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Abstract

In recent years, a number of approaches to semantic Web
service matchmaking have been proposed. Most of these
proposals are based on discrete and thus relatively coarse
Degrees of Match (DoMs). However, different basic as-
sumptions regarding the generalization and specialization
of semantic concepts in ontologies and their subsequent rat-
ing in matchmaking exist. Hence, most matchmakers are
only properly suitable if these assumptions are met.

In this paper, we present an approach for mapping sub-
sumption reasoning-based DoMs to a continuous scale. In-
stead of determining the numerical equivalents of the for-
merly discrete DoMs manually, these values are automati-
cally derived using a linear regression model. This permits
not only easy combination with other numerical similarity
measures, but also allows to adapt matchmaking to different
basic assumptions.

These notions are implemented and tested in
LOG4SWS.KOM – a matchmaker for SAWSDL that
provides very good evaluation results with respect to
Information Retrieval metrics such as precision and recall.

1. Introduction

The discovery of Web services which provide the right

functionality with respect to a given service request is one

of the essential requirements if regarding the vision of auto-

mated service invocation. In order to overcome the short-

comings of syntax-based service descriptions, several re-

searchers have proposed the usage of semantic information

in Web services, resulting in the concept of semantic Web

services (SWS) [13]. Today, SWS are a prominent field

of research and have resulted in a number of different ap-

proaches and specifications like OWL-S or SAWSDL, i.e.,

service description languages which explicitly make use of

semantic technologies in different parts of a service descrip-

tion. One of the primary application areas of SWS is service

discovery. Discovery of services is comprised by three as-

pects: (i) The ability of service providers to describe their

services, (ii) the ability of requesters to describe their re-

quirements towards services, and (iii) the effectiveness of

the service matchmaker, i.e., an algorithm that finds the best

fitting services from a set of offers based on a given service

request [8].

Service matchmaking that considers semantic informa-

tion is contemplated by a very agile research community,

with a large number of different approaches having been

proposed in recent years. A lot of experimentation is con-

ducted concerning which elements from a service descrip-

tion should be regarded, applied similarity measurements,

and how the resulting similarity values are combined [8].

In this paper, we present LOG4SWS.KOM (“Logic-

based Matchmaking for Semantic Web Services”), a ser-

vice matchmaker for WSDL 2.0 and SAWSDL-based ser-

vice descriptions. Based on an Ordinary Least Squares

(OLS) estimator, it maps the usually discrete subsumption

reasoning-based DoMs to numerical equivalents, allowing

the arbitrary combination with other numerical similarity

measures, such as path length between concepts or com-

mon measures from the field of Information Retrieval (IR).

LOG4SWS.KOM is not restricted to the service signature

(i.e., inputs and outputs), but integrates information from

different service abstraction levels.

LOG4SWS.KOM is, per se, purely semantic-based,

based on the notion that explicit semantic information pro-

vides far more certainty than non-logic information can

[12]. However, we provide a syntax-based fallback strategy

which can be applied if the semantic annotations on a cer-

tain service abstraction level are incomplete or missing. As

will be presented in the evaluation, LOG4SWS.KOM is ca-

pable of competing with and outperforming state-of-the-art

matchmakers for SAWSDL like URBE [17] or SAWSDL-

MX [9] with respect to metrics such as precision and recall.

The remaining part of this paper is structured as fol-

lows: In the next section, we analyze the shortcomings

of current matchmaking approaches, which can potentially

lead to suboptimal matchmaking results or a limited appli-

cability. Afterwards, SAWSDL, the service standard that

LOG4SWS.KOM is applied to, is briefly presented. In Sec-
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tion 4, the general considerations leading to the implemen-

tation of LOG4SWS.KOM will be presented. This includes

a detailed discussion of the OLS estimator. We evaluate dif-

ferently configured variants of LOG4SWS.KOM and com-

pare the results with other matchmaking approaches for

SAWSDL (Section 5). A discussion on related work can

be found in Section 6. The paper closes with a conclusion

and a brief outlook on our future work.

