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Abstract—Monitoring in mobile ad hoc networks (MANETs)
constitutes a crucial service, as it enables the adaptation to the
changing conditions in those networks based on the monitored
state. Many monitoring mechanisms rely on a hierarchical
structure, which must be maintained and suffers from sparsely
populated networks, where the hierarchy might not be correctly
established. Contrary to this structured design, other mechanisms
rely on a simple, flat topology using gossiping to aggregate
information. However, current gossip-based approaches provide
inaccurate results, since they cannot handle the characteristics
of MANETs. To overcome these problems and to exploit the flat
topology and the robust communication pattern of gossiping for
the monitoring of MANETs, this paper introduces Mobi-G. Mobi-
G is a flat approach that gossips to exchange information instead
of gossiping to aggregate them. It consists of a flexible proto-
col that exploits the characteristics of wireless communication,
handles the mobility of nodes, and operates even in sparsely
populated networks to provide accurate results at minimum cost.

I. INTRODUCTION

Mobile ad hoc networks (MANETs) represent an useful
substrate to deploy different types of applications in urban
areas on mobile communication devices. Due to the inherent
dynamic nature of those networks, arising, e.g., from the
autonomy or mobility of nodes, MANETs must be flexible
and adapted to the changing conditions of the environment and
the network. To implement this adaptation, it is inevitable and
mandatory to monitor a MANET to determine its current state.
Based on the monitored information, the participating nodes
can adapt themselves to the detected and provided state.

The envisaged monitoring mechanisms, which (i) monitor
a MANET, (ii) generate a recent view on the system state, and
(iii) disseminate the information among nodes, must handle
the sketched dynamics as well. As summarized in [18], a
monitoring mechanism for MANETs, fulfilling the aforemen-
tioned functional requirements, must provide accurate and
timely information, while (i) scaling with the spatial size and
node density of the network, (ii) withstanding the mobility and
fluctuating presence of nodes, and (iii) handling the limited
communication range and unreliable communication medium.

Monitoring mechanisms for MANETs, tackling these func-
tional and non-functional requirements, can be divided into
hierarchical and flat approaches. Hierarchical approaches either
rely on a set of responsible nodes to create the hierarchy as well
as collect and disseminate the data [1], [10], [15], or integrate
each node in the hierarchy and monitoring process to increase
robustness [6], [18]. Using the hierarchy to structure the nodes
and to identify relevant communication partners, hierarchical
approaches also operate in larger spatial or populated networks.
On the downside, a monitoring mechanism must manage its

hierarchy and is bound to the resulting structure and associated
communication rules. Especially in sparsely populated net-
works, hierarchical monitoring mechanisms suffer from these
specifications: (i) if a set of nodes collects and disseminates
data, the availability depends on the accessibility of those
nodes, which decreases in sparsely populated networks; (ii)
if all nodes are integrated into the monitoring process, the
monitoring mechanism logically partitions the network into
areas and requires that these areas are populated with nodes
to avoid data loss.

In contrast to hierarchical approaches, other solutions rely
on a flat topology and apply gossiping [2] to communicate.
These gossip-based monitoring mechanisms neither maintain
a hierarchy nor rely on predefined relations between nodes
or areas. Instead, they can cope with a constantly changing
network topology and exchange information with any other
node in the network. For fixed communication networks,
several approaches exist [7], [21], [23] that provide accurate
and timely information about the current system state. Due
to the sketched flexible design, the approaches are highly
robust and outperform hierarchical approaches in wired com-
munication networks [17], [19]. However, new problems arise
when porting these solutions to mobile networks. Especially
gossip-based approaches, which rely on the concept of mass
conservation [8] suffer from the characteristics of MANETs.
The upcoming problems comprise (i) the missing long-range
connectivity accompanied with a high network diameter and
(ii) the high probability of message loss due to the error-prone
communication medium or the limited communication range.

To overcome the shortcomings of gossip-based monitoring
mechanisms in MANETs, while exploiting their flat topology
and robust communication pattern, this paper introduces Mobi-
G, which relies on gossip-based communication, but abstains
from the concept of mass conservation. Instead, it adapts con-
cepts from Gossipico [22], which was initially developed for
wired networks. Mobi-G exploits the positive characteristics of
ad hoc communication to cope with the limited communication
range as well as the missing long-range connectivity. Based on
its flexible protocol, which relies on a time-based synchro-
nization, Mobi-G handles the dynamic nature of MANETs
and provides accurate results. The evaluation consists (i) of
a detailed parameter analysis to show Mobi-G’s applicability
and (ii) of a comparison with the hierarchical approach Block-
Tree [18]. The results outline that Mobi-G is robust, works in
large spatial networks, and outperforms BlockTree in sparsely
populated networks at considerably smaller cost.

