
International Journal of Cloud Computing (ISSN 2326-7550) Vol. 1, No. 2, October-December 2013	
	

http://hipore.com/ijcc	 	 1	
	

COST‐DRIVEN	OPTIMIZATION	OF		
CLOUD	RESOURCE	ALLOCATION	FOR	ELASTIC	PROCESSES		

Stefan	Schulte1,	Dieter	Schuller2,	Philipp	Hoenisch1,	Ulrich	Lampe2,	Ralf	Steinmetz2,	Schahram	Dustdar1	
1	Distributed	System	Group,	Vienna	University	of	Technology,	Austria	

Email:	{s.schulte,	p.hoenisch,	dustdar}@infosys.tuwien.ac.at	
2	Multimedia	Communications	Lab	(KOM),	Technische	Universität	Darmstadt,	Germany	

Email:	{firstName.lastName}@KOM.tu‐darmstadt.de	
Abstract	
Today's	extensive	business	process	landscapes	make	it	necessary	to	handle	the	execution	of	a	large	number	of	busi‐
ness	processes	and	individual	process	steps.	Especially	if	process	steps	require	the	invocation	of	resource‐intensive	
applications	or	a	large	number	of	applications	need	to	be	executed	concurrently,	process	owners	may	have	to	allocate	
extensive	computational resources,	leading	to	high	fixed	cost.		
In	 the	work	at	hand,	we	propose	an	alternative	 to	the	provision	of	 fixed	resources,	based	on	automatic	 leasing	and	
releasing	 of	Cloud‐based	computational resources.	 For	 this,	we	present	 an	 integrated	 approach	which	addresses	 the	
cost‐driven	optimization	of	Cloud‐based	computational resources	 for	business	processes	 in	order	to	realize	so‐called	
Elastic	Processes.	Through	an	evaluation,	we	show	the	practical	applicability	and	benefits	of	our	contributions.	Specif‐
ically,	we	find	that	our	approach	substantially	reduces	the	cost	compared	to	an	ad	hoc	approach.		
	
Keywords:	Elastic	Processes,	Cloud	Computing,	Business	Process	Execution	
__	
1. INTRODUCTION	

Nowadays, IT-support for the execution of business pro-
cesses is an essential prerequisite in many industries. For
example, in the finance industry, trade settlement or execu-
tion control processes are executed automatically (Gewald,
Dibbern, 2009). In the energy domain, computational re-
sources are needed to carry out essential decision processes
and a particular necessity is to support the processing of
large amounts of data in so-called Smart Grids (Rohjans et
al., 2012).

Especially in large companies, the number of different
business process models available can become extensive
(Breu et al. 2013; Jin et al., 2013). Correspondingly, a busi-
ness process landscape may comprise a very large number
of running business process instances, all of which are made
up from single tasks (i.e., process steps) with differing com-
putational resource demands. Over time, the invocation of
new process instances and the completion of running pro-
cess instances lead to ever-changing computational resource
demands, which need to be met by a company. Apparently,
computational resource demands during peak times (i.e.,
when many and/or resource-intensive tasks need to be car-
ried out concurrently) will be much higher than in normal
times – especially in volatile domains (Maurer et al., 2013).

On the one hand, permanently providing computational
resources that can cover the demand during peak times leads
not only to high fixed cost, but the resources will not be
utilized most of the time (overprovisioning). On the other
hand, providing computational resources which can cover
only part of the processes' resource demand, will lead to
lower fixed cost, but also to the risk that some processes

cannot be carried out during peak times (underprovisioning)
or will suffer from low Quality of Service (QoS).

To avoid the drawbacks arising due to over- and under-
provisioning, computational resources should be scalable,
i.e., the available resources should be in- or decreased based
on the demands of the running and future business process
instances. Applying Cloud technologies to provide the
needed resources exactly allows this – (i) leasing and releas-
ing computational resources in an on-demand, utility-like
fashion, (ii) rapid elasticity through scaling the infrastruc-
ture up and down if necessary, and (iii) pay-per-use through
metered service (Armbrust et al., 2010; Buyya et al., 2009).

So far, only few researchers have provided methods and
solutions to facilitate Elastic Processes, i.e., processes
which are carried out using elastic Cloud resources (Dustdar
et al., 2011; Andrikopoulous et al., 2013). Current Business
Process Management Systems (BPMS) do not only “lack
the ability to learn, mine, and reason suitable resource allo-
cation knowledge in business process execution” (Pesic and
van der Aalst, 2007; Huang et al., 2011), but are also not
able to make use of Cloud-based computational resources.
In our former work (Schulte et al., 2013; Hoenisch et al.,
2013; Hoenisch et al., 2013a), we have presented the Vienna
Platform for Elastic Processes (ViePEP), which combines
the functionalities of a BPMS with that of a Cloud resource
management system. ViePEP is able to schedule complete
processes as well as the involved single tasks, and lease and
release Cloud-based computational resources in terms of
Virtual Machines (VMs) while taking into account Service
Level Objectives (SLOs) defined by the process owners.

Within this paper, we extend our former work by ad-
dressing the problem of online Cloud resource allocation for

rst
Textfeld
Stefan Schulte, Dieter Schuller, Phillipp Hoenisch, Ulrich Lampe, Schahram Dustdar, Ralf Steinmetz: Cost-Driven Optimization of Cloud Resource Allocation for Elastic Processes. In: International Journal of Cloud Computing, vol. 1, no. 2, p. 1-15, December 2013.

International Journal of Cloud Computing (ISSN 2326-7550) Vol. 1, No. 2, October-December 2013	
	

http://hipore.com/ijcc	 	 2	
	

Elastic Processes based on process requests from various
clients (process owners). In this scenario, it is necessary to
schedule task executions and lease and release Cloud re-
sources in order to carry out the single tasks under given
SLOs. To encounter the complexity of this scenario, it is
necessary to predict the resource demands of tasks, develop
a cost model, predict the cost, and perform a
cost/performance analysis. This has to be done continuous-
ly, as new process requests arrive, software services repre-
senting single process tasks do not behave as predicted, or a
process instance is changed by the process owner. The goal
is to provide cost-efficient process scheduling that takes into
account the given SLOs and leases and releases Cloud-
based computational resources (i.e., VMs) in order to opti-
mize cost. Hence, the main contributions in this paper are:
 We formulate a model for scheduling and resource

allocation for Elastic Processes.
 We design a heuristic based on the proposed model.
 We integrate this work into the Vienna Platform for

Elastic Processes.
The remainder of this paper is organized as follows: In Sec-
tion 2, we introduce the overall scenario, ViePEP, and some
prerequisites for our research work. Afterwards, we present
scheduling and resource allocation solution for Elastic Pro-
cesses – for this, we define an integer linear optimization
problem and a corresponding heuristic. We evaluate the
scheduling and resource allocation algorithms through Vie-
PEP-based testbed experiments (Section 4). In Section 5, we
discuss the related work. The paper closes with a summary
and an outlook on our future work.

2. PRELIMINARIES	
2.1 GENERAL	SCENARIO	

Within this paper, we assume that a business process
landscape is made up from a large number of business pro-
cesses, which can be carried out automatically. The part of a
business process which can be executed using machine-
based computational resources is also known as a workflow
(Ludäscher et al., 2009). Therefore, in the remainder of this
paper, we will use the term workflow in order to identify an
executable process. The automated processing of such
workflows is a prominent field of research and has resulted
in various concepts, methodologies, and frameworks
(Mutschler et al., 2008). In recent years, the focus of this
research was primarily on the composition of workflows
from software services (Dustdar and Schreiner, 2005;
Schuller et al., 2012).

While we also assume that workflows are composed of
software services, we do not expect that companies are
willing to outsource important services fully to external
providers, since these services will then be outside the con-
trol domain of the process owner. In contrast, making use of
private and public Cloud resources to host service instances,
which are then invoked as workflow steps, leaves the con-
trol with the process owner: If particular service instances or

VMs fail, the process owner or the admin of the business
process landscape is able to deploy further service instances.