2. Background

Many semantic-based service matchmakers are based on

the groundbreaking work of Paolucci et al., which defines

the four distinct DoM levels of exact, plugin, subsume, and

fail [16]. The DoMs are based on logic subsumption match-

ing, i.e., the ancestry relationships between concepts in an

ontology and can be found in similar or extended form in,

e.g., [1, 4, 9]. As the DoMs are distinct, it is not possi-

ble to directly combine them with numerical similarity val-

ues from the field of IR, which are also frequently applied

as supplement to the logic-based DoMs (e.g., by Klusch et

al. [9]). Here, we propose the usage of numerical equiva-

lents for the DoMs. While this has been done in other ap-

proaches, the authors do not provide a justified relationship

between numerical similarity values and discrete DoMs de-

pending on the Web services regarded. Instead, e.g., Liu

et al. or Fernández et al. arrange for the usage of numer-

ical values but do not specify how these values should be

calibrated [6, 11].

Usually, there is a predetermined order of DoMs – e.g.,

Paolucci et al. define this as exact > plugin > subsumes >
f ail. Paolucci et al. reverse the meaning of plugin and

subsumes for outputs and inputs – for former, a plugin
match specifies that the class used in a service offer is more

generic than this used in a service request. For inputs, a plu-
gin match indicates a more specific class used in a service

offer than in the service request. Bellur et al. and Cardoso

reverse this ranking regarding subsumes and plugin respec-

tively invert the meaning of these DoMs, which leads to a

different ranking [1, 4]. Cardoso argues that a more generic

input (i.e., a subsumes relationship) is favorable, because

it will certainly accept the input which has been specified

in the service request. In case of outputs, a reversed rank-

ing scheme is proposed: Service offers with a more specific

output are favored over those with a more generic output.

Here, Bellur et al. argue that Paolucci’s assumption that

a service provider who advertises a certain output (i.e., a

semantic concept describing the output) will deliver every

subclass of this output, is not realistic.

Both ranking scheme approaches have their justification,

depending upon which assumption regarding the general-

ization and specialization of semantic concepts in an on-

tology holds true. Hence, it would be useful to derive
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Figure 1. Matchmaking Process

the ranking of these DoMs automatically. This applies to

SAWSDL in particular, as it does not define the “meaning”

of semantic annotations on different service abstraction lev-

els (cp. Section 3). With LOG4SWS.KOM, this ranking

is conducted automatically – as the numerical equivalents

are automatically derived, it is not necessary to predefine a

DoM ranking.

As a short wrap up, LOG4SWS.KOM provides the fol-

lowing benefits: (i) It is possible to easily combine differ-

ent syntax- or semantic-based similarity measures without

dropping the usage of subsumption reasoning-based DoMs,

(ii) it is not necessary to predefine a ranking of DoMs,

(iii) instead of being restricted to the service signature,

LOG4SWS.KOM integrates information from all available

service abstraction levels. LOG4SWS.KOM complements

and pursues already existing work in the field by combining

accepted techniques and new ideas, resulting in very good

service discovery results (cp. Section 5).

3. Service Descriptions using SAWSDL

SAWSDL (“Semantic Annotations for WSDL and XML

Schema” [5]) is the W3C’s recommendation for augment-

ing WSDL-based service descriptions (“Web Service De-

scription Language” [2]) with semantic information. It pro-

vides a bottom-up, lightweight approach to SWS.

The abstract part of a WSDL document contains com-

ponents with different levels of abstraction. For WSDL

2.0, these service components are interfaces, operations,

and message parameters (defined as XML schema (XSD)

types) [2]. Interfaces constitute the highest level of abstrac-

tion in WSDL; they subsume one or more operations. Op-

erations point to XSD types, i.e., parameters, via their input

and output message components. Thus, parameters are the

lowest level of abstraction. As parameters refer to inputs

and outputs, they are also called “service signature”. For an

overview, please refer to Figure 1, which shows the different

levels of abstraction in SAWSDL.