In the following, the design of Mobi-G is presented in
Section II. Section III consists of the system parameter and
comparative evaluation with BlockTree. An overview about
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(a) First cycle of COUNT (b) Second cycle of COUNT (c) Third cycle of COUNT (d) Fourth cycle of COUNT

Figure 1. The first four cycles of the COUNT procedure with the exchange of Information Collecting and Information Spreading messages

related work in the area of monitoring in MANETs is given
in Section IV. Finally, Section V concludes the paper.

II. SYSTEM DESIGN

Mobi-G is designed for MANETs in urban outdoor areas,
such as large places or cities, with a focus on pedestrians that
move around by foot. It is assumed that the mobile handheld
communication devices, such as smartphones or tablets, can
communicate over Wi-Fi ad hoc and determine their current
position, e.g., using GPS.

As specified in [17], attributes are used to define, which
aspects of a MANET are monitored. Each node periodically
measures the local values of the defined attributes, which are
collected and processed. Subsequently, the processed moni-
toring results are disseminated to inform other nodes about
the current system state. Due to the fact that Mobi-G just
gossips to exchange data, it can apply different techniques to
process the monitored information. In contrast, gossip-based
monitoring mechanisms [7], [21], [23], which rely on the mass
conservation paradigm [8], are mainly limited to aggregation,
because they gossip to aggregate data.

As Mobi-G is targeted at larger networks with many
nodes, it must compress the size of the collected monitoring
information. Consequently, it relies on aggregation to process
and compress the data. However, it abstains from gossiping
to aggregate data, but applies aggregation functions, which
comply with the hierarchical computation property [12], [25].
Hence, the collected data are aggregated and, as specified
in [17], the global view of an attribute is created, ideally
incorporating the input from all nodes in the network.

For the previously sketched collection and dissemination of
monitoring data, Mobi-G adapts two concepts from Gossipico
by van de Bovenkamp et al. [22], which is targeted at fixed
networks. In the next section, the initial concepts are presented
and serve as background to understand the design of the
proposed monitoring mechanism Mobi-G, as described in
Section II-B.

A. Basic System Design of Gossipico

Gossipico consists of two procedures denoted as COUNT
and BEACON, which serve as basis for Mobi-G. Similar to
other gossip-based approaches, Gossipico relies on cycles to
coordinate the periodic execution of COUNT and BEACON.
Gossipico abstains from the definition of an epoch to syn-
chronize the protocol and to restart COUNT and BEACON
but applies other mechanisms instead. The omission of epochs
enables continuous monitoring of attributes, as detailed in the
following.

1) The COUNT Procedure: COUNT is used to collect the
monitored attributes and disseminate the calculated results in
the network. Gossipico introduces the concept of tokens, which
represent the monitored attributes and are exchanged between
nodes, using Information Collecting (IC) messages. If a node
does not hold tokens, it sends Information Spreading (IS)
messages to inform other nodes about the observed state of
the network. Figure 1 displays the first four cycles of the
COUNT procedure after its start. The dashed lines display
the known neighbors of a node, while the grey and black
arrows represent transmitted IC and IS messages. The black
circles illustrate the tokens and the number inside represents
an example of a monitored attribute, for instance, the node
count. During the first cycle (cf. Figure 1(a)), each node has
its own token, representing the locally measured values, which
is sent to a random neighbor using IC messages. Received
tokens are combined with the currently available tokens and
forwarded to a neighbor during the next cycle: in Figure 1(b),
the tokens are collected and processed by two nodes. Based
on this approach, tokens accumulate at different nodes in
the network until all tokens are combined (cf. Figure 1(c)
and 1(d)). Meanwhile, nodes without tokens send IS messages
to inform other nodes about the observed network state. Since
gossiping is used to communicate instead of aggregating, the
possibilities to combine received tokens are much broader. If
aggregation is used to combine the tokens, Gossipico even
satisfies the hierarchical computation property [12], [25].

As Gossipico just relies on cycles to synchronize and
coordinate the monitoring process, continuous monitoring can
be implemented to keep the global view of an attribute always
up-to-date. Therefore, nodes always create and send new
tokens if the local value of a monitored attribute changes.

2) The BEACON Procedure: To speed up the token col-
lection, the BEACON procedure is introduced, which guides
the data to an autonomously selected leader of the network,
denoted as beacon. The beacon announces its presence in the
network by means of gossiping and creates shortest paths
for fast data collection. Figure 2 displays the initial, two
intermediate, and the final state of the procedure. Again, the
dashed lines represent the known neighbors of a node, while
the solid arrows represent a potential shortest path to the leader.

For the determination of the single beacon, where all
data will be collected, nodes compete with each other. Van
de Bovenkamp et al. [22] rely on the metaphor of battling
armies to describe the BEACON procedure. Each node starts
as a beacon of its own army, also constituting the leader
of that army. Beacons are indicated by the black pentagons,
as displayed in Figure 2(a). Besides, each node knows the
randomly determined army strength, which is represented by
the numbers in Figure 2. Furthermore, it is aware of the
estimated hop count and the next hop to the beacon of the
army, it currently belongs to.



