Simulation

For the actual simulation, we virtually execute the pre-
viously computed execution plan a predefined number of
times. In each iteration, we draw a specific realization of
each QoS parameter for each selected service, based on
the given random variables Rij , Aij , and Dij . In addition,
depending on the branching probabilities of XOR-splits, we
draw random variables in order to determine which paths
are actually executed in the current iteration. The realized
values of the individual services are aggregated afterwards
according to the respective workflow structure applying the
aggregation functions from Table I. This way, we compute
the overall QoS values for the whole workflow.

Based on the workflow in Figure 1, we provide an
example in Figure 2. It represents an execution plan where
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Figure 2: Workflow execution plan with services’ QoS
guarantees, serving as input to the simulation.

possible, appropriate services have been identified for the
realization of all tasks. Each service is associated with
deterministic QoS bounds, as specified by respective ser-
vice providers (boxes with light-gray background). Further,
probabilistic QoS specifications – as observed by the broker
– are indicated (boxes with dark-gray background). Note
that we assume conservative service providers as the deter-
ministic QoS values specified by the service providers are
higher than the expected values. For simplicity reasons, we
only incorporate the QoS parameter response time in this
example. As can be quickly validated, the workflow will
meet the QoS constraint, namely br = 430, according to the
given deterministic QoS values.

However, performing a simulation with 10, 000 itera-
tions, i.e., drawing 10, 000 corresponding realizations of
the regarded QoS parameter response time, reveals that the
specified QoS constraint will be violated in approximately
15% of all executions – although we assumed conservative
service providers. Figure 3 indicates the respective aggre-
gated response time for the workflow. The QoS violation
can be attributed to one or more services exceeding their
deterministic QoS guarantees, which cannot be sufficiently
captured by the initial service selection and, thus, will result
in potentially severe penalities for the broker. In order to
reduce the impact of stochastic QoS behavior and therewith
the accruing penalties, the boker applies our greedy adapta-
tion heutistic, which is discribed in the following Section V.

V. GREEDY ADAPTATION HEURISTIC

In the previous section, we have outlined how a simulation
step may reveal the risk of violating certain QoS constraints
in practice. This knowledge can be exploited in order to min-
imize the risk of penalties and therewith the total cost for the
broker in our example scenario comprising cost for invoking
the selected services and cost according to expected penalty
fees. For this, we present a greedy adaptation heuristic in
this section aiming at reducing the total cost for the broker.

In this context, adaptation denotes excluding and replac-
ing, respectively, those services from the formerly computed
execution plan for other functionally appropriate services,
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Figure 3: Cumulative probability function of the workflow’s
response time, according to the simulation.

which cause high penalty cost due to unexpected runtime be-
havior. One may argue that we could have also performed an
adaptation by trying to improve QoS for the services of the
computed execution plan, i.e., asking the respective service
providers to either enhance resource deployment in terms
of, e.g., main storage and CPU, or to (generally) improve
the implementation of the service providers’ services. As
both is out of the broker’s control sphere, we do not focus
on nor account for such possibilities. We further assume
SLAs to be fixed and do not account for SLA negotiations,
neither between the broker and its customers, nor between
the broker and respective service providers – which could
also be seen as an alternative adaptation in order to tackle
QoS violations – as (optimal and efficient) SLA negotiation
is a research topic on its own and would go beyond the
scope of the paper at hand.

Regarding penalty cost, we assume linear penalty fees per
unit of QoS violation, e.g., cents per second the execution
took longer than restricted by the respective bound, or cent
per percent point the availability was lower than restricted.
It would also be imaginable to assume variable penalty fees,
which increase quadratically or exponentially with the size
of the violation. As this would only influence the calculation
of the actual total penalty cost depending on the chosen
penalty model but does not change our approach, we stick
to linear penalty fees for the sake of simplicity.

Our greedy adaptation heuristic is indicated in Algo-
rithm 1, using pseudocode. The heuristic is split into four
steps. First, we determine the total cost of the current solu-
tion. Second, we compute the critical QoS parameter, i.e.,
the QoS parameter which causes the highest penalty cost, as
this parameter might bear the highest penalty cost savings.
Third, we determine for which of the tasks i ∈ I a potential
improvement of the respective critical QoS parameter would
be highest. Fourth, we finally perform the adaptation.