SAWSDL introduces three new XML attributes into
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WSDL, which can be used in conjunction with the already

existing WSDL components [5]. In the context of this pa-

per, modelReferences are the most important element of

SAWSDL. modelReferences point to one or more URIs of

arbitrary concepts that semantically describe a WSDL com-

ponent. These semantic annotations allow the deriving of

a service’s purpose or the automatic conducting of compar-

isons between a pair of services. SAWSDL attributes are

defined for WSDL interfaces, operations, and faults, as well

as XSD simple and complex types, elements, and attributes.

SAWSDL imposes no restrictions on what a semantic an-

notation actually means or the type of semantic concept that

is addressed. Regarding the former aspect, the meaning of,

e.g., a modelReference on interface level, is not defined.

However the SAWSDL specification does state that on in-

terface level, a modelReference might be a categorization,

while on operation level, a modelReference might specify

a high level description of the operation. On message re-

spectively XSD level, modelReferences most likely define

data semantics [5]. This meaning of semantic annotations

is compliant with the classification made for WSMO-Lite by

Vitvar et al. [19] and will be the foundation for the match-

maker presented in the work at hand.

Likewise, SAWSDL does not restrict the type of seman-

tic concepts a modelReference should point to. The only

requirement is that the concepts are identifiable via URI ref-

erences. On one hand, this allows for a maximum of flexi-

bility. On the other hand, it poses an obstacle with respect

to automatic processing and interpretation of concepts. In

the context of our work, we will thus assume the semantic

concepts to be formally defined in an OWL DL ontology.

A second constraint it that we only consider the first URI

from a modelReference; this is done as it is unclear if a

further URI addresses an alternative semantic concept, an

additional information or something else. Third, service re-

quests are defined as a service that would perfectly match

the request. Fourth, the matchmaker returns a result set ar-

ranged in a descending order regarding the computed simi-

larity between service request and service offers. All these

are common assumptions made in conjunction with the use

of SAWSDL in matchmaking.

4. LOG4SWS.KOM: Self-Adapting Logic
Subsumption Matching

To put it simply, matchmaking can be divided into the

identification of data items to be matched, the measure-

ment of similarities, and the actual matching of compo-

nents. In the following, the way in which LOG4SWS.KOM

addresses these three aspects of service matchmaking will

be presented. The approach is implemented in Java using

Pellet 2.0 for logical reasoning and JWNL 1.4 for accessing

the WordNet ontology [14].

4.1. Operations-focused Matching

LOG4SWS.KOM employs a matching approach which

focuses on the matching of operations. The underlying idea

is that operations provide the essential functionality a ser-

vice requester is looking for. Thus, for each requested oper-

ation, the best matched operation in the service offer should

be identified. Accordingly, the overall similarity of two ser-

vices relates to the degree to which their respective opera-

tions match, i.e., to which the offer provides the requested

functionality.

The overall matchmaking process is depicted in Figure 1.

For each pair of operations in service request and offer,

their respective input (simin), output (simout ), native opera-

tion (simop), and interface (simi f ace) level similarity is com-

puted. These individual similarities are then combined us-

ing specified weights, win, wout , wop, and wi f ace, yielding

an aggregated similarity value simagg for each pair of op-

erations. Formally, for a pair of operations, a and b, we

define:

wi f ace +wop +win +wout = 1 (1)

simagg(a,b) =simi f ace(a,b)∗wi f ace

+ simop(a,b)∗wop

+ simin(a,b)∗win

+ simout(a,b)∗wout

(2)

Once similarities between all pairs of operations in a service

request and service offer have been computed, the overall

service similarity simserv is derived by finding an optimal

matching of operations. I.e., the final matching for a pair

of services is conducted between their respective union set

of operations, disregarding how the operations are actually

organized into interfaces. Formally, let I and J be the sets of

operations in a service request R and offer O respectively.