Making use of VMs to host particular services allows
sharing resources among workflows, as the same service
instance might be invoked within different workflows at the
same time. Notably, it is important to distinguish between
services, which are the basic building blocks of workflows,
service instances, which are hosted by VMs, and service
invocations, which denotes the unique execution of a service
instance in order to serve a particular workflow request, i.e.,
a workflow instance.

In our scenario, workflows may be requested at any time
by process owners and may be carried out in regular inter-
vals or nonrecurring. It is the duty of a software framework
(in our case, ViePEP), which combines the functionalities of
a BPMS and a Cloud resource management system, to ac-
cept incoming workflow requests, schedule the workflow
steps, and lease and release computational resources based
on the workflow scheduling plan.

Process owners are able to define different QoS con-
straints as SLOs on the level of workflow instances. With-
out a doubt, the execution deadline is the most important
SLO: Some business-uncritical workflows may have very
loose deadlines, while other workflows need to be carried
out immediately and finished as soon as possible. Usually,
workflow instances will have a defined maximum execution
time or a defined deadline. Process owners are able to define
complex workflows which feature AND, XOR, or loop
patterns. However, we assume that the next steps in a par-
ticular workflow instance are always known.

We assume that the business process landscape is vola-
tile, i.e., ever-changing, since workflow requests may arrive
anytime. Furthermore, changes may have to be necessary
since services or VMs are not delivering the expected QoS,
or the next steps in a workflow instance are not as planned.

For achieving an efficient scheduling and invocation of
workflows and corresponding services, Cloud-based compu-
tational resources in terms of VMs required for invoking
respective services have to be leased and released such that
the total cost arising from leasing aforementioned Cloud
resources is minimized. In addition, it has to be made sure
that given QoS constraints such as deadlines, until which
corresponding workflows have to be finished, are satisfied.
The closer the deadline is for a certain workflow instance,
the higher is the importance to schedule and execute corre-
sponding services accomplishing its tasks. If not carefully
considered and scheduled, further additional Cloud re-
sources will have to be leased and paid in order to execute
workflow instances that cannot be delayed any further. For
avoiding such situations in which extra resources have to be
leased due to an inefficient scheduling strategy, the execu-
tion of workflow instances along with the leasing and re-
leasing of Cloud resources has to be optimized. This makes
it necessary to facilitate self-adaptation and -optimization of
the overall business process landscape through replanning of
workflow scheduling and resource allocation.

International Journal of Cloud Computing (ISSN 2326-7550) Vol. 1, No. 2, October-December 2013	
	

http://hipore.com/ijcc	 	 3	
	

2.2 SELF‐ADAPTATION	FOR	ELASTIC	PROCESSES	
Self-adaptation is a common concept from the field of

Autonomic Computing and includes self-healing, i.e., the
ability of a system to detect and recover from potential
problems and continue to function smoothly, self-
configuration, i.e., the ability of a system to configure and
reconfigure itself under varying and unpredictable condi-
tions, and self-optimization, i.e., the ability to detect subop-
timal behavior and optimize itself to improve its execution
(Kephart and Chess, 2003). The focus of this paper is on
self-optimization.

In order to motivate the functionalities and components
needed to provide self-optimization of a Cloud-based pro-
cess landscape, we make use of the well-known MAPE-K
cycle shown in Figure 1. As the scenario at hand is highly
dynamic due to permanently arriving workflow requests and
changing Cloud resource utilization, a continuous alignment
to the new system status is necessary. Using the MAPE-K
cycle, the process landscape is continuously monitored and
optimized based on knowledge about the current system
status. In the following, we will briefly discuss the four
phases of this cycle:
 Monitor: In order to adapt a system, it is first of all

necessary to monitor the system status. In the scenario
at hand, this includes the monitoring of the status of
single VMs in terms of CPU, RAM, and network
bandwidth utilization, and the non-functional behavior
of services in terms of response time and availability.

 Analyze: To achieve Elastic Process execution, it is
necessary to analyze the monitored data and reason on
the general knowledge about the system. In short, this
analysis is done in order to find out if there is currently
under- and overprovisioning regarding the computa-
tional resources (VMs) and to detect Service Level
Agreement (SLA) violations in order to carry out corre-
sponding countermeasures (e.g., provide further VMs
or re-invoke a service instance).

 Plan: While the analysis of the monitored data and
further knowledge about the system aims at the current
system status, the planning also takes into account the
future resource needs derived from the knowledge
about future workflow steps, their SLOs, and the esti-
mated resource requirements and runtimes. For this, a
workflow scheduling and resource allocation plan needs
to be generated.

 Execute: As soon as the plan is set up, each workflow
step is executed corresponding to this plan.

 Knowledge Base: While not really a part of the cycle,
the Knowledge Base stores information about the sys-
tem configuration. In our case, this is the knowledge
about which service instances are running on which
VMs, how many VMs are currently part of the system,
and of course the knowledge about requested workflow
and services instances.

In order to provide self-adaptation, ViePEP will have to
support all four phases of the cycle and provide a
Knowledge Base.

	
FIGURE	1:	MAPE‐K	CYCLE	(KEPHART	AND	CHESS,	2003)	

2.3 THE	VIENNA	PLATFORM	FOR	ELASTIC	PROCESSES	
Figure 2 (using FMC notation1) depicts the high-level

components of ViePEP and the message flow between them.
The core functionalities of ViePEP are:
 Provisioning of an interface to the Cloud, allowing

leasing and releasing Cloud-based computational re-
sources (VMs) on demand.

 Execution of workflow steps by instantiating services
on VMs and invoking the service instances in work-
flows instances.

 Dynamical scheduling of incoming requests for work-
flows based on their QoS requirements, i.e., timeliness
in terms of maximum execution time or a deadline.

 Monitoring the deployed VMs in terms of resource
utilization and monitor the QoS of service invocations.

ViePEP is made up from two major components and three
helper components: The BPMS VM hosts the central func-
tionalities of ViePEP, i.e., the functionalities for resource
allocation and workflow scheduling. Resource allocation is
done at the PaaS level, i.e., ViePEP is able to lease and
release VMs from Cloud providers and allocate these re-
sources to particular workflow steps. Workflows share re-
sources as they are able to concurrently invoke the same
service instance.

The Workflow Manager is the subcomponent both re-
sponsible for receiving workflow requests from the process
owners via the Client API (see below) and for invoking
single service instances running in a Backend VM. Further-
more, it monitors service invocations in order to control
whether the service instance delivers the expected QoS and
starts corresponding countermeasures if necessary.

The information which services need to be invoked at
what point of time is generated by the Scheduler and the
Reasoner. The former subcomponent is responsible to de-
rive a detailed scheduling plan corresponding to service and
workflow deadlines, while the latter subcomponent esti-
mates the needed resources (VMs) based on the computed
scheduling and sends corresponding requests to the Cloud

																																																													
1 http://www.fmc-modeling.org/

International Journal of Cloud Computing (ISSN 2326-7550) Vol. 1, No. 2, October-December 2013	
	

http://hipore.com/ijcc	 	 4	
	

	
FIGURE	2:	THE	VIENNA	PLATFORM	FOR	ELASTIC	PROCESSES	(VIEPEP)

providers. The functionality of these two subcomponents is
defined through the optimization approach and heuristic
presented in Section 3. The Reasoner interacts with the
Load Balancer in order to estimate which Backend VM
provides free resources for particular service instances and
therefore could be used to invoke a service instance in the
future.

The subcomponents of the ViePEP BPMS are placed in
a VM to avoid that it becomes a bottleneck. Through verti-
cal scaling, it is possible to provide ViePEP with additional
resources if the business process and Cloud landscape be-
comes increasingly complex.

Whenever the Reasoner issues a request to the Cloud, ei-
ther a Backend VM will be started and when its Action En-
gine is ready, a new service instance will be deployed, or (in
case the Backend VM is already running) the Action Engine
is directly able to execute the corresponding request. Vie-
PEP allows the following requests:
 Start a new Backend VM, which includes deploying a

new service instance on it.
 Duplicate a Backend VM including the service in-

stance.
 Terminate a Backend VM, which marks the Backend

VM as “phasing out” and will prevent the Load Balanc-
er from requesting further service invocations from this
Backend VM. Once all previously assured service invo-
cations have been finished, the VM is terminated.