More details on these steps are provided in the following.
Referring to Algorithm 1, we compute an optimal solu-

tion cs, which represents the current solution, based on
deterministic QoS values, perform the previously mentioned
simulation step, and calculate the QoS violation in lines
2 to 4. In order to determine the total cost of the current
solution, we aggregate the invocation and accruing penalty
cost as indicated in line 5. By computing and comparing the
penalty cost for each QoS parameter, we determine critical
QoS parameter in lines 7 to 13. In order to compute the
critical task, we compute in line 16 the potential benefit for
each task i. In this context, the potential benefit of a task
i corresponds to the highest possible reduction in standard
deviation σ. Referring to (11), we compute the difference
of the selected service’s σs to the σj values of the other
candidate services of task i.

benefit = max
j∈Ji

(σs − σj) (11)

The highest possible reduction in σ, which corresponds
to the highest possible reduction in uncertainty and risk
regarding stochastic QoS parameters, thereby represents the
potential (absolute) benefit for that task. In line 17, we
compute the weight ω for task i. For this, we divide the
number of the simulation runs where task i has been virtually
executed and the restriction for the critical QoS parameter
has been violated by the total number of runs. As indicated
in lines 18 to 20, the task with the highest weighted benefit
becomes the critical task, which is required in order to
perform the actual adaptation.

As stated earlier, our adaptation comprises excluding and
replacing services while other adaptation techniques and
mechanisms also would have been possible and supported by
our heuristic. Insofar, our approach is flexible and extensible
for supporting further adaptation techniques. We determine
the currently selected service js in line 24. We ban in lines
25 to 27 all services of the critical task, which have a
negative benefit, i.e., whose σ and therewith the risk of QoS
violation is larger than or equal to the σjs of the currently
selected service js. This way, we adapt the list of available
candidate services for the critical task.

Utilizing this adapted list, we rerun the optimization and
obtain a new execution plan, which is optimal under the
adapted circumstances. Afterwards, we conduct the simula-
tion step again and calculate both the invocation and penalty
cost for the lastly computed execution plan (cf. the first
step). By comparing the total cost of this new solution with
the previous – formerly known as current best – solution,
we determine whether applying our adaptation heuristic has
been advantageous from the broker’s point of view. Via a
parameter greed, we specify the algorithm’s degree of greed,
i.e., whether and how often the described steps are repeated
as long as past iterations reduced total cost. Via a further
parameter anneal, we control for allowing worse solutions
temporarily as starting point for a continuous application of
the algorithm. An evaluation for this approach is presented
in the following Section VI.



Algorithm 1 Greedy Adaptation Heuristic

1: //First step – determine current cost
2: cs = computeCurrentSolution();
3: sim = simulate(cs);
4: v = computeQoSViolation(sim);
5: totalCost = computeInvCost(cs) + computePanalty(v);
6: //Second step – determine the critical QoS parameter
7: for all p ∈ QoSparameters do
8: penaltyCost = computePenalty(p);
9: if penaltyCost ≥ highestPenaltyCost then

10: highestPenaltyCost = penaltyCost;
11: criticalQoSparameter = p;
12: end if
13: end for
14: //Third step – determine the critical task
15: for all i ∈ I do
16: benefit = computeBenefit(i);
17: ω = computeWeight(i);
18: if ω · benefit ≥ highestBenefit then
19: highestBenefit = ω · benefit;
20: criticalTask = i;
21: end if
22: end for
23: //Fourth step – perform the adaptation
24: js = getSelectedServiceOf(i);
25: for all j ∈ Ji do
26: if σj ≥ σjs then
27: setBanned(j);
28: end if
29: end for

VI. EVALUATION

As a proof of concept, we implemented our greedy adapta-
tion heuristic. For the computation of an optimal solution to
the SSP based on deterministic values, we utilized the linear
programming solver CPLEX1. In this section, we evaluate
the impact of QoS violation on total cost with respect to our
broker scenario. For this, we conducted a set of experiments
in order to assess the effects of different configurations
regarding the adaptation parameters greed and anneal, which
allow to control for the number of iterations the algorithm
performs in order to achieve improved solutions and for the
number of thereby temporarily accepted worse solutions.