Let xi j be a binary variable, indicating whether i ∈ I has

been matched with j ∈ J. Then,

simserv(R,O) =
1

|I| ∗ ∑
i∈I, j∈J

xi j ∗ simagg(i, j) (3)

The matching of sets of components (specifically, inputs,

outputs, and operations) is based on bipartite graphs as pre-

sented by Bellur et al. [1]. It perceives the sets of com-

ponents of a service request and offer as two partitions of

nodes in a graph. Each node in the first partition is con-

nected with each node in the second partition through a

weighted edge. The edge weights correspond to the respec-

tive similarity between two components. Using the Hun-
garian (or Kuhn-Munkres) algorithm, the bipartite graph

matching algorithm computes a 1-on-1 assignment of com-

ponents. Each component of the request is matched with

one component of the service offer while maximizing the

overall edge weight. In order to meet differing cardinalities
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of the two sets, an extension of the Hungarian algorithm is

applied [3].

Subsequent to the matching process, the edge weights of

all matched edges are summed up and divided by the car-

dinality of the original sets. This yields the similarity for

two sets of components. If the cardinality of the two sets

differs, the following strategy is followed: Generally, the

cardinality of the set associated with the service request is

decisive. This implies, if an offer lacks requested operations

or outputs, its overall similarity decreases. For inputs, the

cardinality of the set associated with the service offer is de-

cisive. I.e., if an offer requires more inputs than the request

provides, its overall similarity decreases.

This procedure does not exclude any services offers due

to a mismatch in the number of parameters or operations.

Instead, these offers are implicitly punished by a reduction

in service similarity. The approach is based on the notion

that such service offers may still be able to provide a part

of the initially requested functionality or outputs, or may be

invoked by providing additional inputs.

If simserv is identical for two service offers in the result

set, the offers are alphabetically arranged.

4.2. Assignment of Similarities

Our primary strategy for similarity assessment is based

on the traditional DoMs from logic subsumption reasoning,

as suggested by Paolucci et al. [16]. We slightly depart

from their definition by defining generic types of matches

that can be applied to each service abstraction level and type

of parameter. Given two arbitrary concept, A and B, where

A is defined in the service request and B is defined in the

service offer, the DoM is given by

DoM(A,B) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exact i f A ≡ B

super i f A � B

sub i f A � B

f ail else

(4)

According to the scheme by Paolucci et al. [16], our DoM

of super corresponds to subsumes and plugin for inputs and

outputs respectively; for sub, the order is reversed, and it

corresponds to plugin and subsumes for inputs respectively

outputs. In contrast to other approaches (cp. Section 2), we

do not predefine a ranking of DoMs.

These DoMs provide a discrete scale and thus only al-

low a coarse-grained ranking of services. Yet, a more so-

phisticated ranking might be possible, for instance based on

the path length between two concepts or the overall number

of siblings a concept has. Thus, we map the four discrete

DoMs onto an continuous numerical scale, ranging from 0

(no similarity at all) to 1 (perfect similarity). This approach

allows the combination with other numerical measures and

a much more fine-grained ranking of services. In detail, on

each individual matching level L∈{i f ace,op, in,out}, each

DoM D ∈ {exact,super,sub, f ail} is assigned a numerical

equivalent, dL.D, in the range [0;1]. Formally,

dL.D ∈ [0;1] ∀ L ∈ {i f ace,op, in,out},
D ∈ {exact,super,sub, f ail} (5)

To allow a more fine-grained similarity assessment, in case

of a super or sub match, the DoM’s numerical equivalent is

merged with the path length between two concepts. One in-

tuitive approach to conduct such merging is simply dividing

the numerical equivalent by the path length, based on the as-

sumption that the similarity between two concepts (linearly)

shrinks with their distance in an ontology.

Formally, let PL(A,B) denote the shortest path between

the two concepts A and B in an ontology. Furthermore, let L
be the level on which the matching of components that point

to these concepts is conducted. Then, the similarity cs(A,B)
between A and B (and thus, the two underlying components)

is given by:

cs(A,B) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dL.exact i f A ≡ B

dL.super/PL(A,B) i f A � B

dL.sub/PL(A,B) i f A � B

dL. f ail else

(6)

4.3. OLS-based Determination of Numerical
DoMs

While mapping discrete DoMs to a continuous numeri-

cal scale offers advantages, it involves the ambiguous pro-

cess of defining equivalents. To circumvent this issue,

LOG4SWS.KOM applies an OLS estimator for the deter-

mination of optimal numerical DoM equivalents.