 Exchange the hosted service instance on the Backend
VM. This will also prevent the Load Balancer from re-
questing any further invocations of this particular ser-
vice instance. Once all assured service invocations have
been finished, the instantiated service is replaced by
another one.

 Move a service instance from one Backend VM to an-
other one (with different computational resources).

Within the Backend VM, service instances are hosted in an
Application Server, which also features a Monitor to ob-
serve the current load on the Backend VM and provide this
information to the Load Balancer via the Shared Memory.
This Monitor should not be confused with the monitoring
capabilities of the Workflow Manager, which monitors the
response time of service invocations.

The Shared Memory and the Service Repository are
helper components. The latter hosts the service descriptions
as well as their implementations as portable Web applica-
tion ARchives (WAR). This repository allows searching for
services and deploying them on a ViePEP Backend VM.
The Shared Memory provides a distributed database which
is used to send requests from the BPMS VM to the Backend
VM and stores monitoring data. We chose MozartSpaces
(Kühn et al., 2009) for this, as it allows easily deploying and
accessing a peer-to-peer-based, distributed shared memory.
In addition, MozartSpaces allows sending notifications with
very low latency.

Finally, the Client API allows process owners to define
workflows including SLOs. An owner may request many
workflows consecutively or in parallel. When the request is
submitted to the BPMS VM via the Workflow Manager, a
new workflow instance is generated and taken into account
in workflow scheduling and resource allocation.

2.4 PREREQUISITES	

Before we formulate a model for workflow scheduling
and resource allocation and define a corresponding heuris-
tic, it is necessary to introduce some prerequisites in order to
determine the scope of our work.

First, each Backend VM hosts exactly one service in-
stance; a particular service may be instantiated arbitrarily
often at different VMs. Second, defined deadlines are realis-
tic, i.e., the deadlines can be met if providing corresponding

Action Engine

R

Backend VM X

Application Server

MonitorService

Shared Memory

BPMS VM

Workflow
Manager

Reasoner

Load
Balancer

Client
API

WS1 WS2 WS3 WS4

R

Service
Repository

R

R

Backend VM 1

Application Server

MonitorService

Action Engine

R
R

R

R

R

Scheduler

R

International Journal of Cloud Computing (ISSN 2326-7550) Vol. 1, No. 2, October-December 2013	
	

http://hipore.com/ijcc	 	 5	
	

resources. However, defined deadlines may be violated
because of faults in the Cloud or in the network. In this case,
the service invocation in question will be immediately car-
ried out again. Third, it is possible to derive the total com-
putation time and resource utilization of a particular service
on a particular VM type from historical data: Instances of
the same service behave similarly with regard to resource
consumption and runtime of single invocations. Fourth,
computational resources in terms of additional VMs can be
leased from different Cloud providers; it is also possible to
combine resources from public and private Clouds. Indefi-
nite resources are available. Hence, all resource demands of
the business process landscape can be met by the available
Cloud-based computational resources (i.e., the workflow
scheduling and resource allocation are effective). Fifth,
different types of VMs with different computational re-
sources (CPUs, RAM, bandwidth, …) are available from
different Cloud providers. Following Amazon’s EC2 pricing
scheme, the cost of these VMs are proportional, e.g., the
cost of a VM with 2 cores are half of the cost of a VM with
4 cores with the same specifications. Sixth, it is the goal of
our model to minimize the overall cost arising from leasing
VMs (i.e., scheduling and resource allocation are efficient).

3. SOLUTION	APPROACH	
We formulate the problem of scheduling workflow in-

stances and their individual services, respectively, as opti-
mization problem. The general approach proposed in the
work at hand for achieving an optimized scheduling and
resource allocation is presented in Section 3.1. A formal
specification of the corresponding optimization problem is
provided in Section 3.2. Finally, in Section 3.3, we describe
a heuristic solution method for efficiently solving the opti-
mization problem.

3.1 GENERAL	APPROACH	

For achieving the necessary workflow scheduling and
resource allocation, the deadlines indicating the time when
the corresponding workflow instances have to be finished
are considered. In addition, in order to minimize the total
cost of (Backend) VMs leased for executing workflow re-
quests and corresponding services, respectively, the leased
VMs should be utilized as much as possible, i.e., leased but
unused resource capacities should be minimized. Thus, in
order to reduce the necessity of leasing additional VMs, we
try to invoke services that cannot afford further delays first-
ly on already leased VMs before leasing additional VMs if
the remaining resource capacities of already leased VMs are
sufficient. Only if the resource requirements of workflows
cannot be covered by already leased VMs, additional VMs
will be leased. For instance, if the deadlines for certain
workflow instances allow delaying their service invocations
to another period, it can be beneficial to release leased re-
sources and delay such services invocations. However, it
has to be considered that those service invocations have to

be scheduled for one of the subsequent optimization periods
to ensure that corresponding deadlines are not violated.

In addition, since VMs are leased only for a certain time
period and the execution of already scheduled invocations
will be finished at a future point in time, the scheduling
strategy to be developed cannot be static, i.e., the optimiza-
tion approach for scheduling service invocations should not
be applied only once. It rather has to be applied multiple
times at different optimization points in time. In this respect,
it has to be noted that potentially further requested workflow
instances may have to be served, which additionally have to
be considered when carrying out an optimization step.

Thus, an efficient scheduling strategy has to review allo-
cated service instances and scheduled service invocations
periodically and carry out further optimization steps for
considering dynamically changing requirements and keep-
ing the amount of leased but unused resource capacities low.
Furthermore, the resource demand and average runtime for
single service instances needs to be known in advance – for
this, an approach based on linear regression – as presented
in our former work (Hoenisch et al., 2013) – will be applied.

3.2 OPTIMIZATION	PROBLEM	

In this section, we model the scheduling and allocation
of workflows and services as an optimization problem.
Since Cloud resources are only leased for a limited time
period, it has to be decided whether those resources or even
additional resources have to be leased for another period, or
whether leased resources can be released again. In this re-
spect, we aim at utilizing leased Cloud resources, i.e., VMs
in the context of this paper, to their full capacities. Further,
additional resources will only be leased if capacities of
already leased VMs are not sufficient to cover and carry out
further service invocations that cannot be delayed.

For considering the different (optimization) time peri-
ods, the index ݐ will be used. Depending on these periods,
the parameter ߬௧ refers to the actual time and point in time,
respectively, indicated by a time period ݐ. For scheduling
different workflows, multiple workflow templates are con-
sidered. The set of workflow templates is labeled with ܹ,
where ݓ ∈ ܹ ൌ ሼ1,… ሽ#ݓ, refers to a certain workflow
template. The set of workflow instances that have to be
considered during a certain period ݐ corresponding to a
certain workflow template ݓ is indicated by ܫ௪ , where
݅௪ ∈ ௪ܫ ൌ ሼ1,… , ݅௪# ሽ refers to a certain workflow instance.
The total number of workflow instances that have to be
considered in period ݐ is indicated by ݅௪# . Please note that
considering a certain instance ݅௪ in period ݐ does not neces-
sarily result in invoking corresponding service instances in
this period. It rather makes sure that it is considered for the
optimization step conducted in period ݐ, which may lead to
the decision that this instance is further delayed – until an-
other optimization step is carried out in a subsequent period.
The remaining execution time for executing a certain in-
stance ݅௪ , which might involve invoking multiple service

International Journal of Cloud Computing (ISSN 2326-7550) Vol. 1, No. 2, October-December 2013	
	

http://hipore.com/ijcc	 	 6	
	

instances for accomplishing the different tasks of a certain

workflow instance, is indicated by the parameter ݁௜ೢ .

Thus, by specifying the parameter 	݁௜ೢ as the remaining
execution time of a certain workflow instance, we account
for the fact that certain tasks of this instance might have
already been accomplished by having invoked correspond-
ing service instances in previous periods.