(a) Initial state of BEACON (b) Intermediate state of BEACON (c) Intermediate state of BEACON (d) Final state of BEACON

Figure 2. Different states of the BEACON procedure

During a cycle, a node randomly selects another node for
the exchange of army messages to determine the strongest
army with the corresponding ruling beacon in the network.
If they belong to different armies, the stronger army wins and
incorporates the defeated node and its army (cf. Figure 2(b)).
If both nodes belong to the same army, they just update the
information about the next hop and hop count to the beacon. As
displayed in Figure 2(c) and 2(d), the upper left node updates
its next hop of the path to the beacon, whereas the nodes with
a former army strength of three and four join the strongest
army.

To handle link or node failures, the basic assumption is
that a node detects such a failure in its neighborhood, rebuilds
its army, and starts a recount. The recount works if a node
only accepts IC messages from its own army and ignores IC
messages from other armies. To rebuild an army, a node revives
its army with a new randomly selected strength. The new army
is immune against the army, which the reviving node left so
that the new army always defeats the previous one.

B. Mobi-G: Bridging the Gap to MANETs

Mobi-G is a flat monitoring mechanism for MANETs that
relies on gossiping to communicate and adapts the concepts
from Gossipico [22] to manage nodes and data. Mobi-G is
designed to exploit the characteristics of MANETs. Therefore,
the approach adapts its communication to the characteristics of
the wireless communication medium and uses a protocol that
handles mobile and fluctuating nodes, while managing the data
collection and dissemination.

1) Adapting the Communication: Mobi-G does not require
a routing protocol to exchange data but uses its own routing
methods to communicate. On the one hand, this decision
leads to additional traffic besides an already running routing
protocol, because monitoring data cannot be piggybacked. On
the other hand, Mobi-G operates independently of the deployed
routing protocol. As proposed by Nanda and Kotz [13], the
decentralized monitoring mechanism can still operate and
monitor the MANET if the underlying routing protocol fails.

Mobi-G mainly relies on broadcasting (i) to counteract the
missing long-range connectivity and (ii) to reduce the utilized
upload bandwidth. Since broadcasting does not guarantee a
successful delivery, it is used for the information exchange,
which can cope with data loss. Consequently, IS and army
messages are solely broadcasted to (i) spread the global view of
attributes, (ii) determine the strongest army, and (iii) refresh the
shortest paths. In contrast, IC messages are sent via unicast and
are acknowledged by the receiver to increase the probability
of a successful transmission and to avoid duplicate tokens.

a) Efficient Information Dissemination in Mobi-G: For
the efficient and fast dissemination of information, IS and

army messages are spread to the whole network. In contrast to
Gossipico, each cycle of Mobi-G triggers a dissemination of IS
and army messages, which are directly forwarded, independent
of the clocking cycle. To reduce the number of duplicate
transmissions, while still providing a reliable dissemination,
Mobi-G relies on contention-based forwarding schemes [3],
[26]. Each receiving node calculates a hesitation time based
on the distance between the sender −→s and the receiver −→r .
Given the assumption of the maximum communication range
rmax of a device, the hesitation time is calculated based on
(1), where hmax represents the maximum hesitation time. Both
parameters, rmax and hmax, are system parameters, which
must be determined and set by the user to configure Mobi-G.
Equation (1) assigns smaller values to distant nodes to speed up
data dissemination. If a hesitating node receives the forwarded
message, it drops its current message.

fdiss(
−→r ) = hmax ∗

(
1− ‖

−→s −−→r ‖2
rmax

)
(1)

To avoid that redundant information are disseminated, the con-
tent of a received message is evaluated: (i) only IS messages
with a higher freshness are forwarded; (ii) army messages are
passed, if the sender belongs to a stronger army or if a shorter
path to the beacon exists.

b) Responding to Missing or Old Information: To avoid
that a node operates on stale information due to the unreliable
communication or to an intermittent connection, a response
procedure is introduced. The response procedure identifies
nodes with stale information and initiates an update to refresh
the information. Therefore, the receiver of a broadcasted
message with old information broadcasts a response message
containing new information. Similar to the dissemination of
IS and army messages, a receiver-based contention scheme
is used. In contrast to the calculation of the hesitation time
for the dissemination of IS and army messages, the response
operation favors nearby nodes to ensure that the former sender−→s receives the recent updates and does not leave the commu-
nication range of the answering node −→r . Consequently, (2)
assigns smaller values to nearby nodes.

fresp(
−→r ) = hmax ∗

‖−→s −−→r ‖2
rmax

(2)

2) The Monitoring Protocol: The presented modifica-
tions are necessary to handle the inherent characteristics of
MANETs. To deal with the missing long-range connectivity,
the cycle, in which periodic tasks are triggered, is modified.
The restart procedure for the collection and dissemination of
data as well as for the identification of the ruling beacon
is changed. Moreover, paths to the beacon are periodically
refreshed to guarantee for a good token convergence despite
constantly changing neighbors.