The process is based on the notion that a dependent vari-

able ya.b
L – corresponding to the similarity of two operations,

a and b, on a certain matching level, L, – can be derived

through the linear combination of a set of independent vari-

ables xa.b
L.D, corresponding to the frequency of a certain DoM

D when matching a and b on that level. I.e., we assume that

the weighted linear combination of the different DoM’s fre-

quencies predicts the similarity of two operations.

The OLS estimation is independently conducted for each

matching level. I.e., the numerical weights differ for inputs,

outputs, operations, and interfaces. As training data, a set

of services is required along with a predefined similarity (or

relevance) rating. A subset of a test collection, such as the

SAWSDL-TC (cp. Section 5.1), fulfills this requirement.

In the training phase, LOG4SWS.KOM matches all pairs

of operations in all service requests and offers. For each

pair and each matching level, it stores the types of sub-

sumption matches in the matched components along with
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the path length, and determines the predefined similarity be-

tween the two operations (or, if the similarity is unavailable

at the operations level, of the parent interfaces or services).

Latter yields the vectors of predictors (yi f ace, yop, yin, and

yout ) for the OLS process, with each entry corresponding to

a pair of operations.

The design matrices (Xi f ace, Xop, Xin, and Xout ) are de-

rived in the following manner: Each pair of operations

yields one row with four entries, where each entry corre-

sponds to the frequency of a certain type of DoM with re-

spect to all matched components on a certain level. In de-

tail, the frequency count is incremented by 1 for an exact

and fail match between two components. For super and sub

matches, it is incremented by 1 divided by the path length.

The row is finally divided by the total number of matched

components on the current level.

Assume, for instance, that a pair of operations, a and

b, is matched. If each operation contains two inputs, there

will be two input matches. Let the first match be an exact
match and the second a DoM of super with a path length of

2. This yields the following row in the input level’s design

matrix (where the first entry corresponds to an exact DoM,

followed by super, sub, and fail):

xa.b
in =

(
1/2 1

2/2 0 0
)
=
(
0.5 0.25 0 0

)
(7)

Under the assumption that the operations a and b are rele-

vant with respect to a binary relevance grading (which trans-

lates into a similarity of 1), the corresponding entry in the

vector of predictors is simply ya.b
in = (1).

Given a design matrix and vector of predictors, the stan-

dard OLS estimator can be applied in the following manner

on each matching level L:

β̂L = (X ′
LXL)

−1X ′
LyL (8)

β̂L corresponds to the optimal estimate of numerical

weights. To derive the actually utilized vectors of weights,

dL, all entries are mapped to the range [0;1]. For that mat-

ter, the minimum value in the vector is added to all entries.

Then, all entries are divided by the new maximum value.

This ensures that all similarity values will also be in the

specified range.

For the purpose of cross-validation (cp. Section 5.1),

the design matrices and vectors of predictors are adapted.

Specifically, all rows are removed from both the matrix and

vector that either refer to the currently validated service re-

quest or do not refer to a service offer in the previously de-

termined set of relevant service offers. This process ensures

that no information which derives from the currently vali-

dated service request is used in the OLS regression in the

evaluation.

4.4. Fallback Strategy & Caching

If there are no semantic concepts associated with compo-

nents or the processing fails, a fallback strategy comes into

effect. More precisely, the similarity between associated

concept (and alternatively, component) names for a pair of

components is computed using the WordNet ontology [14].

Again, the similarity is specified by a numerical value be-

tween 0 and 1.