It has to be noted that executing workflow instances re-
fers to invoking a service ݆௜ೢ that accomplishes a task of
those workflow instances. The service, executing the next
task of a workflow instance, is labeled with ݆௜ೢ

∗ . If, for in-
stance, a workflow instance consists of five tasks, its re-
maining execution time ݁௜ೢ is determined by the sum of the
execution times ௝݁೔ೢ

the services ݆௜ೢ require for accomplish-

ing the different tasks of the workflow instance, i.e.,
݁௜ೢ ൌ ∑ ௝݁೔ೢ௝೔ೢ∈௃೔ೢ

. The set ܬ௜ೢ thereby represents the set of

services that have to be invoked for accomplishing all tasks
of workflow instance ݅௪ . Allocating and executing this
instance refers to invoking the next service ݆௜ೢ

∗ that accom-
plishes the next task, i.e., the first task in this example.
Thus, four tasks of this workflow instance still remain unac-
complished. After having invoked service ݆௜ೢ

∗ , the remaining
execution time ݁௜ೢ for this workflow instance is reduced by
the execution time ௝݁೔ೢ

∗ of the invoked service. Thus, ݁௜ೢ can

be determined by adding up the services' execution times for
the remaining four tasks of this workflow instance (Hoe-
nisch et al., 2013a). The corresponding workflow instance
needs to be executed again, i.e., a service instance accom-
plishing the second task has to be invoked. For accomplish-
ing this second task, the corresponding service becomes the
next service ݆௜ೢ

∗ .
The deadline at which the execution of a workflow in-

stance has to be finished is indicated by the parameter ݀௜ೢ.
Assuming a continuous flow of time, ݀௜ೢ refers to an actual
point in time as, for instance, “23.10.2013, 14:10:00”. For
executing a certain workflow instance ݅௪, i.e., for invoking
the next service ௜݆ೢ

∗ , of a workflow instance, a certain
amount of computational resources from a VM are required.
The resource requirement for the corresponding next ser-
vices is indicated by ݎ௜ೢ.

Regarding the leasing of Cloud resources, we assume
different types ݒ of VMs. The set of VM types is indicated
by the parameter ܸ, where ݒ ∈ ܸ ൌ ሼ1,… , ሽ refers to VM#ݒ
type ݒ . The corresponding resource supply of a VM (in
terms of CPU, RAM, bandwidth) of type ݒ is indicated by
the parameter ݏ௩ . For counting and indexing leased VM
instances of type ݒ , the variable ݇௩ is used. Although in
theory unlimited, we assume the number of leasable VM
instances of type ݒ in a time period ݐ to be restricted by ݇௩#
for modeling reasons, i.e., in order to make the idea of in-
definite resources, provided by Clouds, tangible.

Model 1 Optimization Problem
Objective function

(1) Minimize∑ ܿ௩௩∈௏ ⋅ ሼ௩,௧ሽߛ ൅ 	∑ ∑ ⋅௞ೡ,௧ݕ ௞݂ೡ௞ೡ∈௄ೡ௩∈௏

so that

(2) ߬௧ାଵ ൅ ݁௜ೢ െ ௝݁೔ೢ
∗ ⋅ ௜ೢ,௩ೖ,௧ݔ ൑ ݀௜ೢ	∀ݓ ∈ ܹ, ݅௪ ∈ ௪ܫ

(3) ߬௧ାଵ ൑ ߬௧ ൅ ௝݁೔ೢ
∗ ⋅ ௜ೢ,௩ೖ,௧ݔ ൅ ൫1 െ ௜ೢ,௩ೖ,௧൯ݔ ⋅ 		ܯ

ݓ∀ ∈ ܹ, ݅௪ ∈ ௪ܫ

(4) ߬௧ାଵ ൒ ߬௧ ൅ ߳

(5) ∑ ∑ ௜ೢ௜ೢ∈ூೢ௪∈ௐݎ ⋅ ௜ೢ,௩ೖ,௧ݔ ൑ ௞ೡݏ ⋅ ݒ∀	௞ೡ,௧ݕ ∈
ܸ, ݇௩ ∈ ௩ܭ

(6) ∑ ௞ೡ,௧௞ೡ∈௄ೡݕ ൑ ݒ∀	௩,௧ߛ ∈ ܸ

௞ೡ,௧ݕ (7) ⋅ ௞ೡݏ െ ∑ ∑ ௜ݎ ⋅ ௜ೢ,௞ೡ,௧ݔ ൑ ௞݂ೡ௜ೢ∈ூೢ ݒ∀	 ∈௪∈ௐ

ܸ, ݇௩ ∈ ௩ܭ

௜ೢ,௞ೡ,௧ݔ (8) ൌ ݓ∀	1 ∈ ܹ, ݅௪ ∈ ,௪ܫ ݒ ∈ ܸ, ݇௩ ∈
 runs	݅௪	|	௩ܭ

Thus, we assume a maximum number ݇௩# of leasable VMs.
The set of leasable VM instances of type v is indicated by
௩ܭ , where ݇௩ ∈ ௩ܭ ൌ ሼ1,… , ݇௩#ሽ. The cost for leasing one
VM instance of type ݒ is indicated by ܿ௩.

For finally deciding at period ݐ which service to instanti-
ate and invoke, binary decision variables ݔ௜ೢ,௞ೡ,௧ ∈ ሼ0,1ሽ are
used. A value ݔ௜ೢ,௞ೡ,௧ ൌ 1 indicates that the next service ௜݆ೢ

∗
of workflow instance ݅௪ should be allocated and invoked in
period ݐ at VM ݇௩ , whereas a value ݔ௜ೢ,௞ೡ,௧ ൌ 0 indicates
that the invocation of the corresponding service should be
delayed, i.e., no service of workflow instance ݅௪ should be
invoked in period ݐ. For indicating, whether a certain in-
stance ݇௩ of VM type v should be leased in period t, another
decision variable ݕ௞ೡ,௧ ∈ ሼ0,1ሽ is used. Similar to ݔ௜ೢ,௞ೡ,௧, a
value ݕ௞ೡ,௧ ൌ 1 indicates that instance ݇௩ of VM type ݒ is
leased. The total number of VMs of type ݒ to lease in period
 .௩,௧ߛ is labeled with ݐ

Using these parameters and variables, we formulate the
optimization problem in Model 1 for deciding which work-
flow instances ݅௪ and corresponding services ݆௜ೢ , respec-
tively, should be allocated and invoked in period ݐ.

The constraints in (2) make sure that the deadlines ݀௜ೢ
for workflow instances ݅௪ will not be violated. For this, the
sum of the remaining execution time ݁௜ೢ	and the next opti-
mization point in time ߬௧ାଵ has to be lower or equal to the
deadline. By scheduling a service invocation, the corre-
sponding remaining execution time ݁௜ೢ is reduced, because
the execution time for the next service ௝݁೔ೢ

∗ will be subtract-

ed in this case.
The constraints in (3) and (4) determine the next optimi-

zation point ߬௧ାଵ. In order to avoid optimization deadlocks,
which would result from not advancing the next optimiza-

International Journal of Cloud Computing (ISSN 2326-7550) Vol. 1, No. 2, October-December 2013	
	

http://hipore.com/ijcc	 	 7	
	

tion time ߬௧ାଵ, ߬௧ାଵ is restricted in (4) to be greater or equal
to ߬௧ plus a small value ߳ ൐ 0. In order to replan the sched-
uling and invocation of workflows instances as soon as a
service invocation has been finished, ߬௧ାଵ should be lower
or equal to ߬௧ାଵ plus the minimum execution time of the
services invoked in period ݐ. Using an additional parameter

ܯ ൒ max ቀ ௝݁೔ೢ
ቁ, the last term in (3) thereby makes sure that

services that are not invoked in this period do not restrict
߬௧ାଵ, to be lower or equal to ߬௧. However, a replanning will
anyhow be triggered if events such as the request of further
workflow instances or the accomplishment of a certain in-
voked service occur.

