
Process Reliability in Service Oriented Architectures
Dieter Schuller, Apostolos Papageorgiou, Stefan Schulte, Julian Eckert, Nicolas Repp, Ralf Steinmetz

Technische Universität Darmstadt
Multimedia Communications Lab

Merckstr. 25, 64285 Darmstadt, Germany
{schuller, papageorgiou, schulte, eckert, repp, steinmetz}@KOM.tu-darmstadt.de

Abstract—The creation of business processes by composing
Web services has attracted considerable efforts with respect to
integrating elements of Service Oriented Architectures within
enterprise applications. If one of those atomic services fails, the
whole business process does not necessarily have to fail, too, as
it is possible to exchange the faulty service during runtime with
another one which has the same functionality. In this paper
we present a service monitoring and exchanging approach that
aims to ensure a successful execution of crucial processes in
case of faulty services. It consists of three parts which supervise
the process execution and try to recover it if an error occurs.
In case process reliability is not fore grounded, our approach
can also serve as basis for process optimization.

Index Terms—reliability, monitoring, replanning.

I. INTRODUCTION

Nowadays, a certain share of (business) processes is no
longer only executed within a single enterprise (cf. [1]–[3]).
Processes, which are interlinked with each other and reach
far beyond the borders of a single company, become more
important (cf. [4]). They are assembled to bigger processes
with a more complex functionality. If one of the subordinate
processes fails, the risk arises that the task of the overall
process is not accomplished successfully. In case this overall
process is a critical process, its successful termination has to be
guaranteed. Therefore, process reliability has to be considered.

With respect to monolithic software applications, a single
error might cause the execution of the whole application to
stop. This can be expressed in various forms, ranging from
a single error message that something is going wrong to a
complete system crash. In the former case the impact of such
a software error is not that crucial, but in the latter case serious
harm could occur with respect to, e.g., life-supporting systems
in a hospital.

When we think of a process that requires to be executed
successfully, the emergence of faults or errors leads to the
need for correcting the application. This might in turn force
the IT-department to adapt it. First, the bug has to be found.
Secondly, some IT-specialists have to change the code of
the software program. And that is all taking place while the
application should deliver the expected results to finish the
process successfully.

This can be avoided by having alternative software solutions
that substitute the faulty ones immediately. In an Service
Oriented Architecture (SOA), mentioned monolithic software
applications are replaced by more or less coarse-grained

services that are composed to composite services with a more
complex functionality (cf. [5]). Processes can be built using
services. Once such a process is engineered inside an SOA,
there is no need to adjust any software programs during
runtime if something goes wrong. As services are loosely
coupled, it is possible to replace faulty services with others
having the same functionality – if available, for instance, on
a market place.

To realize this, we have to notice emerging faults not just by
an unexpected abortion of the process but in time, i.e. when a
service terminates unsuccessfully or does not terminate at all.
That is why service monitoring is indispensable. When the
faulty service is identified, an adequate alternative is needed
in order to replace the former one. In the paper at hand,
we present an approach which therefore covers monitoring,
semantic matchmaking, and replanning in order to ensure
process reliability.

According to this, the rest of the paper is organized as
follows: In Section II we describe our governance scenario
in detail and give an overview of our application domain.
Thereafter, we explain the components needed to realize such
a scenario. In Section III the Monitoring environment is
described. Section IV deals with semantic matchmaking in
order to find alternative services. In Section V, the arising
optimization problem is formulated and the recovering of the
process execution in case of failures is discussed. Related work
is presented in Section VI. Finally, conclusions are drawn and
future work is discussed in Section VII.

II. GOVERNANCE SCENARIO

We consider process reliability in the context of the project
SoKNOS. In this project we come from a catastrophe scenario.
Heavy rains cause a crevasse that threatens a hospital and a
chemical plant. Therefore the hospital has to be evacuated and
the chemical plant has to be secured in order to avoid an
ecological disaster. The responsible staff has to be provided
with the most relevant, accurate and precise information about
the situation. Based on this information, they work out and
communicate countermeasures. Afterwards, it is necessary to
check the enforcement of the agreed countermeasures and its
effects on the situation.