(a) Single cycle synchronization of
Gossipico

(b) Dual cycle synchronization of
Mobi-G

Figure 3. Adaptation of the cycle synchronization in Mobi-G

a) Cycle Adaptation: Gossipico relies on a single cycle
to trigger the periodic transmission of all message types,
as shown in Figure 3(a). To counteract the missing long-
range connectivity and speed up the token collection, the
cycle length should be decreased. On the other hand, shorter
cycles lead to an unnecessary high frequency of IS and army
messages. Therefore, Mobi-G relies on two parallel cycles
(cf. Figure 3(b)): (i) the token-cycle triggers the transmission
of IC messages and is configured by the Token-Send-Delay-
parameter; (ii) the information-cycle spreads IS and army
messages and is configured by the Refresh-Timeout-parameter.

An interval of the token-cycle is used to collect and
combine incoming tokens or to forward present tokens. If a
node does not have a token, it does not trigger the transmission
of an IC message. When setting the Token-Send-Delay, the
following trade-off has to be considered. A small interval leads
to a fast transmission of tokens, helping to tackle the missing
long-range connectivity. If the Token-Send-Delay is too small,
a receiving node directly forwards the new token. As a result,
tokens are not gathered and combined at a node, which leads
to separate transmissions and higher traffic.

In contrast, the information-cycle is used to disseminate IS
and army messages at a lower frequency. Since IS and army
messages are broadcasted, it is not necessary that each node
sends a message during each interval. Thus, if a hesitating
node already receives an IS or army message, it can drop
its hesitating message if the received information match the
local information. If the received information differ, a node
has two possibilities to react: (i) if the message contains
stale information (i.e. lower freshness, weaker army, longer
path to the beacon), the receiving node starts the response
procedure to correct the stale entries; (ii) if the message
contains new information (i.e. higher freshness, stronger army,
shorter path to the beacon), the receiving node disseminates
the information. When Mobi-G reaches a steady state, where
the information at the nodes do not differ, the transmission of
information is reduced to a subset of nodes, while the majority
drops the hesitating messages.

b) Counteracting Node Mobility: The prevailing mo-
bility in MANETs heavily influences the paths towards the
beacon and falsifies the information about the next hop and
hop count to the beacon. This problem becomes apparent if
the distance between the node and the beacon increases. A
node maintains a low hop count to the beacon and ignores
subsequent paths with a higher hop count, although, they
correctly reflect the current situation. To mitigate this problem,
the local hop count of a node increases as a function of time
so that longer but valid paths are accepted. In addition, the
next hop towards the beacon can leave the communication
range of a node, which becomes apparent, if an IC message is
not acknowledged. To detect a new next hop, a node directly
broadcasts an army message with a high hop count, which

triggers the response procedure at the receiving node. During
the next interval of the token-cycle, the sending node uses the
initiator of the response procedure as next hop to the beacon.

To handle link or node failures, Gossipico refrains from
a time-driven restart mechanism, but restarts COUNT and
BEACON if a link or node failure is detected. This detection
states a problem in MANETs, since nodes might just have
left the communication range. Thus, Mobi-G applies a time-
driven instead of the so-called churn-driven restart mechanism.
In contrast to Gossipico, but similar to [7], [21], [23], Mobi-G
relies on epochs to restart the data collection and dissemination
as well as beacon identification. At the beginning of a new
epoch, each node becomes the beacon of its own new army,
which is immune to the ruling army of the previous epoch.
After restart, the nodes determine the strongest army with its
corresponding beacon. If Mobi-G applies discrete monitoring,
each node uses the current local value of an attribute during
the restart as input for the new epoch. If Mobi-G applies
continuous monitoring, each node generates new tokens during
an epoch if an attribute changes. Thus, Mobi-G implements
continuous monitoring, though relying on a time-driven restart
mechanism.

III. EVALUATION

The conducted evaluation of Mobi-G consists of a detailed
examination of the system parameters to understand how they
influence performance and cost. Subsequently, scalability of
Mobi-G is evaluated and compared against the hierarchical
approach BlockTree [18], which constitutes a state-of-the-art
monitoring mechanism for MANETs.

A. Simulation Setup

All experiments are simulated with a modified version of
PeerfactSim.KOM [20], which simulates wireless communi-
cation and models the environment and node mobility. For
the system parameter evaluation, a default scenario is defined,
which is used within each experiment. The corresponding sce-
nario parameters are summarized in Table I. A plain quadratic
map with an edge length of 1875 m is modeled and populated
with 1350 nodes that move according to the Gauss-Markov
Mobility Model [11] with a maximum speed of 2m/s. To
model the sojourn time of a node, the node session times are
exponentially distributed with a mean of 16 min.