All names undergo the following processing: First, they

are split into individual tokens, based on commonly used

separators, such as underscore (“ ”) and dash (“-”), or the

popular camelCase notation. Tokens that do not corre-

spond to a word in the WordNet ontology are addition-

ally scanned for meaningful substrings in a recursive man-

ner. That way, names such as “get flight price”, “getFlight-

Price”, and “getflightprice” can be effectively split into in-

dividual (English) words. Each set of words constitutes

a partition for a bipartite graph. The edge weight corre-

sponds to the inverse of the minimal distance of a pair of

words in WordNet. Consecutively, bipartite graph matching

is employed, with the average edge weights in the match-

ing yielding the similarity of the two names and thus, two

service components.

To improve the performance of LOG4SWS.KOM in

terms of query response time, we utilize different caches

which may be populated both at registration and query time

and may be permanently stored for future reference. In

detail, caches exist for the types of subsumption matches

and path lengths between concepts, WordNet distances, and

splitting of names into words. The caches are filled when

the corresponding data item is referenced in a service re-

quest for the first time.

5. Experimental Evaluation

5.1. Evaluation Setup

SAWSDL-TC11 has been adopted as test data collection

for LOG4SWS.KOM. SAWSDL-TC1 was released in 2008

and consists of 894 semantically annotated WSDL 1.1-

based Web services, which cover differing domains from

education and medical care to food and travel, etc. The

set contains 26 queries usable for matchmaking evalua-

tion. A relevance set is provided for each query which

can be applied in order to compute IR evaluation measures.

SAWSDL-TC and its equivalent for OWL-S (OWLS-TC)

are well-accepted in the SWS matchmaking research com-

munity and are for example applied in the S3 Contest [10].

As SAWSDL-TC1 is WSDL 1.1-based, it was necessary

to convert the test collection to WSDL 2.0, which is the

1http://www.semwebcentral.org/projects/sawsdl-tc
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designated service format in the work at hand. As no new

semantic annotations have been added to or eliminated from

the single service descriptions, it is possible to compare

the matchmaking performance of LOG4SWS.KOM with

matchmakers which make use of SAWSDL-TC1.

It is necessary to note that in SAWSDL-TC, seman-

tic annotations exist solely at input/output parameter level.

As mentioned in Section 4, LOG4SWS.KOM incorporates

information from the interface, operation, and parameter

level of SAWSDL. This means that the full potential of

LOG4SWS.KOM should only be revealed if the annotations

are more comprehensive and are addressed at all service ab-

straction levels. But as we will see in the evaluation results,

LOG4SWS.KOM is able to provide competitive results un-

der these circumstances.

We have performed six evaluation runs using different

settings. In detail, we applied three different configura-

tion of level weights both to a manually and OLS-tuned

version of LOG4SWS.KOM. In these configurations, the

level weights, (wi f ace,wop,win,wout) have been set to (0, 0,

0.5, 0.5), (0.25, 0.25, 0.25, 0.25), and (0.1, 0.1, 0.4, 0.4)

respectively. The first setup (referred to as sig in the fol-

lowing) solely operates on the service signature, i.e., input

and output parameters, while the second (eq) gives equal
weight to all levels. The third variant (comp) constitutes a

compromise, putting the dominating weight on the param-

eter level. This accounts for the fact that the interface and

operation levels are not semantically annotated in the test

collection, which requires the application of the more error-

prone fallback strategy. For the manual setup (referred to

as man in the following), the numerical DoM equivalents

have been manually set to 1 (for an exact DoM), 0.5 (super

and sub), and 0 (fail). The choice of 0.5 is based on the no-

tion that a super or sub match lies in between exact and fail

matches, which intuitively correspond to 1 and 0 and has

been originally proposed by Syeda et al. [18]. For the OLS-

based evaluation runs (referred to as OLS in the following),

the numerical equivalents are identified using k-fold cross-

validation [15]. In the example at hand, k = 26 as every

query and corresponding relevance set from SAWSDL-TC

serves as a partition from the service set.

We used the tool SME22 to compare our results

with other state-of-the-art matchmaking algorithms for

SAWSDL.

5.2. Applied Metrics

We made use of the following metrics, which SME2 au-

tomatically provides, in order to evaluate our matchmaking

algorithm: Precision = |A∩B|
|B| and Recall = |A∩B|

|A| where A is

the set of all relevant documents for a request and B is the

set of all retrieved documents for a request.