These tasks are encapsulated in multiple processes. Not only
one single office is participating but a lot of departments are
involved. In the context of the aforementioned project, at least
firefighters, the THW (Technisches Hilfswerk – a German aid

rst
Textfeld
Dieter Schuller, Apostolos Papageorgiou, Stefan Schulte, Julian Eckert, Nicolas Repp, Ralf Steinmetz: Process Reliability in Service-Oriented Architectures. In: Proceedings of the Third IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2009), Istanbul, p. 606-611, IEEE Computer Society, June 2009. ISBN 978-1-4244-2346-0. 

rst
Textfeld
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.



Fig. 1. Monitoring-Replanning-Cycle

organization), police, departments providing geological data,
and departments coordinating the necessary workflows are
participating. These coordinating departments have to provide
all the other parties with information relevant to their tasks,
respectively, and receive feedback to control their activities.
So, on the one hand, a lot of information is exchanged. On
the other hand, the operating units themselves might make
use of IT systems to support their workflows. In both cases,
software applications of many kinds are employed.

In this paper we focus on critical processes, keeping the
introduced catastrophe scenario in mind. The failure of one
process might cause other processes to fail, too. This decreases
the efficiency of the decided countermeasures. In worst-case,
necessary operations cannot be accomplished, which leads
to mishandling of the aforementioned ecological disasters or
emergency situations. Efficient replacement of faulty services
reduces the risk of unsuccessful termination of such critical
processes.

Therefore, we have implemented a SOA governance ap-
proach which considers service replacement. The main idea
for this is summarized in Fig. 1.

The Monitoring environment diagnoses if a service fails or
malfunctions and informs the Semantic Matchmaking compo-
nent to find alternative services. Receiving the specification
of the faulty service, the Semantic Matchmaking component
identifies and delivers the requested possible alternative ser-
vices to the Replanning component, which creates an optimal
execution plan, utilizing the received list of alternative ser-
vices, in order to finish the non-accomplished tasks.

III. MONITORING

All actions of semantic substitution or replanning are
actually triggered by the monitoring component, whenever
the latter detects such a need during the system operation.
Different approaches for the monitoring of services inside an
SOA have appeared. [6] is an agent-based solution supported
by a service proxy. The cooperation of a proxy module with
JADE agents, which perform the actual monitoring, offers to
the system a seamless monitoring layer. In another proposal
by [7], a “diagnostic service” uses data not only from the
monitoring service of the proposed architecture but also from
host and network monitoring tools, in order to diagnose QoS

Fig. 2. Monitoring Environment

anomalies. The monitoring approach presented in this section
has been steered mainly by the following two needs:
• Fit its role as one component of our three-dimensional

governance system.
• Fit the architecture of the system on which it is being

applied and take advantage of its features.
How the above needs dictated the current solution will be

better understood in the following, where the architecture of
the monitoring component and its interactions with the other
components are described.

In accordance with the aforementioned needs, two features
shape the architecture of the monitoring component. First,
the triggering of service substitution and replanning must be
real-time and event-driven. This means, when the monitoring
component detects a failure or unusual delay, we start semantic
matchmaking and replanning immediately. In order to be more
efficient, we consider in our future work to start semantic
matchmaking and replanning at the same time the service
execution begins. Secondly, the monitoring component must
exploit the functionality of the external service mediation
layer, a component of our system, which actually works as
a proxy for external service calls.

So, when the mediation layer starts the execution of an
external service, the monitoring component is informed, i.e.
it starts the actual monitoring (cf. Fig. 2). Any response or
fault caught by the mediation layer is sent automatically to
the monitoring component. So, either we receive an error
notification or we notice a Service Level Agreement (SLA)
violation by comparing the actual performance of the current
service with the performance committed in its SLAs. In both
cases, the monitoring component generates an alarm which is
propagated to the Semantic Matchmaking component.