Table I. DEFAULT VALUES FOR THE SCENARIO PARAMETERS

Scenario Parameter Value
Edge length 1875 m
Number of nodes 1350
Mobility model Gauss-Markov [11]
Maximum node movement speed 2m/s
Mean node session length 16 min

According to [17], [19], the performance of a monitoring
mechanism is split into accuracy and staleness. For the quan-
tification of accuracy, the relative error between the monitored
x̂ and effective global view x of an attribute is calculated at
each node by | x̂x − 1|. The monitored attributes that serve as
input for Mobi-G consist of the node count as well as of
a Poisson Distributed Sine Function (PDSF) with a period
of one hour. The node count is used, as it constitutes a
de-facto standard to evaluate the accuracy [17], [19]. The
PDSF attribute is used (i) to examine how Mobi-G monitors a
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Figure 4. Influence of the system parameter epoch length on performance and cost of Mobi-G

fluctuating attribute and (ii) to outline the effect of continuous
monitoring. The PDSF assigns each node a separate sine
function, which is shifted along the y-axis according to a
Poisson distribution. The relative error is calculated based on
the monitored and the effective average of PDSF. In terms of
staleness, tstale = tm−tavg is measured, which represents the
time between the measurement tm taken by the simulator and
the average age tavg of all aggregated values.

Dealing with the arising cost, which can be divided into
communication, memory, and computation cost for the approx-
imation of the global state (cf. Keshav [9]), the evaluation
only focuses on communication cost. Therefore, the up- and
download traffic per node is measured.

Each experiment is simulated for two hours. During the first
hour, the simulation reaches its steady state and the second
hour is used to capture the data for later analysis. If not
stated otherwise, each experiment is repeated ten times and the
corresponding plots display the average mean of a simulation
with a confidence of 95%.

Table II. SYSTEM PARAMETER VARIATIONS OF MOBI-G

System Parameter Value
Epoch length [min] 3, 4, 5, 6, 7
Token-Send-Delay [s] 0.5, 1, 2, 4, 8, 16
Refresh-Timeout [s] 0.5, 1, 2, 4, 8, 16

B. System Parameter Evaluation

Table II lists the evaluated system parameters, where the
underlined values represent the default values, while other
parameters are varied. The experiments comprise the results for
both discrete monitoring, labeled as Mobi-G, and continuous
monitoring, labeled as Mobi-G CM.

1) Epoch Length: Starting with a brief evaluation of the
impact of continuous monitoring, Figure 4(a) shows that
continuous monitoring does not increase the accuracy when
counting active nodes. Since nodes just disappear without
sending a new token to inform other nodes, continuous
monitoring cannot reflect the changing number of nodes.
In contrast, the results in Figure 4(b) outline the positive
impact of continuous monitoring on accuracy when measuring
data from fluctuating attributes. If continuous monitoring is
disabled, Mobi-G obtains its values from the beginning of an
epoch, whereas continuous monitoring collects and integrates
new values during the whole epoch. The same trend can be
observed for staleness (cf. Figure 4(c)), where the continuous
integration of new values leads to fresh results. Considering
the traffic (cf. Figure 4(d) and 4(e)), it can be observed that
the performance gain comes at the expense of an increased
communication overhead. In terms of discrete monitoring, the
current global view of an attribute remains constant and is

disseminated only one time during an epoch, once all tokens
have been collected at the beacon. In contrast, continuous
monitoring results in a constant collection of tokens and update
of the global view, doubling the traffic of Mobi-G.

Focusing on epoch length, Figure 4(a) outlines that a
shorter epoch length reduces the mean relative monitoring error
of node count. The monitoring error, originating from leaving
nodes, can only be corrected by the time-controlled restart
mechanism, which depends on the epoch length. Thus, an
earlier restart due to a shorter epoch length leads to a reduced
integration of offline nodes in the global view of an attribute.
This effect can also be observed for discrete monitoring in
terms of PDSF (cf. Figure 4(b)), because an earlier restart
enables the integration of recent values and increases the ac-
curacy of the monitoring results. Since continuous monitoring
always integrates recent values, the influence of a short epoch
length nearly disappears. For the same reasons, the mean result
staleness decreases for a shorter epoch length in terms of
discrete monitoring, whereas there is little impact on staleness
when considering continuous monitoring (cf. Figure 4(c)).

As displayed in Figure 4(d) and 4(e), there is a slight in-
fluence of the epoch length on traffic. Though, a shorter epoch
leads to a frequent identification of beacons and collection of
tokens, the more frequent execution of these operations does
not affect the traffic. Most of the traffic originates from IS and
army messages, which are not influenced by the epoch length.