The constraints in (5) make sure that the resource ca-
pacities required by the next services for workflow instances
݅௪ assigned to instance ݇௩ of VM type ݒ are lower or equal
to the capacities these VM instances can offer. If processes
are assigned to a certain instance ݇௩ of type ݒ , the corre-
sponding decision variable ݕ௞ೡ,௧ will assume a value of 1.
The sum of all decision variables ݕ௞ೡ,௧ determines the total
number ߛ௩,௧ of instances for VMs of type ݒ, as indicated in
(6). In (7), the amount of unused capacities for VM instance
݇௩, which is indicated by the variable ௞݂ೡ, is determined. In
order to account for running service instances invoked in
previous periods, corresponding decision variables are set
to 1, which is indicated in (8).

The objective function, which is specified in (1), aims at
minimizing the total cost for leasing VMs. In addition, by
adding the amount of unused capacities ௞݂ೡ of leased VMs
to the total cost, the objective function also aims at minimiz-
ing unused capacities of leased VM instances.

3.3 HEURISTIC	SOLUTION	APPROACH	

Due to its formulation as integer linear program, the so-

lution approach from the previous section features relatively
high computational complexity, which renders its applica-
bility to realistic, large-scale scenarios difficult. Hence, for
efficiently solving the optimization problem presented in the
last subsection, we develop a heuristic solution method.

This heuristic basically examines which workflow in-
stances ݅௪ and services ݆௜ೢ, respectively, have to be sched-
uled and invoked in the current optimization period ݐ in
order to avoid violating corresponding deadlines ݀௜ೢ . For
this, the heuristic initially determines the point in time ߬௧ାଵ,
where the next optimization step has to be carried out – at
the latest. Corresponding to this (latest) subsequent optimi-
zation time, a virtual time buffer is calculated for each work-
flow instance, which will be referred to as slack, indicating
the time, the corresponding instance ݅௪ may be delayed at
maximum, before a violation of the corresponding deadline
݀௪ takes place. Those instances, for which the slack is low-
er than 0, i.e., those instances, for which a further delay
would result in violating a workflow deadline, are consid-
ered as critical. Thus, at first, we try to invoke the critical

ALGORITHM	1:	HEURISTIC	SOLUTION	APPROACH	
1: //Initialize variables
2: d[w,i]; //Deadline for instance i of

workflow w
3: e[w,i]; //Remaining execution time for

instance i of workflow w
4: s[v]; //Resource supply for VM of type v
5: k[v]; //Number of already leased VMs of

type v
6: leasedVM[v,k]; //kth VM instance of type

v
7: unusedRes[v,k]; //Unused resources for

kth VM of type v
8: sl[w,i] := new Double[w#,i#]; //Array for

slack
9: rcrit := 0; //Aggregated resource demand

for critical instances
10: vmTypList; //List of available VM types,

sorted by size ascending
11: sortList := new List(); //Sorted List

corresponding to slack
12: critList := new List(); //List

containing critical instances
13: t+1 = d[1,1]; //Initialize next

optimization point in time
14: //Compute t+1
15: for (w=1;w≤w#;w=w+1) do
16: for (i=1;i≤i#;i=i+1) do
17: if d[w,i]-e[w,i]-t+1 then
18: t+1=d[w,i]-e[w,i];//Get minimum t+1
19: end if
20: if t+1≤t then
21: t+1=t+;//Avoid deadlocks
22: end if
23: end for
24: end for
25: //Compute slack sliw
26: for (w=1;w≤w#;w=w+1) do
27: for (i=1;i≤i#;i=i+1) do
28: sl[w,i]=d[w,i]-e[w,i]-t+1;//Get slack
29: if sl[w,i]<0 then
30: critList.add(getInst(w,i));
31: rcrit=rcrit+getInst(w,i).

 resNextService();
32: else
33: sortList.

 insert(getInst(w,i),sl[w,i]);
34: end if
35: end for
36: end for
37: //Invoke critical instances on leased

but unused resources
38: usedRes=placeOnUnusedRes(critList);
39: rcrit= rcrit-usedRes;
40: //lease new VMs until rcrit is satisfied
41: leaseNewVMs(rcrit);
42: //Place further non-critical instances

on unused resources
43: placeOnUnusedRes(sortList);

International Journal of Cloud Computing (ISSN 2326-7550) Vol. 1, No. 2, October-December 2013	
	

http://hipore.com/ijcc	 	 8	
	

services instances on such VM instances that are already
leased and running. Afterwards, we lease new VM instances
such that all remaining critical service instances are allocat-
ed and invoked in the current period. Finally, in order to
minimize unused resources of leased VM instances, we
invoke service instances on the leased VM instances corre-
sponding to their slack.

This heuristic solution method is provided in Algo-
rithm 1 using pseudocode. Corresponding methods used in
Algorithm 1 are indicated in Algorithm 2, Algorithm 3 and
Algorithm 4. In lines 1-13 of Algorithm 1, the required
parameters and variables are initialized. For instance, the
deadlines ݀௜ೢ for workflow instances ݅௪ of workflow tem-
plate ݓ are initialized in line 2. In this respect, it has to be
noted that the corresponding parameter ݀ሾݓ, ݅ሿ represents an
array containing all deadlines ݀௜ೢ of workflow instances ݅௪
that are considered at optimization period ݐ. Analogously,
݁ሾݓ, ݅ሿ represents an array for the remaining execution
times of workflow instances ݅௪ , which is initialized in
line 3. The resource supply ݏ௩ for a VM of type ݒ is initial-
ized in line 4, whereas the number of instances ݇௩ of leased
VMs of type ݒ is initialized in line 5. Note that VM instanc-
es potentially have been leased in previous periods. Thus,
the number of instances ݇௩ is not necessarily 0 when carry-
ing out an optimization step.

Correspondingly, leased VMs as well as unused re-
sources of already leased VMs, which are indicated by the
arrays ݈݁ܽܯܸ݀݁ݏሾݒ, ݇ሿ and ݏܴ݁݀݁ݏݑ݊ݑሾݒ, ݇ሿ , have to be
considered (cf. lines 6-7). For computing the slack of all
workflow instances and aggregating the resource demands
of the critical instances, the array ݈ݏሾݓ, ݅ሿ and the variable

ALGORITHM	2:	METHOD	PLACEONUNUSEDRES(LIST)	
1: //Variable Initialization
2: usedRes = 0;
3: removeList = new List();
4: for

(iter=1;iter≤list.size();iter=iter+1) do
5: inst = list.get(iter);
6: r = inst.resNextService();
7: placed = false;
8: for (v=1;v≤v#;v=v+1) do
9: if (!placed) then
10: for (k=k[v];k≥1;k=k-1) do
11: if (r≤unusedRes[v,k]) then
12: placeInst(inst,leasedVM[v,k]);
13: placed = true;
14: unusedRes[v,k]=unused[v,k]-r;
15: usedRes = unused[v,k]-r;
16: removeList.add(inst);
17: break;
18: end if
19: end for
20: end if
21: end for
22: end for
23: list.remove(removeList);
24: return usedRes;

 ௖௥௜௧ is used (cf. lines 8-9). Since in this heuristic, differentݎ
sizes of VMs are considered, i.e., they differ in the amount
of available resources, a list of the available VM types is
stored in ݐݏ݅ܮ݌ݕܶ݉ݒ in line 10. This list is sorted in ascend-
ing order by the VMs’ sizes, i.e., the smallest VM comes
first. In lines 11-12, empty lists are created for storing the
critical instances as well as the non-critical instances, which
are sorted in the list ݐݏ݅ܮݐݎ݋ݏ corresponding to their slack.
Finally, the point in time ߬௧ାଵ, where the next optimization
step has to be carried out at latest, is initialized with an
arbitrary deadline, as, e.g., ݀ଵభ.

Having initialized required parameters and variables,
߬௧ାଵ is determined in lines 15-24 by computing the mini-
mum difference between deadlines ݀௜ೢ and the remaining
execution times ݁௜ೢ for all workflow instances. For this
point in time, the difference between remaining execution
time and deadline, i.e., the slack, will be 0 for at least one
workflow instance. In order to avoid deadlocks that will
result if the subsequent optimization time ߬௧ାଵ is equal to
the current time ߬௧ାଵ , a small value ߳ ൐ 0 is added (cf.
lines 20-21).