It is critical for the flexibility and the extensibility of the
system that all components follow the principles of service-
orientation. To this end, all of the described component-actions
and inter-component communication are performed with Web
services, as well. For example, the Governance Repository,
which contains service IDs, SLAs, average response times etc.,



offers a set of services allowing the monitoring component to
access this data. Similarly, the monitoring module offers a set
of services to trigger the monitoring start and the notifications.
In our scenario, the latter are called by the mediation layer.
Even the alarms generated by the monitoring component
are propagated using Web services, offered this time by the
components that are “interested” in the alarms. The usage of
all these services is not limited in the described monitoring
scenario. According to the principle of service reuse, they
are involved in other functionalities, as well. For example,
the services offered by the Governance Repository are also
employed by GUIs for the assistance of manual governance.

IV. SEMANTIC MATCHMAKING

After the failure of a service has been detected, it is nec-
essary to retrieve services which are able to provide the same
functionality as the failed service. There are two possibilities
on how to substitute a service – either there is a market for
this service [8], i.e. a similar service is publicly available,
or a substitute is provided inside our own domain. In both
cases, it is necessary to clearly depict the functionalities of
all services which come into consideration as substitutes in
order to facilitate the automatic replanning of services and
workflows. Here, service providers and service requestors
rely on an ontology which describes the service domain.
Using such an ontology, it is possible to annotate the service
descriptions with semantic information, i.e. information which
is especially needed if it is necessary to develop intelligent
Internet applications which are easy to retrieve, access and
use [9].

While in many domains well-defined ontologies are still
missing [10], the scenario at hand provides an ontology which
can be used in order to identify the functionalities of services.
Thus, the semantic data in the service description specifies
the functionalities of each service and can be used to identify
similar services. The finding of substitute Web services is
straightforward as we can act on the assumption that we pos-
sess complete semantic information about the functionalities
of each service candidate. Furthermore, we describe the QoS
aspects, which will be needed in the next step (cf. Section V)
also semantically, using an extended version of WS-Re2Policy,
a language which allows the description of QoS requirements
as well as countermeasures to be triggered if the requirements
cannot be met [11].

If a service fails, we use its service description as an input
for the service retrieval engine. Using a reasoner, the engine
provides a number of possible service candidates, which offer
the same functionality but different QoS levels. In the next
step, it is necessary to compare and assess these levels and pick
the best-fitting service (regarding our own QoS requirements)
out of the set of service candidates.

V. REPLANNING

In the context of processes based on Web services, replan-
ning deals with changing the execution plan of a process due to
SLA deviations – these deviations can be positive or negative

– in order to obtain an optimal process execution (cf. [12]–
[14]). Optimal thereby means to select the best services with
respect to QoS properties which comply with the given SLA
restrictions. A positive (negative) deviation is at hand when a
service performed better (worse) than committed in its SLAs.
In both cases, it is possible to make a target-performance
comparison in order to adapt the process conditions for the
remaining services and create a new optimal process execution
for the remaining tasks with the adjusted process conditions.
I.e., if we consider a process which is composed of five
services and needs to be successfully executed in 10 seconds,
the sum of the assured execution times of the five services
must not exceed 10 seconds. If the first service performs one
second faster than assured in its SLA, the allowed execution
time for the rest of the services comes up with this one
second in addition. Therefore, we could select other services
with probably higher execution times at lower prices. To find
optimal or near optimal solutions for the service selection
problem, many approaches have been proposed (cf. [15]–[18]).
Our approach is based on the considerations by [19], applied
to SoKNOS project, and further extended.

To create the system model and formulate the optimization
problem we assume a sequential execution of n tasks, which
forms only a subset of possible workflows. Queuing theory
allows complex networks, which lead to complex workflows
containing cycles, branches, joins, etc. to be analyzed, too [20].
Task i ∈ I = {1, ..., n} is executed before task i+1. For each
task i, mi alternative Web services ji ∈ Ji = {1, ...,mi}
exist, whereby task i is accomplished by exactly one ser-
vice. These Web services might differ in oi QoS attributes
ki ∈ Ki = {1, ..., oi} that are weighted with weights wik,
respectively. Thereby, we propose

∑oi

ki=1 wik = 1, ∀i ∈ I .
The variables aijk represent the values of the QoS attributes.
If a higher (lower) value indicates a better QoS property, we
define this QoS attribute to be positive (negative). Depending
on this introduced positive and negative QoS property, we
normalize the QoS values in equations (1) and (2) in a way
that higher values of these attributes indicate higher quality.
The SLA conditions for the different QoS types are normalized
analogously in (3).