2) Token-Send-Delay: Changing the Token-Send-Delay in-
fluences the time to collect all tokens at the reigning beacon.
Figure 5(e) displays the mean lifetime of a token from its
creation to its arrival at the beacon as a function of the Token-
Send-Delay. If tokens are aggregated on their way to the bea-
con, the older creation time is kept as reference. The displayed
results have been filtered to remove outliers and comprise 95%
from the overall data. Figure 5(e) displays the immense impact
of the Token-Send-Delay on the token collection time, which
influences the accuracy of Mobi-G’s discrete and continuous
monitoring in different ways. Based on Figure 5(a), it can
be observed that a longer token collection time results in an
increased relative node count error. On the other hand, the
results for a shorter interval reveal that a reduction does not
improve the performance but increases the traffic below a
certain parameter value (cf. Figure 5(c) and 5(d)). Figure 5(b)
displays the negligible impact of Token-Send-Delay on the
accuracy of discrete monitoring of PDSF due to the already
existing high error. For continuous monitoring a higher Token-
Send-Delay decreases the accuracy, since the continuously
created tokens require more time to reach the reigning beacon.
The plot for staleness is omitted, since the results resemble the
ones for the mean relative PDSF error.
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Figure 5. Influence of the system parameter Token-Send-Delay on performance and cost of Mobi-G

Figure 5(c) and 5(d) show that a higher Token-Send-Delay
decreases the resulting traffic, because a higher value reduces
the cycles to transmit tokens during an epoch. In terms of
discrete monitoring, the traffic reduction is small, since the
tokens are ideally collected at the beginning of an epoch,
while the remaining cycles are not used. In contrast, continuous
monitoring results in a constant transmission of tokens. With
a longer Token-Send-Delay, there are fewer cycles to transmit
tokens and the probability increases that they are aggregated
at a node, leading to the displayed traffic reduction.

3) Refresh-Timeout: For the evaluation of Refresh-Timeout
only the mean relative node count error is examined in terms
of performance, since the results for PDSF and staleness
exhibit similar tendencies. The considered results reveal that an
increasing Refresh-Timeout has little impact on the accuracy
(cf. Figure 6(a)), but reduces the traffic (cf. Figure 6(b)
and 6(c)). The traffic decreases for an increasing Refresh-
Timeout, because there are fewer cycles per epoch to send IS
and army messages. Considering accuracy (cf. Figure 6(a)), the
small influence on accuracy can be explained when looking
at the results for the army conquest time and information
dissemination time, which depend on the periodic transmis-
sion of IS and army messages. The army conquest time in
Figure 6(d) displays the duration for the strongest army to
conquer the whole network since its creation. The information
dissemination time in Figure 6(e) shows the time interval from
the dissemination of an IS message by the reigning beacon
and its reception at the nodes. Similar to the token collection
time (cf. Figure 5(e)), the displayed results comprise 95%
from the overall data. In Figure 6(d), it can be observed
that a longer Refresh-Timeout increases the mean time to
conquest the whole network about 20 s. Based on the results
in Figure 6(e), the influence on the information dissemination
time is even less, because a longer Refresh-Timeout extends
the mean dissemination time about one second for discrete and
about 0.5 s for continuous monitoring. Compared to the high
influence of the Token-Send-Delay on the token collection time
(cf. Figure 5(e)) and on accuracy (cf. Figure 5(a)), it becomes
apparent that the small increase of the army conquest and
information dissemination time just slightly affects discrete
and continuous monitoring.

4) Summary: Based on the results, it can be observed
that continuous monitoring provides highly accurate and fresh
results for varying attributes at the expense of an increased
traffic. In terms of node count, the difference between contin-
uous and discrete monitoring is negligible. To increase accu-
racy and freshness of discrete monitoring as well, the epoch
length represents a cost-effective alternative, since a shorter
epoch considerably improves accuracy and staleness, while the
influence on traffic is negligible. The results for the Token-

Send-Delay reveal that this parameter strongly influences the
accuracy for discrete and continuous monitoring depending on
the monitored attribute. A large Token-Send-Delay reduces
the traffic at the expense of inaccurate results, whereas too
small values increase the traffic without improving accuracy.
The results for Refresh-Timeout outline that an independent
transmission of IS and army messages through the separate
information-cycle is a beneficial extension, since the traffic is
reduced, while accuracy and staleness remain nearly constant.

Based on these outcomes, the final system parameter
configuration of Mobi-G consists of (i) an Epoch Length of
3 min, (ii) a Token-Send-Delay of 2 s for the provisioning of
accurate results without an excessive creation of traffic, and
(iii) a Refresh-Timeout of 8 s to reduce the resulting traffic
while keeping the results accurate and fresh.

C. Comparative Evaluation

After the system parameter evaluation, this section outlines
how Mobi-G scales (i) with the spatial network size and (ii)
the node density. The variations for both experiments are listed
in Table III. When considering different spatial network sizes,
the number of nodes is increased as well to obtain the same
node density in each scenario. For node density, the spatial
network size is fixed, while the number of nodes is varied.