In lines 26-36, the slack for each workflow instance is
computed (cf. line 28) and the corresponding workflow
instances are either added to the list of critical instances (cf.
line 30) or inserted into a sorted list of (non-critical) in-
stances (cf. line 33) corresponding to their slack. In addi-
tion, the resource requirements for the next services of the
critical workflow instances are aggregated (cf. line 31).

The corresponding critical service instances need to be
allocated and invoked in the current period – either on al-
ready leased and running VM instances or on further VM
instances that have to be additionally leased in this period.
Invoking critical service instances on already leased VM
instances is accounted for in line 38 by calling the method
ݏܴ݁݀݁ݏݑܷܱ݈݊݊݁ܿܽ݌ , which is provided in Algorithm 2.
Within Algorithm 2, the method ݐݏ݊ܫ݈݁ܿܽ݌ is called, which
is provided in Algorithm 3.

ALGORITHM	3:	METHOD	PLACEINST(LIST,VM,K)	

1: //Variable Initialization
2: v = VM.getType();
3: removeList = new List();
4: unusedRes = supply[v];
5: for (iter=1; iter≤list.size();

iter=iter+1) do
6: inst = list.get(iter);
7: r = inst.resNextService();
8: if (unusedRes≥r) then
9: placeInst(inst,leasedVM[v,k]);
10: unusedRes=unusedRes-r;
11: removeList.add(inst);
12: end if
13: end for
14: list.remove(removeList);
15: return supply[v]-unusedRes;

	
	 	

International Journal of Cloud Computing (ISSN 2326-7550) Vol. 1, No. 2, October-December 2013	
	

http://hipore.com/ijcc	 	 9	
	

ALGORITHM	4:	METHOD	LEASENEWVMS(RES)	
1: //Variable Initialization
2: vm; //Temp variable for new VM
3: while (rcrit>0) do
4: for (iter=1; iter≤vmTypList.size();

iter=iter+1) do
5: v := vmTypList.get(iter);
6: if (supply[v]≥rcrit OR

iter==vmTypList.size()) then
7: //start a new VM of type v
8: vm = leaseVM(v);
9: k[v] = k[v]+1;
10: leasedVM[v,k[v]-1] = vm;
11: unusedRes[vm,k[v]-1] = supply[v];
12: usedRes = placeInst(critList,vm,

k[v]-1);
13: rcrit = rcrit-usedRes;
14: break;
15: end if
16: end for
17: end while

In line 39, the resource requirements of the successfully

invoked critical instances are subtracted from the aggregated
resource demand of the remaining critical service instances.
In line 41, additionally required resources are acquired. For
this, the method ݈݁ܽݏܯܸݓ݁ܰ݁ݏ (Algorithm 4) is called.

The types of the new VMs are chosen according to the
following procedure: In general we successively try to ac-
quire VMs with rather high resource supply aiming at reduc-
ing unused resource capacities due to having a large number
of rather small-sized VMs. In addition, the cost of VMs in
our scenario is proportional (see Section 2.4), i.e., larger
VMs will provide a proportionately lower basic load that is
not available to service instances. Therefore, as long as
more resources are required, i.e., ݎ௖௥௜௧ ൐ 0 (cf. line 3 in
Algorithm 4), a new VM having the least amount of provid-
ed resources, but still bigger or equal to the required re-
source demand ݎ௖௥௜௧ (cf. line 6), will be leased. If no VM
type fulfills this requirement, the biggest available VM type
will be leased (cf. line 7, i.e., if the end of vmTypList is
reached). Subsequent to that, a new VM having this type
will be leased (cf. line 8). If a new VM is leased, the re-
source demand ݎ௖௥௜௧ will be reduced by the amount of actu-
ally used resources, i.e., after having placed critical instanc-
es on this VM (cf. line 12-13). Before this, we update in
lines 9-11 the number of leased VM instances of type ݒ, i.e.,
݇௩, store the corresponding VM instance, and set the value
of its unused resource supply to the (maximum) supply of a
VM of type ݒ. Using the method	ݐݏ݊ܫ݈݁ܿܽ݌, which is pro-
vided in Algorithm 3, we allocate critical service instances
on the newly leased VM such that no further critical service
instances can be placed on it due to its limited resource
capacity. Subsequently, a “break” statement will stop the
 loop and the procedure will be repeated until enough ݎ݋݂
resources are available.

Corresponding to the presented algorithm for leasing
additional resources (Algorithm 4), it is possible that re-

sources are still available on the leased VMs , i.e., they are
not fully utilized. Therefore, we invoke further scheduled
service instances on (already) leased VM instances in order
to reduce the amount of unused VM resources. This is real-
ized in line 43 of Algorithm 1 by calling the method
 .another time (cf. Algorithm 2) ݏܴ݁݀݁ݏݑܷܱ݈݊݊݁ܿܽ݌

Based on the results of the algorithms, the Reasoner is
able to lease/release resources corresponding to the calculat-
ed resource demand. In addition, the Workflow Manager
gets the information at which point in time to invoke which
service instance as part of which workflow instance.

4. EVALUATION	
The Vienna Platform for Elastic Processes is a purely

Java-based framework and was developed and tested in a
Unix-based environment. The evaluation was done in a
private Cloud running the OpenStack operating system. The
individual services are deployed in an Apache Tomcat-
based Application Server. In the following, we present our
General Evaluation Approach (Section 4.1), i.e., the evalua-
tion scenario including the evaluation criteria. The experi-
ment’s results are presented in Section 4.2.

4.1 GENERAL	EVALUATION	APPROACH	

While ViePEP and the presented reasoning approach are
applicable in arbitrary process landscapes and industries, we
evaluate the heuristic using a data analysis process from the
finance industry. Choosing this particular process does not
restrict the portability of our approach. We apply a testbed-
driven evaluation approach, i.e., real Cloud resources are
used. For the individual services, we simulate differing
workloads regarding CPU and RAM utilization and service
execution time (see below). However, real services are de-
ployed and invoked during workflow executions.

To simplify an interpretation of the chosen evaluation
settings, we decided to make use of one single workflow
which will be processed 20,000 times. This sequential work-
flow consists out of five individual service steps: The light-
weight Dataloader Service simulates the loading of data
from an arbitrary source; afterwards, the more resource-
intensive Pre-Processing Service is invoked; next, the Cal-
culation Service simulates data processing, which leads to
high CPU load; then, the Reporting Service generates a
simple report – it generates a load similar to the one of the
Pre-Processing Service. Last, the Mailing Service sends the
report to different recipients – this is a lightweight service
comparable to the Dataloader Service. The user-defined
maximum execution time for workflow instances has been
set to 5 minutes, commencing with the request.

In order to test our optimization approach against a base-
line, we have implemented a very basic ad hoc approach. As
the name implies, this approach is only able to take into
account currently incoming workflow requests in an ad hoc
way. While this includes the scheduling of workflow re-
quests, the baseline approach does not take into account

International Journal of Cloud Computing (ISSN 2326-7550) Vol. 1, No. 2, October-December 2013	
	

http://hipore.com/ijcc	 	 10	
	

future resource demands. Instead, whenever a Backend VM
is utilized more than 80%, an additional single-core
Backend VM for the according service is leased. When the
utilization is below 20%, the VM is released again. Notably,
the baseline approach will only lease single-core VMs, as it
is not able to take into account future resource demands.

Arrival Patterns We make use of two distinct workflow
request arrival patterns: In the Constant Arrival pattern, the
workflow requests arrive in a constant manner. This means,
the same amount of workflows arrives in a regular interval.
In our evaluation, the number of simultaneously executed
workflows is set to 200 and is send to ViePEP every 20
seconds. In the Linear Arrival pattern, the workflows are
executed following a linear rising function, i.e., ݕ ൌ ݇ ∗

ቔ௫
ଷ
ቕ ൅ 40,	where ݕ is the amount of concurrent requests and

40 is the start value. This value is increased by ݇ ൌ 40 at an
interval of 60 seconds.