as
ijk :=

{
1− aijk−min{aijk}

aijk
, if negative QoS

aijk

max{aijk} , else
(1)

aadj
ijk :=

{
−aijk , if negative QoS
aijk , else

(2)

radj
ik :=

{
−rik , if negative QoS
rik , else

(3)

The decision variables xij ∈ {0, 1} state, whether Web
service j of the alternative services for task i is selected.
So, the initial optimization problem is depicted in Model 1.
By setting values for the weights wik, the target function can
totally be adjusted to the needs of the user. So, a high weight



for one or more QoS attributes indicates that we would rather
prefer those services that have high values for these QoS
attributes.

Model 1 Linear Optimization Problem
Target function

maximize F (x) =
n∑

i=1

Ji∑
j=1

Ki∑
k=1

wikas
ijkxij (4)

s.t.
Ji∑

j=1

aadj
ijkxij ≥ radj

ik ∀i ∈ I, ∀ki ∈ Ki (5)

Ji∑
j=1

xij = 1 ∀i ∈ I (6)

xij ∈ {0, 1} ∀i ∈ I, ∀j ∈ Ji (7)

As our goal is to optimize process execution we have to cal-
culate the values of the QoS attributes for the overall process.
Therefore, we have to differentiate at least the three calculation
types summation, multiplication and min/max operator. For the
sake of clarity, we will refer to “min” in our equations and
define the min/max operator in (8), (9).

min{xi} := Minimum{xi} (8)

max{xi} := Maximum{xi} (9)

With respect to its type we label the QoS attributes for the
services accomplishing task i with k+

i ∈ K+
i = {1, ..., o+

i },
k∗i ∈ K∗i = {1, ..., o∗i }, and kmin

i ∈ Kmin
i = {1, ..., omin

i }
and postulate oi = o+

i + o∗i + omin
i . We further adapt (2) to

(10) to (12).

a+
ijk :=

{
−aijk , if negative QoS
aijk , else

(10)

a∗ijk :=

{
1

aijk
, if negative QoS

aijk , else
(11)

amin
ijk :=

{
−aijk , if negative QoS
aijk , else

(12)

To sum up the QoS values over all tasks, we have to
assure that the services accomplishing tasks i have the same
amount of QoS attributes. This is not necessarily the case in
reality as the tasks differ from each other. Therefore, we fill
up the missing QoS attributes with zeros, ones or infinite,
depending on its summation types, respectively. In order to
avoid confusing the reader, we point to the index i that is partly
missing in the following definitions and formulas. We define o
as o = max{oi}. Consequently, we define k ∈ K = {1, ..., o}
and label the QoS attributes with respect to its types with
k+ ∈ K+ = {1, ..., o+}, k∗ ∈ K∗ = {1, ..., o∗}, and

kmin ∈ Kmin = {1, ..., omin} with o = o+ + o∗ + omin.
Further, we need conditions for the QoS attributes of the whole
process. Thus, we adapt the values with respect to the different
QoS types in (13) to (15) and specify process restrictions in
(16) to (18) here fore.

p+
k :=

{
−pk , if negative QoS
pk , else

(13)

p∗k :=

{
1
pk

, if negative QoS
pk , else

(14)

pmin
k :=

{
−pk , if negative QoS
pk , else

(15)

n∑
i=1

Ji∑
j=1

a+
ijkxij ≥ p+

k ∀k+ ∈ K+ (16)

n∏
i=1

Ji∑
j=1

a∗ijkxij ≥ p∗k ∀k∗ ∈ K∗ (17)

min{
Ji∑

j=1

amin
ijk xij} ≥ pmin

k ∀kmin ∈ Kmin (18)

In the context of our scenario, we stress on fast and
successful process execution by assigning high weights for
certain QoS attributes as, e.g., for availability, reliability, and
execution time. So, we aim to solve the optimization problem
depicted in Model 2.

