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ABSTRACT

A number of space-time block codes have been proposed for
the quasi-static, flat-fading channel with coherent receiver.
All of these block codes are linear codes, i.e., the encod-
ed codeword is a linear function of the input scalar sym-
bols. Here we propose new non-linear space-time block
codes, i.e., the codewords are non-linear functions of the
input scalar symbols. We demonstrate a non-linear code
that outperforms the corresponding linear code by 0.6 to
1.2 dB. We draw parallels between optimal non-linear code
design and the well-known simplex conjecture for multi-
dimensional AWGN codes. Finally we show that for cer-
tain non-uniformly distributed input symbols, the optimal
signal set cannot be designed with linear modulation and
non-linear modulation is essential for optimality. This has
applications in the design of space-time trellis codes and
concatenated space-time coding schemes.

1. INTRODUCTION

A number of space-time block codes have been pro-
posed for the quasi-static, flat-fading channel with coherent
receiver [1, 2, 3, 4, 5, 6]. All of these block codes are lin-
ear codes, i.e., the encoded codeword is a linear function of
the input scalar symbols. Here we propose new non-linear
space-time block codes, i.e., the codewords are non-linear
functions of the input scalar symbols. We demonstrate a
non-linear code that outperforms the corresponding linear
code by 0.6 to 1.2 dB. We draw parallels between optimal
non-linear code design and the well-known simplex conjec-
ture for multi-dimensional AWGN codes. Finally we show
that for certain non-uniformly distributed input symbols, the
optimal signal set cannot be designed with linear modu-
lation and non-linear modulation is essential for optimali-
ty. This has applications in the design of space-time trellis
codes and concatenated space-time coding schemes.

2. CHANNEL AND DATA MODEL

Consider a system with M, receive antennas and M, trans-
mit antennas. The channel is flat-fading and quasi-static.
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It is unknown at the transmitter and fully known at the re-
ceiver. The channel output corresponding to an input block
spanning T time samples is

Y = HX+V )

where the received signal is Y (M, x T), the fading chan-
nel is H (M, x M), the encoded codeword is X (M, x T),
and receiver noise is V (M, x T). When H is assumed to
be i.i.d. Gaussian in the sequel, its entries are i.i.d. circu-
lar complex Gaussian random variables with variance 0.5
in each dimension, i.e. H;; ~ N(0,1). The entries of V
are i.i.d. with V;; ~ R.(0, Np). The total average power
transmitted on M, antennas is E, per sample time. Define
S=1£s. |

We will consider design of non-linear space-time block
codes described as follows

. K .
X = Y A )
k=1 .

where {zx } 1, is a set of K real symbols that are non-linear
functions of K;/2 complex input symbols from a QAM
constellation. The complex modulation matrices A are
normalized as E,’;l |Ax]l% = T to obtain total average
transmit power of E; per unit time. The complex input sym-
bols are assumed to be uncoded and the encoder operates
over them in a blockwise memoryless fashion. The receiver -
performs ML decoding on each M, x T output block Y.
For K; input scalars s1,. .. , sk, that correspond to the
real and imaginary parts of K;/2 complex input symbols,
let z = fir(s1,...,5k;) be one of K mappings to output
scalars that are encoded using K modulation matrices. One
way to perform non-linear mappings is to take all possible
products of unique groups of input symbols [7] as follows

.y :IIK]
L) HkK:ilsk]

where K = 2K: — 1 is the total number of products. The
linear codes considered previously [8] consist of the first K ;

[ T, T2, ..., TK;, ZTK;+1,

= [31, 82, ..., 8K;, 8182,
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elements on both sides of the equation, i.e., the identity map
zr = s with K = K.

Note that when the input symbols s, belong to a unit-

norm BPSK constellation (41, —1), all products and there-
fore the nonlinear output symbols z; also belong to BP-
SK. In addition, each nonlinear symbol possesses a uniform
distribution over the BPSK constellation if the input is u-
niformly distributed. This can be extended to an M-PAM
input constellation by carefully mapping the products back
to elements in the M-PAM such that each z is distribut-
ed uniformly over the M-PAM [9]. The number of posi-
tive z, is therefore equal to the number of negative z 5, for
1 < k < K, and Theorems 1 and 2 in [8] hold for the non-
linear case as well. That is, the optimal modulation matrices
are still the pairwise skew-Hermitian matrices as follows

AAF+AAL = 0  forl<k#I<K (3)

3. LINEAR VERSUS NON-LINEAR CODES

In this section we will show that non-linear codes can im-
prove performance over linear codes. Consider two codes
based on the Alamouti matrices [3, 4], the first of which us-
es two matrices to encode 2 BPSK symbols and the second
uses three matrices to encode 2 BPSK symbols and their
product. The input symbols and error sequences for the
first code, i.e., the linear code, are shown in Table 1. Al-
1 are equally likely with probability p; = 1/4. The input

pi | 2P /2@ | (-1-1) (11) (1-1) (11)
1| €D [0 (02 (20) (2
7 -11) (02) (00) (22) (20
Pl 2o (22 (00 (02
L an [ (@22 (20 (02 (00

Table 1. Error sequences for input BPSK, 2 modulation
matrices

symbols and error sequences for the second code, which is
non-linear, are listed in Table 2.