Metrics In order to get reliable numbers, we executed
each arrival pattern three times and evaluated the results
against three quantitative metrics. First, we measure the
overall execution duration which is needed to process all
20,000 workflow requests (Duration in Minutes). This is the
timespan from the arrival of the first workflow request until
the last step of the last workflow instance has been pro-
cessed successfully. The second metric is the amount of
concurrently leased number of cores, i.e., the sum of (CPU)
cores of the leased VMs (Active Cores). The combination of
the first two metrics, results in Cost in Core-Minutes, i.e.,
these tell us the resulting cost of the overall evaluation. The
Core-Minutes are calculated following a similar pricing
schema as Amazons EC2, i.e., the VMs cost increase pro-
portionally with the number of provided resources. Our
evaluation environment, i.e., the private Cloud we are run-
ning ViePEP in, provides four different VM types with 1-4
cores respectively In order to get the resulting cost, we sum
up the active cores over time and get the overall Core-
Minutes.

4.2 RESULTS	AND	DISCUSSION	
Table 1 and Figures 3-4 present our evaluation results in

terms of the average numbers from the conducted evaluation
runs. Table 1 presents the observed metrics as discussed in
the last section for both arrival patterns. For each pattern,
the numbers for evaluation runs are given for the baseline
algorithm as well as the deployed optimization approach.
The table also states the standard deviation for each metric.
In general, the observed standard deviation is low, and
therefore indicates a low dispersion in the results of the
evaluation runs. Figures 3-4 complete the presentation of the
average evaluation results by depicting the arrival patterns
over time and the number of active cores until all workflow
requests have been served. To combine numbers from dif-
ferent evaluation runs, we apply nearest-neighbor interpola-
tion to the next full minute.

The numbers in Table 1 indicate a substantial perfor-
mance difference between the baseline and the optimization
approach. Most importantly, the cost in terms of Core-
Minutes is lower in both cases, leading to almost 16.5% cost
savings for the Constant Arrival pattern and 22.6% for the
Linear Arrival pattern. Hence, we can deduce that the opti-
mization approach helps to achieve a significantly better
utilization of VMs, thus preventing additional cost arising
from overprovisioning of Cloud-based computational re-
sources. Also, the optimization approach is faster in abso-
lute numbers, as it needs 25% less time to execute all work-
flow requests in the Constant Arrival pattern and 22.3% in
the Linear Arrival pattern.

For both arrival patterns, the baseline approach is in
many cases not able to comply with the workflow deadlines
(5 minutes), as can be seen from the backlog after all work-
flow requests have arrived. This can be traced back to the
applied ad hoc approach, i.e., it takes the baseline approach
too long to react to new workflow requests and adjust the
number of leased VMs correspondingly.

TABLE	1:	EVALUATION	RESULTS	

 Constant Arrival Linear Arrival

Baseline
Reasoner

+ Scheduler
Baseline

Reasoner
+ Scheduler

Number of Workflow Requests 20,000
Interval between two

Request Bursts (in Seconds)
20 20

Number of Requests in
one Burst

ݕ 200 ൌ 40 ∗ ቔ
ݔ
3
ቕ ൅ 40

Duration in Minutes
(Standard Deviation)

52
(σ = 2.16)

39
(σ = 0.81)

28.67
(σ = 1.25)

22
(σ = 0.82)

Max. Active Cores
(Standard Deviation)

11
(σ = 0)

10
(σ = 0)

18
(σ = 0)

16.66
(σ = 0.47)

Cost in Core-Minutes
(Standard Deviation)

443.67
(σ = 7.72)

370.33
(σ = 5.90)

314.71
(σ = 25.36)

243.59
(σ = 6.70)

	

International Journal of Cloud Computing (ISSN 2326-7550) Vol. 1, No. 2, October-December 2013	
	

http://hipore.com/ijcc	 	 11	
	

	

FIGURE	3:	CONSTANT	ARRIVAL	RESULTS	

	

FIGURE	4:	LINEAR	ARRIVAL	RESULTS	

Interestingly, for the Constant Arrival pattern, Figure 3
shows clearly that ViePEP was able to optimize the sys-
tem’s landscape almost perfectly, i.e., the number of active
VMs vary only a few times during the experiment. It can be
perfectly seen that the optimization approach (i.e., “Reason-
er + Scheduler”) is not only faster than the baseline, but also
acquired less overall computing resources, i.e., VMs.

For the Linear Arrival pattern, the number of active
cores increases quite similarly for the optimization and the
baseline. However, the biggest difference is that in the
“Reasoner + Scheduler” approach, VMs with more than one
core are acquired while in the baseline approach only single-
core VMs are acquired. This results in a slower processing

of the whole workflow queue since the overhead of the
operating system is comparable higher in a single-core VM
than in a quad-core VM.

To summarize, the evaluation results show that the pro-
posed optimization approach indeed leads to a more effi-
cient allocation of computational resources. As a result,
ViePEP is able to provide a higher cost-efficiency than
approaches that do not take the process perspective into
account – in our evaluation, such approaches where repre-
sented by the baseline. In addition, ViePEP is able to de-
crease the risk of under- and overprovisioning and therefore
adds an important functionality to BPMS.

5. RELATED	WORK	
Research on the utilization of Cloud-based computation-

al resources for the execution of business processes is still at
its beginning (Dustdar et al., 2011; Andrikopoulos et al.,
2013). To the best of our knowledge, the number of ap-
proaches is still very small, but nevertheless, there is related
work from other fields of research which should be taken
into account, i.e., resource allocation and service provision-
ing for single tasks (Section 5.1), for Scientific Workflows
(Section 5.2), and for business processes (Section 5.3).

5.1 SINGLE	TASKS	

In the field of Cloud Computing, resource allocation and
automated service provisioning is a major research chal-
lenge (Buyya et al., 2009), and many methods and algo-
rithms to allocate or schedule single service requests in an
ad hoc manner have been proposed in recent years. These
approaches focus on different aspects, with cost optimiza-
tion and resource utilization naturally being the most obvi-
ous ones. For instance, Lampe et al. (2011) define the Soft-
ware Service Distribution Problem in order to appoint ser-
vices on the Software as a Service (SaaS) level to particular
VMs on the Infrastructure as a Service (IaaS) level. The
authors make use of a Knapsack-based heuristic approach in
order to solve the problem. Li and Venugopal (2011) pro-
vide mechanisms to automatically scale applications up and
down on the IaaS level. For this, a reinforcement learning
approach is followed, which learns the best server and ap-
plication actions. QoS and SLA enforcement are also taken
into account, e.g., by Buyya et al. (2010), who propose the
federation of independent Cloud resources in order to deliv-
er the needed QoS in a cost-efficient way, or by Cardellini
et al. (2011), who model resource management in terms of
VM allocation for services as a mixed integer linear optimi-
zation problem and propose heuristics to solve them. Wu et
al. (2011) discuss dynamic resource allocation from the
perspective of a SaaS provider, aiming at profit maximiza-
tion. Scheduling of service requests is based on defined
SLAs between the provider and its customers.