Model 2 Non-linear Optimization Problem
Target function

maximize F (x) =
n∑

i=1

Ji∑
j=1

Ki∑
k=1

wikas
ijkxij (19)

s.t.
n∑

i=1

Ji∑
j=1

a+
ijkxij ≥ p+

k ∀k+ ∈ K+ (20)

n∏
i=1

Ji∑
j=1

a∗ijkxij ≥ p∗k ∀k∗ ∈ K∗ (21)

min{
Ji∑

j=1

amin
ijk xij} ≥ pmin

k ∀kmin ∈ Kmin (22)

Ji∑
j=1

xij = 1 ∀i ∈ I (23)

xij ∈ {0, 1} ∀i ∈ I, ∀j ∈ Ji (24)

As we have non-linear terms in our equations, too, the opti-
mization problem cannot be solved using linear programming



techniques. So, we use the approximation in (25) that is very
accurate with parameter values zij close to one. Using this
approximation, we exchange (21) by (26), and relax (22) to
(27).

n∏
i=1

Ji∑
j=1

zijxij ≈ 1−
n∑

i=1

(1−
Ji∑

j=1

zijxij) (25)

1−
n∑

i=1

(1−
Ji∑

j=1

a∗ijkxij) ≥ p∗k ∀k∗ ∈ K∗ (26)

Ji∑
j=1

amin
ijk xij ≥ pmin

k ∀i ∈ I, ∀kmin ∈ Kmin (27)

In order to calculate an execution plan, Zeng et al. [21]
propose integer programming. Depending on the amount of
tasks and the amount of candidate services for each task,
the computation of the optimal solution probably requires
strong computational effort with a growing number of tasks
and alternative services, as the optimization problem is NP-
hard. Therefore, we relax the integrality conditions and use
mixed integer linear programming techniques to calculate the
optimal solution. Afterwards, heuristics can be applied to
obtain a valid one, which contains integer values for the
decision variables. As a possibility, H1 RELAX IP designed
by Berbner et al. [19] could be applied. This heuristic does
not perform significantly worse compared with the optimal
solution (cf. [22]).

In the context of our scenario, we neither assume to have a
huge amount of tasks nor of candidate services. Thus, the exact
calculation of the optimal solution using linear programming
techniques only takes little time. With respect to our project
scenario, we give attributes like availability, reliability and
execution time a much higher weight then, e.g., price. In fact,
we here fore set the weight to zero. After identifying the
optimal solution, the process execution begins. If a service
performed better than committed in its SLAs (positive SLA
deviation), we could execute a beneficial replanning of the
successive services. I.e., as QoS constraints of the process are
adjusted by the positive SLA deviation of the successfully
executed service, it is possible to exploit these new constraints
by solving the optimization problem for the remainder of the
tasks. We surely could do this in order to keep the execution
plan optimal, but in the context of our project, we primarily
focus on error recovery. So, we do not calculate a new optimal
solution for positive SLA deviation. We only operate, when
a service fails. On service failure at task i, the semantic
matchmaking delivers a list of candidate services to the re-
planning component, which replaces its former list of services
for task i – that has been used to solve the optimization
problem initially – with the current delivered one. Afterwards,
the process condition concerning process execution time is
adjusted by the time it took the monitoring and the semantic
matchmaking component to detect the SLA deviation and

provide the replanning component with the mentioned list of
candidate services. With this adjusted condition for the allowed
remaining execution time and the list of current possible
alternative services, the optimization problem is solved again
– not starting at task 1 but at task i – in order to determine
an optimal solution for the rest of the originally process.

To make the above workflow more efficient in case of an
emergency, we consider, as mentioned, monitoring, semantic
matchmaking, and replanning already to begin by starting
the execution of a service. So, we do the described actions
in parallel to the service execution in order to realize error
recovery more quickly.

VI. RELATED WORK

As our approach includes the cooperation of three aspects
that could be handled separately, we are interested in related
work concerning all of the three fields. The approaches closest
to ours, or the ones on which our work is based, have already
been described in the corresponding sections.