In the following, we describe our experimentation setup.
We consider the workflow in Figure 1, which contains PS1-
PS8 indicating tasks i ∈ {1, ..., 8}. In order to determine
QoS values of the respective services, we draw realizations
of the random variables Rij , Aij , and Dij . We assume
these random variables to follow a normal distribution, i.e.,
Rij ∼ N(µr, σr), Aij ∼ N(µa, σa), Dij ∼ N(µd, σd).

1http://www.ibm.com/software/integration/optimization/cplex-optimizer/

Table II: Stochastic QoS

QoS PS2, PS7 PS1, PS3 − PS6, PS8

Rij
µr ∼ U(160, 240)
σr ∼ U(0, 40)

µr ∼ U(80, 120)
σr ∼ U(0, 20)

Aij
µa ∼ U(0.92, 1.0)
σa ∼ U(0.0, 0.08)

µa ∼ U(0.94, 0.98)
σa ∼ U(0.0, 0.04)

Dij
µd ∼ U(80, 120)
σd ∼ U(0, 30)

µd ∼ U(80, 120)
σd ∼ U(0, 30)

cij
U(0.8, 1.2) · (40+
(0.03 · (µd − µr)) · µ2a)

U(0.8, 1.2) · (20+
(0.03 · (µd − µr)) · µ2a)

We could have equally utilized other distribution func-
tions or inferred the respective distributions by mining the
monitoring data from past service executions, which we
actually envisage in our future work, but we stick to normal
distributions in the work at hand for the sake of simplicity.
The parameterization of the random variables Rij , Aij , and
Dij is indicated in Table II. We assume that the invocation
cost of a service partly depends on its QoS, i.e., good QoS
values in terms of low response time r, high availability a,
and high throughput d result in higher invocation cost. For
this, as also indicated in Table II, we compute the invocation
cost of a service according to its QoS, utilizing an additional,
uniform distributed random variable U(a, b).

In order to assess the impact of the number of beneficial
iteration steps – as indicated by the parameter greed –
on total cost and computation time, we varied greed in
Figure 4a and Figure 4d from 0 to 20 step two, utilizing
anneal = 4. Regarding the influence of the number of
temporarily allowed worse solutions, we varied the anneal
parameter in Figure 4b from 0 to 16 step two, utilizing a
fixed greed value of 10. For these experiments, we set the
violation cost to 10% of the respective service invocation
cost – per unit of QoS violation (cf. Section V). In Figure 4c,
we account for different penalty cost by varying the penalty
cost percentage from 0% to 20%, utilizing greed = 10,
anneal = 4. Finaly, in Figure 4d, the computation time for
computing respective solutions is indicated. The experiments
were performed on an Intel Core 2 Quad processor at
2.66 GHz, 4 GB RAM, running Microsoft Windows 7.

The evaluation results show that the application of our
greedy adaptation heuristic to the considered service broker
scenario leads to a cost reduction of 9 ct to 12.5 ct in relation
to total cost of 142.5 ct for the whole workflow, which corre-
sponds to a reduction of 6% to 8.5%. Thus, the broker could
save 6% to 8.5% of the total cost. But, Figure 4d reveals
that reducing the cost actually “costs” computation time –
up to 10 times as much. As Figure 4a indicates, additional
reduction in total cost decreases with additional adapatation
steps, i.e., higher greed values. Therefore, utilizing a greed
value of 4 to 6, for which the computation time is roughly
6 times higher, seems to be a good compromise between
cost reduction and additional computation time. Also values
greater than 4 for anneal do not improve the cost reduction
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Figure 4: Evaluation Results

significantly. Thus, using the parameterization greed = 6,
anneal = 4, which leads to a cost reduction of 7.3% and a
6-times magnified computation time, appears sensible.

Having described our approach, we discuss related ap-
proaches in the following Section VII.

VII. RELATED WORK

As previously stated, the SSP is widely recognized in
the literature. A survey of current approaches can be found
in [4]. In principle, current approaches can be divided into
two categories: heuristic approaches which try to find rather
good solutions within a reduced amount of computation
time, e.g., [2], [14], [15], and approaches aiming at finding
an optimal solution to the SSP, e.g., [1], [3], [16]. All those
approaches presume that the utilized QoS parameters are
deterministic. Relevant related work in the area of stochastic
QoS parameter, however, is rather sparse.