2http://projects.semwebcentral.org/projects/sme2/

Table 1. Evaluation Results
AP RP P(5) P(10)

sig, man 0.692 0.613 0.831 0.773

sig, OLS 0.731 0.671 0.854 0.762

eq, man 0.711 0.646 0.931 0.819

eq, OLS 0.723 0.672 0.923 0.846

comp, man 0.722 0.649 0.954 0.815

comp, OLS 0.741 0.678 0.954 0.835

SAWSDL-MX2 [9, 10] 0.679 N/A

URBE [10, 17] 0.727 0.651 0.867 0.796
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Figure 2. Evaluation Results

In order to compute the mean precision for an-

swer sets returned at standard recall levels, we also

made use of Macro-Averaged Precision Precisioni =
1
|Q| ×

∑q∈Q max{P0|R0 ≥ Recalli ∧ (R0,P0) ∈ 0q}. SME2 uses

equidistant steps n
λ ,n = 1 . . .λ for the single recall and

precision levels. Here, we made use of the default value

λ = 20. To measure the precision on relatively low recall

levels, Precision at o (P(o)) is employed. This value speci-

fies the precision for the first ranked o data items; common

values are, e.g., o = 5 or o = 10 (named P(5) or P(10)) [12].

R-Precision (RP) defines the precision for a certain number

of returned (ranked) results to a specific query. Where P(o)

defines one o over all queries, in RP this o differs from query

to query and is equivalent to the relevant services for this

query (i.e., the size of the result set provided in SAWSDL-

TC). For RP, recall and precision are the same, hence it is

equivalent to the break-even point of recall and precision.

Last but not least, the Average Precision (AP) corresponds

to the mean precision rate over all recall levels [12]. All

these metrics are macro-averaged over all queries.
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5.3. Results

Table 1 and Figure 2 show the evaluation results (for the

purposes of Figure 2, some variants have been omitted). As

is shown by the figures, the variants of LOG4SWS.KOM,

which apply solely to the service signature, provide rel-

atively low precision values for low recall levels (<0.35)

while the variants that also incorporate interface and opera-

tion levels perform very well for these recall levels. This ob-

servation is supported by the P(5) and P(10) values, where

the latter variants outperform the signature-based ones. All

OLS-based variants perform very well, even at very high re-

call values and provide a precision value of >0.40 for recall

= 1. The results for the altered weights for interface and

operation levels show that the assumption that these levels

should be weighted less than the semantically annotated in-

puts and outputs has proven right as (comp,OLS) provides

the overall best results.

All OLS-based variants perform better than their man-

ual counterparts, however the gaps differ: While for the

signature-only variants the gap is relatively large, it is

smaller for the variants that also apply to the interface and

operation level. This can be explained by the fact that the in-

terface and operation levels are not semantically annotated

in the test collection, i.e., OLS can only be applied to the

parameter levels.

We compare LOG4SWS.KOM with SAWSDL-MX2 [9]

and URBE [17] which were both contestants in the S3

Contest 2009 [10]. As depicted in Table 1, the (sig,OLS)
and (comp,OLS) variants of LOG4SWS.KOM outperform

both matchmakers regarding the AP. All things considered,

LOG4SWS.KOM performs very well with respect to com-

mon IR metrics. To the best of our knowledge, it is, so

far, the best performing matchmaker for SAWSDL regard-

ing the IR metrics applied in our evaluation. This demon-

strates that the combination of different similarity measures

– which may be relatively simple and coarse individually –

can be an efficient approach for a fine-grained ranking of

services.

Through the integration of OLS, the process of mapping

DoMs to numerical equivalents can be conducted in a man-

ner that is not subject to ambiguity. It also is an intuitive

approach for adapting a matchmaker to a certain service do-

main. This includes, for instance, the training based on a

representative selection of services which have been manu-

ally classified by a domain expert.