In [23] a reflective middleware approach called SOAR
(SOA with reflection) is proposed to establish a dependable
SOA. The authors state that dynamic binding of services is
insufficient to achieve a high dependability of an SOA. Further,
the dependability assurance for an SOA has to be dynamic
and automated. A reflective system is defined as a two-
level computational system. Base entities performing usual
system functionality form the base level whereas meta-entities
performing reflection on the system form the meta-level. As a
meta-model, Huang et al. [23] introduce the two-level meta-
model SOAR, whereas amongst others first level meta-objects
are monitored and adapted by one second-level meta-object.
In our work, we realized an approach for monitoring and
adapting a SOA system, which is essential to a dependable
SOA according to [23].

Concerning monitoring, the idea for “proxied” service calls
in [6] and the existence of a diagnosing environment intro-
duced in [7] can be compared with our proposed solution, as
described in Section III. In [24], the authors do not present a
monitoring architecture, but rather focus on the model-driven
development of Web service compositions, i.e., they present
tools and steps referring to the use of UML-like meta-models
for the design and creation of Web service compositions.
However, in focusing on the development of monitored Web
service compositions, the presented model differs from others.

Anselmi et al. [25] present in their work a QoS broker-based
framework. A broker handles Web service composition re-
quests by selecting appropriate Web services based on required
QoS. Thereby, not only one workflow (as we focused on in
this paper) but multiple workflows consisting of various tasks,
which can be accomplished by services, are optimized. The
authors implement a heuristic in which the optimal solution
for one optimization problem is used as basis for the solution
of the other Web service composition requests to cope with
the thereby arising computational effort. But, with respect to
building an optimal execution plan for one single process,
Anselmi et al. neither consider positive nor negative SLA



deviations in order to keep the process execution optimal and
valid.

Besides the described performance analysis, also average-
case and worst-case consideration have to be considered as
well (cf. [26], [27]).

VII. CONCLUSION AND OUTLOOK

In the paper at hand, we presented parts of a governance ap-
proach which focus on process reliability in SOAs. Therefore,
we developed the described components Monitoring, Semantic
Matchmaking, and Replanning, which is not implemented yet.
If the considered process is not critical, our approach equally
addresses process optimization.

Our future work aims at proving the feasibility of the
presented approach, developing new heuristics here fore, and
thereby considering more complex task flows. We further aim
to optimize not only single, independent processes but multiple
processes keeping the results of Anselmi et al. in mind. In the
context of our scenario, not only processes for one department
but for all involved departments will be considered.

ACKNOWLEDGEMENTS

This work is supported in part by the BMBF-
sponsored project SoKNOS (http://www.soknos.de) and
the E-Finance Lab e. V., Frankfurt am Main, Germany.
(http://www.efinancelab.com).

REFERENCES

[1] C. Bussler, “The role of b2b protocols in inter-enterprise process
execution,” in In TES 01: Proceedings of the Second International
Workshop on Technologies for E-Services. Springer-Verlag, 2001, pp.
16–29.

[2] Q. Chen, Q. Chen, M. Hsu, and M. Hsu, “Inter-enterprise collaborative
business process management,” in In Proc. of 17th Int. Conference on
Data Engineering (ICDE. IEEE Computer Society, 2001, pp. 253–260.

[3] F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S. Weerawarana, “The next
step in web services,” Commun. ACM, vol. 46, no. 10, pp. 29–34, 2003.

[4] F. Leymann and D. Roller, Production workflow: concepts and tech-
niques. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2000.

[5] D. Krafzig, K. Banke, and D. Slama, Enterprise SOA: Service-Oriented
Architecture Best Practices (The Coad Series). Upper Saddle River,
NJ, USA: Prentice Hall PTR, 2004.

[6] N. Repp, “Monitoring of services in distributed workflows,” in 3rd
International Conference on Software and Data Technologies, INSTICC
PRESS, Portugal, July 2008, pp. 15–25.

[7] G. Wang, C. Wang, A. Chen, H. Wang, C. Fung, S. Uczekaj, Y.-L.
Chen, W. Guthmiller, and J. Lee, “Service level management using
qos monitoring, diagnostics, and adaptation for networked enterprise
systems,” in EDOC Enterprise Computing Conference, September 2005,
pp. 239–248.