2@/ [ (-1-11) (11-1) (1-1-1) (111
-1-11) | (000) (0-22) (202) (2-20)
(-11-1) | (02-2) (000) (220) (-20-2)
a-1-1) | 20-2) (2200 (000 (0-2-2)

11 | (220 (202 (022 (000)

Table 2. Error sequences for input BPSK symbols and prod-
uct, 3 modulation matrices

After appropriate scaling of the Alamouti matrices to
normalize transmit power, the channel-averaged union bound

[10] for the linear code simplifies as

g\ ~2M- ot
Py, = 2 1+§ +(1+S)
and that for the non-linéar code simplifies to

25\ M-
Prontin = 3 (1 + ?)

Using Jensen’s inequality on the convex function (1+5) ~2M-
for S > 0, it can be shown that the non-linear code is better
than the linear code as follows

2 AN oM,
Pin = 3(5(14-—2-) +§(1+S)
25\ M
> 3 (1 + ?) = Lnonlin “)

The performance difference is a function of the SNR and
number of receive antennas. It ranges from 0.6 dB to 1.2
dB for 1 to 3 receive antennas, respectively, and is plotted
in Figure 1.

Linear versus non-linear codes
T T T

—=- linear (1 Rx)
-O- nonlinear (1 Rx)
: : ~#— linear (3 Rx)
R rS P P PPN —©- nonlinear (3 Rx)

Union bound

) ; : L 1 )

Fig. 1. Non-linear versus linear code

3.1. Relation to the simplex conjecture

The interesting change in going from Table 1 to 2 is that the
four points that were vertices of a square in two dimensions
move to the vertices of a tetrahedron in three dimension-
s. Addition of the third modulation matrix effectively adds
a new signal dimension that helps make the points equidis-
tant. Equidistant points are the vertices of a regular simplex,
which is conjectured to be the optimal signal set for AWGN
channels. In fact the regular simplex is known to minimize
the union bound at all SNRs [11].
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What is apparent here is that when optimal modulation
matrices that satisfy (3) are used to map input symbols to
space-time codewords, the problem of code design for the
fading channel reduces to the problem of code design for
the AWGN channel. Since optimal modulation matrices
are very limited in existence, the question of how quasi-
orthogonal modulation matrices affect code design remains
to be answered.

4. NON-UNIFORM INPUT DISTRIBUTIONS

In this section we will show that non-linear codes may be
necessary for optimal performance when the input symbol-
s are not uniformly distributed. If the input scalar stream
sk, is encoded using block or trellis codes, a block of K';/2
such symbols may not consist of i.i.d. symbols and certain
values of the block can be more likely than others. In such
cases linear codes may not be optimal as we will show by
an example.

Consider the simple case of (1 x 1) modulation matrices
that are all normalized scalars. The two optimal modulation
scalars are 1/+/2 and j/+/2 as per (3). The resulting code-
words are illustrated in Figure 2 and have a d i, of v/2.

Im
-1,1 1,1
-1,1) ° ® 1.1
Re
d = §qrt(2)
(—11-1) d ¢ (1!_1)

Fig. 2. Codewords for uniform input symbols

Consider the following variation on Table 1 obtained by
setting the probability of input sequence z(1) = (-1, —1)
equal to zero. The sequences (—~1,1), (1, —1) and (1, 1) are
equally likely with probability %

pi | @720 | ((11) (1-1) (11)
3| Gy [ (00) (22) (20
3| (1D [(2-2) (00) (0-2)
31 (1 (20 (02) (00

Table 3. Non-uniform input sequences for BPSK and K =2

In this case, if the optimal modulation scalars for unifor-
m symbols are used, we obtain the constellation in Figure 3,
which has the same d,;,, as the previous constellation.

-1, 1 1,1
( ). .( )

Re

{
(1.-1)

Fig. 3. Standard codewords for non-uniform input symbols

This is not the best possible constellation, however, and
the dmin can be further increased to v/3 by placing the sym-
bols in a simplex as shown in Figure 4. What is interesting

Im

e (1.1)

-1,1
-1,1) .

o

d = sqrt(3) \0 (1,=1)

Fig. 4. Optimal codewords for non-uniform input symbols

Re

in this case is that the only way to map these three symbols
to the simplex is via a non-linear mapping as shown below

x = Sa
&3 1 1.1 z
-1 = -1 1 -1 L% | (5)
1% 1 -1 -1 || 1%

where S is the matrix of all possible inputs, a is the vector
of modulation scalars, and x is the output. The first two
columns of S contain the values of two input scalars and
the third column consists of products of two input scalars,
which is a nonlinear mapping of the input symbols. An easy
way to prove that this mapping cannot be achieved via linear
modulation is to observe that two points are multiples of
each other, i.e., (—1,1) = —(1, —1), but none of the points
in the simplex are such multiples.

Non-uniform input symbols are likely to arise in con-
catenated systems where the input stream has been encoded
by an outer code. The practical applications of non-linear
codes for realistic code statistics remain to be seen.
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