Table III. SCENARIO PARAMETER VARIATIONS FOR THE COMPARATIVE
EVALUATION

Scenario Parameter Value
Edge length [m] 312, 625, 1250, 1875, 2500
Node density [nodes/km2] 96, 192, 288, 384, 480

For a better assessment of the results, Mobi-G is compared
against BlockTree [18], labeled as BT in the plots. The
relevant parameters of Mobi-G are configured as summarized
in Section III-B4, while BlockTree’s most important system
parameter Update Interval is set to eight seconds, which
triggers the periodic operations. Although BlockTree already
performs well for a larger Update Interval [18], the configu-
ration is oriented at the Refresh-Timeout of Mobi-G so that
both monitoring mechanisms trigger most of the operations
with the same interval. In contrast to the previous setups, each
experiment is repeated five times.

1) Spatial Network Size: The results for the mean rela-
tive node count error in Figure 7(a) outline that BlockTree
outperforms Mobi-G for networks with an increasing spatial
size. While a hierarchy helps to organize the collection and
dissemination of data, a flat and gossip-based design suffers
from the larger network diameter, leading to the increasing
error. Considering the accuracy of PDSF (cf. Figure 7(b)), the
error for Mobi-G with discrete monitoring is nearly constant,
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Figure 6. Influence of the system parameter Refresh-Timeout on performance and cost of Mobi-G

whereas it increases for continuous monitoring with a growing
spatial size. However, the results outline that BlockTree cannot
keep up with Mobi-G’s continuous monitoring. Its on-demand
creation and collection of tokens leads to a higher accuracy,
especially when monitoring fluctuating attributes. On the other
hand, continuous monitoring does not suffice to provide as
fresh results as BlockTree (cf. Figure 7(c)), which benefits
from its short Update Interval.

Regarding the cost (cf. Figure 7(d) and 7(e)), BlockTree’s
good performance comes at the expense of considerably higher
traffic. A growing spatial network size increases the traffic
of all three approaches but also the gap between BlockTree
and both alternatives of Mobi-G. For Mobi-G, a larger area
does not necessarily lead to increased traffic on all nodes, but
only on those nodes, that currently reside on the route towards
the beacon. Since many tokens can already be combined on
their way to the beacon, the collection traffic can be reduced.
BlockTree handles the increasing size by creating a new
hierarchy level. This level leads to an additional information
exchange, which affects every node and results in the drasti-
cally increasing traffic.

2) Node Density: In terms of accuracy, it can be observed
that the node density influences Mobi-G and BlockTree (cf.
(Figure 8(a) and 8(b)). While Figure 8(b) still hides the
bad influence of sparsely populated areas on BlockTree, the
results in Figure 8(a) reveal this problem. BlockTree suffers
from sparsely populated areas, because parts of the hierarchy
are not populated so that information are not collected and
disseminated over the hierarchy as envisaged. In contrast,
Mobi-G compensates the low density by its flat design and
the gossip-based communication, which does not rely on
predefined paths for data collection and dissemination. As long
as army messages identify paths to the beacon, Mobi-G is able
to monitor sparsely populated networks.

Figure 8(c) and 8(d) display the typical traffic charac-
teristics of receiver-based contention schemes for monitoring
mechanisms, as observed in [18]. Denser populated areas in-
crease the download traffic per node (cf. Figure 8(d)), because
the probability increases that new or redundant data will be
received. On the other hand, Figure 8(c) outlines that the
upload traffic per node decreases with an increasing node
density. Especially when disseminating IS or army messages,
there are more potential senders involved, which reduces the
probability that a single node disseminates the information
several times. Similar to the results for the increasing spatial
network size, Mobi-G produces considerably less traffic than
BlockTree. Moreover, there is only a small increase of Mobi-
G’s download traffic when monitoring denser network.

IV. RELATED WORK

In the area of monitoring mechanisms for MANETs, sev-
eral approaches have been developed, trying to provide an
accurate view on the network, while handling the charac-
teristics of MANETs. Out of these approaches, an overview
about gossip-based and hierarchical approaches is given and
discussed.

Starting with gossip-based monitoring mechanisms, some
approaches exist that monitor a mobile network but do
not directly address MANETs. The local push-sum protocol
(LPS) [4] constitutes an extension of push-sum [8], which is
targeted at static wireless networks, where nodes just com-
municate with their direct neighbors and do not generate a
global view over the whole network, but only over a part of it.
Mobi-G and LPS rely on leaders to coordinate and accelerate
the data collection. In contrast, Mobi-G relies on gossiping to
communicate, whereas LPS gossips to aggregate.

Guerrieri et al. [5] monitor delay tolerant networks (DTNs)
relying on the Pairwise-AVG algorithm [7] and applying
concepts of population algorithms. At the beginning, each node
generates a token for a monitored attribute, which is collected
and aggregated by a node if two nodes meet. This procedure is
repeated until the aggregate of an attribute contains all tokens.
Mobi-G relies on tokens as well, but uses beacons to speed up
the collection and dissemination. The evaluation shows that
the beacon concept provides accurate results in MANETs.