[8] M. P. Papazoglou, “Service-oriented computing: Concepts, characteris-
tics and directions,” in Proceedings of the 4th International Conference
on Web Information Systems Engineering, IEEE Computer Society,
Washington, DC, 2003, pp. 3–12.

[9] E. Hyvoenen, “Semantic web kick-off in finland: Vision, technologies,
research, and applications.” in HIIT Publications 2002-01, Helsinki,
Finland, 2002.

[10] M. Hepp, “Possible ontologies how reality constrains the development
of relevant ontologies,” IEEE Internet Computing, vol. 11, pp. 90–96,
2007.

[11] N. Repp, A. Miede, M. Niemann, and R. Steinmetz, “WSRe2Policy:
A policy language for distributed SLA monitoring and enforcement,”
in Proceedings of the Third International Conference on Systems and
Networks Communications, I. C. Society, October 2008.

[12] M. C. Jaeger and H. Ladner, “Improving the qos of ws compositions
based on redundant services,” in Proceedings of the International
Conference on Next Generation Web Services Practices, IEEE, 2005.

[13] J. F. Zhang, X. T. Nguyen, and R. Kowalczyk, “Graph-based multiagent
replanning algorithm,” in Proceedings of the 6th international joint
conference on Autonomous agents and multiagent systems, 2007.

[14] R. Gronmo and M. C. Jaeger, “Model-driven methodology for building
qos-optimised web servce compositions,” International Federation for
Information Processing, vol. 3543/2005, pp. 68–82, 2005.

[15] G. Canfora, M. Penta, R. Esposito, and M. L. Villani, “Qos-aware
replanning of composite web services,” in ICWS 2005 Proc., 2005.

[16] Cardoso, “Quality of service and semantic composition of workflows,”
Ph.D. dissertation, University of Georgia, 2002.

[17] D. B. Claro, P. Albers, and J. K. Hao, “Selecting web services for optimal
composition,” in ICWS 2005 Workshop Proc., Orlando, 2005.

[18] T. Yu and K. J. Lin, “Service selection algorithms for composing
complex services with multiple qos constraints,” in In ICSOC 2005
Proc., Amsterdam, 2005.

[19] R. Berbner, M. Spahn, N. Repp, O. Heckmann, and R. Steinmetz,
“Heuristics for qos-aware web service composition,” in IEEE Interna-
tional Conference on Web Services, Chicago, USA, 2006.

[20] B. R. Harverkort, Performance of Computer Communication Systems: A
Model-Based Approach. John Wiley & Sons Inc., New York, 1998.

[21] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnamam, and H. Chang,
“Qos-aware middleware for web services composition,” in IEEE Trans.
on Soft., England, May 2004.

[22] R. Berbner, M. Spahn, N. Repp, O. Heckmann, and R. Steinmetz,
“Dynamic replanning of web service workflows,” in Digital EcoSystems
and Technologies Conference, Inaugural IEEE-IES, 2007.

[23] G. Huang, X. Liu, and H. Mei, “SOAR: towards dependable Service-
Oriented Architecture via reflective middleware,” Int. J. Simulation and
Process Modelling, vol. 3, no. 1/2, pp. 55–65, 2007.

[24] C. Momm, T. Detsch, and S. Abeck, “Model-driven instrumentation
for monitoring the quality of web service compositions,” in IEEE/IFIP
Network Operations and Management Symposium, Salvador da Bahia,
Brazil, 2008.

[25] J. Anselmi, D. Ardagna, and P. Cremonesi, “A qos-based selection
approach of autonomic grid services,” in Proceedings of the 2007
workshop on Service-oriented computing performance: aspects, issues,
and approaches, 2007, pp. 1–8.

[26] J. Eckert, S. Schulte, N. Repp, R. Berbner, and R. Steinmetz, “Queuing-
based capacity planning approach for web service workflows using
optimization algorithms,” in IEEE International Conference on Digital
Ecosystems and Technologies 2008 (IEEE DEST 2008), Feb 2008.

[27] J. Eckert, S. Schulte, M. Niemann, N. Repp, and R. Steinmetz, “Worst-
case workflow performance optimization,” in 3rd International Confer-
ence on Internet and Web Applications and Services (ICIW’08), Athens,
Greece, Jun 2008.