We would finally like to address a potential drawback of

LOG4SWS.KOM. In matchmaking approaches that solely

apply discrete DoMs, as proposed Paolucci et al. [16], the

computed DoM for any operation can be assumed as a guar-

anteed lower bound of similarity for the request. In con-

trast, LOG4SWS.KOM determines the overall similarity of

two services, which does not include such bound, or global

DoM. Both approaches have their pros and cons: On the one

hand, a global DoM guarantees a certain degree of compat-

ibility with all elements – most importantly, parameters – in

the request. On the other hand, LOG4SWS.KOM is rather

tolerant toward outliers, i.e., lower DoMs that will else have

a large impact on the overall DoM. Thus, LOG4SWS.KOM

may also identify services that are suitable in principle,

given some adaptations to, for instance, their parameters.

Important to note, URBE, which provided the best results

in the S3 Contest 2009 in terms of the AP, also omits the

concept of a global DoM [17].

As a conclusion, we can say that the integration of

OLS-based ranking/weighting of distinct DoMs leads to

improved matchmaking results. The integration of inter-

face and operation descriptions also leads to some im-

provements, especially regarding low recall levels. Regard-

ing the question as to which of the evaluated variants of

LOG4SWS.KOM should be used, it needs to be noted that

this depends upon the regarded service domain. However,

in our evaluation domain, we recommend to make use of

the variant (comp,OLS) as it provides outstanding results

for low recall levels as well as provides the best AP (0.741).

6. Related Work

The number of matchmakers for SAWSDL-based Web

services is, to the best of our knowledge, still quite manage-

able. From the last S3 Contest for SAWSDL matchmakers

[10], URBE [17] and SAWSDL-MX [9] have been the most

prominent challengers to LOG4SWS.KOM (which partici-

pated as a beta version in the contest).

URBE utilizes linguistic as well as logic information.

The authors use a bipartite graph matching algorithm for

both the inputs and outputs of a given service request and

offer. Weights for the edges are calculated using two func-

tions, i.e., by first measuring the similarity between input

and output names. The second function assesses the asso-

ciated XSD data type for a given pair of inputs or outputs,

where a predefined similarity value is used, depending on

the information loss that occurs in converting between the

two types. As an extension, the authors also present a se-

mantic similarity function, which replaces the name simi-

larity measure if semantic annotations are available. When

provided with two concepts, this function measures the path

length between them in an ontology [17].

Extending the family of “MX”-matchmakers, Klusch et

al. provide SAWSDL-MX in different variants [9]. Their

approach calculates three kinds of similarity, based on logic,

textual information, and structure and adaptively learns the

optimal aggregation of those measures using a given set of

services. Matching is employed on the level of operations

using a bipartite graph matching algorithm. Logic similar-

ity is measured using an extension of the classic discrete
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DoMs. Textual similarity is calculated using a variety of

measures, based on a textual representation of the request’s

and offer’s service signature. For a structural comparison of

two services, the WSDL Analyzer tool is used, which takes

into account name and type similarity between inputs and

outputs.

To the best of our knowledge, Kiefer and Bernstein [7]

have been the first to apply an adaptive approach to service

matchmaking. Here, the authors use different linguistic-

based similarity measures from SimPack and apply them to

OWL-S service descriptions. The weighting of these mea-

sures is automatically determined using machine learning

approaches from Weka and LibSVM.

7. Conclusion

In this paper, we presented LOG4SWS.KOM, a semantic

matchmaker for SAWSDL. To the best of our knowledge,

LOG4SWS.KOM provides the best results for a SAWSDL

matchmaker regarding IR metrics like AP, P(5), and P(10).

A special focus should be placed on the performance on low

recall levels where very good precision values have been

accomplished. There are still some possible enhancements

that we wish to approach in our future work. First of all, it

may be possible to improve matchmaking results by using

syntax-based similarity values to complement the semantic-

based DoMs. Second, it would be interesting to evaluate

LOG4SWS.KOM regarding graded relevance (contrary to

the binary relevance used in SAWSDL-TC1) which will

hopefully be featured in a future version of SAWSDL-TC.

Third, our fallback strategy is quite lightweight and could

be replaced by a more sophisticated approach.
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