Wuhib and Stadler [24] introduce a modified version of
G-GAP [23] that targets MANETs and adapts Push-Sum [8].
Besides G-GAP, the authors introduce an optimal version
of G-GAP, which is denoted as G-GAP-NL. For G-GAP-
NL it is assumed that no message loss occurs over the
wireless communication medium. The evaluation outlines that
monitoring mechanisms, which gossip to aggregate data, just
perform well under simplified assumptions (i.e., no message
loss). In contrast, Mobi-G is capable of handling the typical
characteristics of MANETs and provides accurate results.

In addition to the surveyed gossip-based monitoring mech-
anisms, hierarchical approaches for MANETs are introduced
and discussed. The underlying hierarchy serves for the collec-
tion of data and is created in a decentralized fashion using
different techniques to identify nodes for the higher levels:
the approaches (i) rely on proximity-based clustering with
cluster heads [10]; (ii) apply mathematical functions [1] or
simple comparisons with the neighborhood [16] to determine
appropriate and powerful nodes; (iii) become a node at a higher
level depending on the density of higher level nodes [15]; or
(iv) are provided and defined by a network operator [14]. To
obtain a partial or global view of an aggregate, the remaining
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Figure 7. Influence of the spatial network size on Mobi-G and BlockTree

nodes can query the nodes from higher levels. In contrast,
Mobi-G does not require an underlying hierarchy to collect and
disseminate data. To avoid that the availability of information
depends on the accessibility of a single node for a longer time,
a node just becomes a beacon for a short time. In addition, the
beacon must not serve the whole network, but incorporates the
remaining nodes to disseminate the information.

Besides the presented hierarchical approaches, other solu-
tions like BlockTree [18] or the Grid Box Hierarchy [6] are
proposed, which try to integrate each node into the monitoring
process. BlockTree and the Grid Box Hierarchy logically
partition the network into blocks, which are then arranged
in a hierarchy. Dependent on the block and level, the nodes
coordinate their actions and determine where to send the data,
e.g., exchange information within a block or with other blocks.
Both approaches rely on hierarchies to organize the nodes
and to handle the data, whereas Mobi-G operates on a flat
network, where the data can be exchanged between two nodes
without considering an underlying hierarchy. The evaluation
outlines that these loosely coupled relations between nodes
are particularly beneficial in sparsely populated areas, while
hierarchical approaches suffer from static relations between
nodes or areas, as shown for BlockTree.

V. CONCLUSION

Mobi-G is a flat monitoring mechanism for MANETs,
which does not rely on mass conservation and gossips to
aggregate but instead uses gossiping for a robust exchange
of monitoring information. It adapts the concepts of Gos-
sipico [22] to collect and disseminate the data as well as to
organize the nodes.

The system parameter evaluation outlines that Mobi-G pro-
vides accurate results and even captures fluctuating attributes
when using continuous monitoring. In contrast to this high
accuracy, discrete monitoring generates a less accurate view
but halves the traffic. With its system parameters, i.e, epoch
length and Refresh-Timeout, Mobi-G increases or preserves
the accuracy of discrete or continuous monitoring respectively,
while reducing the communication cost.

The comparative evaluation reveals that Mobi-G does not
suffer from the missing long range connectivity and monitors
large spatial networks. Nevertheless, the accuracy of Mobi-
G decreases for an increasing spatial network size, whereas
BlockTree benefits form its hierarchical structure. However,
Mobi-G’s continuous monitoring outperforms BlockTree even
for larger spatial networks, when monitoring fluctuating at-
tributes. Moreover, BlockTree produces considerably more
traffic, which drastically increases for a growing spatial net-
work size, due to BlockTree’s hierarchical structure. In terms

(a) Mean rel. node count error (b) Mean rel. PDSF error

(c) Upload traffic per node (d) Download traffic per node

Figure 8. Influence of node density on Mobi-G and BlockTree

of node density, the results outline that Mobi-G provides
all nodes with accurate results in densely populated areas.
The advantages of the flat topology and gossip-based com-
munication become apparent in sparsely populated scenarios.
While BlockTree does not provide accurate results, since the
hierarchy cannot handle sparsely populated or empty regions,
the loose and periodically refreshed relations between the
nodes suffice to collect and disseminate the data.

For future work, it is planned to extend the conducted
evaluation to address robustness with respect to (i) a varying
node mobility, (ii) different mean session lengths, and (iii)
an increased message loss probability. Besides robustness, it
is intended to examine the impact of a flat topology on the
provisioning of location-aware monitoring results, as specified
in [18]. In parallel, it is planned to investigate transitions be-
tween flat and hierarchical monitoring mechanisms to exploit
their complementary advantages in dynamic environments with
varying conditions.
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