In their work in [11], Rosario et al. consider probabilistic
QoS values, but not for the purpose of services selection.
They rather focus on SLA and contract composition, respec-
tively, using soft probabilistic contracts as already stated in
Section IV-A. The authors in [17] pay insofar attention to
stochastic QoS parameters as they try to achieve an accurate
prediction of QoS values based on historic data which
then is utilized for service selection rather than predefined
values guaranteed by service providers. In [18], Hwang
et al. utilize Probability Mass Functions (PMFs) for QoS
instead of deterministic values. They describe approaches for
aggregating the PMFs of single services. The authors thereby
utilize a preselected set of services with discrete PMFs, i.e.,
they do not perform service selection based on PMFs, but
rather aim at computing and estimating QoS for service-
based workflows. In contrast to this, our approach targets
service selection accounting for stochastic QoS parameters.
Cardellini et al. consider stochastic QoS parameters for the
SSP insofar as they use an α-percentile (with α = 95%)
for the QoS parameter response time [19]. Accordingly,
instead of utilizing deterministic response time values for the
optimization, the authors integrate a restriction demanding
the probability of violating the bound for response time to
be lower or equal to 1−α, i.e., 1−0.95 = 5%. Projected to
our broker scenario, this means that the broker can assume

satisfying the respective bound with a probability of 95%.
But Cardellini et al. thereby fail to account for the arising
penalty cost due to QoS violations in the remaining 5% of
the cases. Our approach, on the other hand, proceeds one
step beyond and considers the impact of QoS violations in
terms of penalty cost. Depending on the ratio between invo-
cation and penalty cost, it could be beneficial for the broker
selecting rather cheap services, which statistically cause QoS
violations more often, and paying the penalty cost rather
than selecting expensive services with low probabilities of
violating QoS constraints. Thus, our approach enables the
broker to select those services that bear the lowest cost.
In the approach in [20], which probably comes closest to
ours, Leitner et al. assume a fixed service composition and
a fixed set of possible adaptations to improve the service
composition in terms of, e.g., “utilize Express Shipping”
instead of “ utilize Standard Shipping”. The aim is to select
and apply those adaptations that minimize cost comprising
invocation cost, penalty cost for QoS violation, and cost for
applied adaptations, which aim at avoiding QoS violation. If
we abstract from the term adaptation and interpret available
adaptations as alternative services, then Leitner et al. are
solving a SSP with the aim of minimizing total cost, at which
penalty cost for QoS violation are considered as well. In
order to account for non-deterministic QoS behavior during
runtime, the authors utilize a predictor component which
predicts prospective QoS values and therewith expected QoS
violation. Thus, Leitner et al. estimate the impact of stochas-
tic QoS behavior for each service separately and perform a
optimization with these estimated, deterministic QoS values
allowing for QoS violations and accounting for their impact
on total cost. Our approach, however, goes one step further,
as we do not consider the stochastic QoS behavior of the
services independently of each other, but account for the
whole workflow during our simulation step. Thus, potential
reverse QoS deviations of different services from expected
behavior can be considered, which is not possible in [20] due
to their isolated consideration of expected QoS per service,
independently of other services.

In summary, our approach extends related work as it
considers, on the one hand, the impact of QoS violation in
terms of accruing penalty costs. On the other hand, we do not



only regard isolated stochastic QoS behavior for individual
services, but account for probably compensating reverse
QoS deviations of different services. Thus, we consider the
impact of stochastic QoS behavior for the whole workflow.
Conclusions are drawn in the following Section VIII.

VIII. CONCLUSION

The SSP is widely recognized in the literature and has
been discussed in several scientific papers – based on deter-
ministic QoS parameters. In the work at hand, we addressed
the SSP in conjunction with stochastic QoS parameters
which has been considered as yet only insufficiently in the
literature. For this, we presented an integrated approach
comprising an optimization, a simulation, and an adaptation
step which aims at reducing the impact of stochastic QoS
behavior on total cost. The evaluation shows that the appli-
cation of our approach leads to a cost reduction up to 8.5%,
utilizing the described service broker scenario. Thus, the
actual, absolute level of cost reduction depends on the con-
crete paramerization and the regarded scenario. For this, we
will extend the evaluation in our future work by considering
further workflow structures and QoS distribution functions as
well as different degrees of conservative, deterministic QoS
values issued by service providers. In addition, we focus on
improving the scalability of our greedy adaptation heuristic.
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