All approaches discussed so far lack a process perspec-
tive across utilized resources, but focus on the ad hoc alloca-
tion of Cloud resources for individual services and tasks.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22

 0 5 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0

 4
5

 5
0

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

 750

 800

A
m

ou
nt

 o
f A

ct
iv

e
C

or
es

A
m

ou
nt

 o
f P

ar
ra

lle
l W

or
kf

lo
w

 R
eq

ue
st

 A
rr

iv
al

s

Time in Minutes

Reasoner + Scheduler
Baseline

Workflow Request Arrivals

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22

 0 5 1
0

 1
5

 2
0

 2
5

 3
0

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

 750

 800

A
m

ou
nt

 o
f A

ct
iv

e
C

or
es

A
m

ou
nt

 o
f P

ar
ra

lle
l W

or
kf

lo
w

 R
eq

ue
st

 A
rr

iv
al

s

Time in Minutes

Reasoner + Scheduler
Baseline

Workflow Request Arrivals

International Journal of Cloud Computing (ISSN 2326-7550) Vol. 1, No. 2, October-December 2013	
	

http://hipore.com/ijcc	 	 12	
	

5.2 SCIENTIFIC	WORKFLOWS
There have been several approaches to utilize Cloud re-

sources for the execution of Scientific Workflows (SWFs),
e.g., by Hoffa et al. (2008) or Juve and Deelman (2010).
Pandey et al. (2010) propose the usage of Particle Swarm
Optimization for scheduling SWFs on Cloud resources. The
authors especially take into account the cost of data trans-
missions and storage cost and focus on the minimization of
total cost. SLAs or QoS aspects are not taken into account.
Szabo and Kroeger (2012) apply evolutionary algorithms in
order to solve scheduling for data-intensive SWFs on a fixed
number of VMs. Deadlines are not explicitly regarded and
only one workflow is considered at a time. The latter con-
straint also applies to the works by Byun et al. (2011) and
Abrishami et al. (2013), who both present resource alloca-
tion and scheduling approaches to optimize cost under a
user-defined deadline. While these approaches offer inter-
esting ideas and insights, there are certain differences be-
tween business processes and SWFs that prevent a direct
adaptation of such approaches (Ludäscher et al., 2009).

5.3 BUSINESS	PROCESSES

Approaches which directly address business processes
are still scarce, but recently, a number of researchers have
started to present corresponding work: Xu et al. (2009)
provide some basic assumptions for the work at hand, most
importantly, that workflows are interdependent and share
services. Optimization of scheduling is done with respect to
cost and time, but SLAs are not taken into account. While
not explicitly regarding business processes, Lee et al. (2010)
allow the execution of applications composed from interde-
pendent services running on different machines. The authors
focus on maximizing the profit for an IaaS broker, who
leases resources and provides VMs to service consumers.

Juhnke et al. (2011) provide an extension to a standard
BPEL workflow engine, which allows making use of Cloud
resources to execute business processes. As BPEL is ap-
plied, workflows are composed from services, which mir-
rors our approach. It is possible to execute several work-
flows in parallel and optimize their scheduling and the re-
source allocation with respect to cost and overall execution
time; apart from the cost for VMs, data transfer cost are also
taken into account. A genetic algorithm is applied to solve
the optimization problem. However, workflow deadlines are
not regarded. Hence, this approach makes use of a similar
resource model as done by the SWF approaches discussed
above. The same applies to the work by Bessai et al. (2013),
who also assume that workflows are composed from single
software services. The authors propose different methods to
optimize resource allocation and scheduling, aiming at cost
or time optimization or to find a pareto-optimal solution
covering both cost and time. Tasks may be shared among
concurrent workflows, but in contrast to our work, tasks will
not share the same VM (and service instance) concurrently.
Deadlines are also not regarded. As the discussed approach-

es do not regard deadlines, they are not able to optimize
resource allocation through postponing particular workflows
steps to future timeslots.

Wei and Blake (2013) and Wei et al. (2013) propose a
similar approach – again, workflows are built from single
services and the authors focus on resource allocation. While
service instances may be part of different workflows (Wei et
al., 2013), the authors do not allow for parallel service invo-
cations in different workflows, i.e., one service instance can
only be invoked by a particular workflow at a time. In con-
trast, we follow the “classic” service composition model,
which allows exactly this. The authors do not take into ac-
count SLAs or workflow deadlines, but a workflow owner
may define some generic QoS constraints (Wei et al., 2013).
Since deadlines are not taken into account, the authors do
not provide scheduling mechanisms. Cost areCosts are also
not regarded explicitly, but mechanisms are presented which
aim at saving cost. Because workflows are not able to con-
currently share service instances, the potential for optimiza-
tion of resource allocation is not completely exploited. Simi-
lar to Bessai et al. (2013), Wei et al. also do not implement a
testbed to test their algorithms, but use simulation in their
evaluation. Despite the differences between our work and
the work by Wei et al., there are also some commonalities,
e.g., to allow different sizes of VMs at proportional cost.
Furthermore, Wei and Blake (2013) also discuss the usage
of resource demand prediction as a prerequisite for resource
allocation.

Janiesch et al. (2014) provide an extensive conceptual
model for Elastic Processes and implement an correspond-
ing testbed which makes use of Amazon Web Services. The
authors take into account SLAs (including workflow dead-
lines) and cost optimization, but do not provide automatic
scheduling and resource allocation methods yet. In contrast
to our work, the authors do not make use of workflow moni-
toring data to derive resource demands for upcoming ser-
vices, but assume that there is a correlation between the
resource demands of different tasks in a workflow. Apply-
ing a complementary scenario to the work presented within
this paper, Gambi and Pautasso (2013) define design princi-
ples for RESTful business processes executed using Cloud
resources. However, the authors propose to place complete
processes on the same VM instead of allowing distributing
services which belong to different workflows on different
VMs. Hence, it is not possible to share resources between
workflows. Finally, Frincu et al. (2013) analyze the applica-
tion of resource provisioning and scheduling approaches for
Grid workflows to Cloud-based workflows.

6. CONCLUSION	
Resource-intensive processes and their execution using

workflow and service technologies play an increasingly
important role in many industries. The usage of Cloud re-
sources to allow the execution of such processes in an elas-
tic way seems to be an obvious choice, but so far, BPMS do

International Journal of Cloud Computing (ISSN 2326-7550) Vol. 1, No. 2, October-December 2013	
	

http://hipore.com/ijcc	 	 13	
	

lack the ability to lease and release Cloud resources and
allocate them in order to execute workflows.

In this paper, we have presented the Vienna Platform for
Elastic Processes, which combines the functionalities of a
BPMS with that of a Cloud resource management system.
We have also presented an extended optimization model and
heuristic for workflow scheduling and resource allocation
for Elastic Process execution. As has been shown in our
evaluation, the optimization approach leads to significant
cost saving and time savings

Research on Elastic Processes is just at the beginning.
There are several research directions that should be pursued
in the future. First of all, we would like to extend the basic
model of our workflow scheduling and resource allocation
approach by allowing several different service instances per
VM, vertical and horizontal scaling of VMs, a more com-
plex VM model (e.g., non-proportional cost for VMs, mini-
mum lease periods for VMs from public Clouds), include
data transfer cost when scheduling workflows, and explicit-
ly taking into account more complex workflow patterns.
Second, while ViePEP was conceptualized for usage in
hybrid Clouds, we are currently running it within a private
Cloud environment. In the future, we will extend it by mak-
ing it possible to combine public and private Cloud re-
sources. Third, while the evaluation provides important
results, we consider it as preliminary. In our future work, we
want to make use of a more realistic Elastic Process test
collection; we will also provide this test collection to inter-
ested researchers. Last but not least, we are currently reen-
gineering ViePEP in order to make it ready for distribution
as Open Source software.

7. ACKNOWLEDGMENTS	
This work is partially supported by the European Union

within the SIMPLI-CITY FP7-ICT project (Grant agree-
ment no. 318201) and by the E-Finance Lab e.V., Frank-
furt am Main, Germany (www.efinancelab.de).

This paper is an extended version of Hoenisch et al.
(2013).

8. REFERENCES	
Abrishami, S., Naghibzadeh, M., Epema, D.H.J. (2013). Deadline-
constrained workflow scheduling algorithms for Infrastructure as a Service
Clouds, Future Generation Computer Systems, 29(1), 158-169.
Andrikopoulos, V., Binz, T., Leymann, F., Strauch, S. (2013). How to
adapt applications for the Cloud environment – Challenges and solutions in
migrating applications to the Cloud, Computing, 95(6), 493-535.
Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A.,
Lee, G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M. (2010). A View
of Cloud Computing, Communications of the ACM, 53(4), 50-58.
Bessai, K., Youcef, S., Oulamara, A., Godart, C. (2013). Bi-criteria Strate-
gies for Business Processes Scheduling in Cloud Environments with Fair-
ness Metrics, Proc. of IEEE 7th Intern. Conf. on Research Challenges in
Information Science (RCIS 2013), Paris, France, 1-10.
Breu, R., Dustdar, S., Eder, J., Huemer, C., Kappel, G., Köpke, J., Langer,
P., Mangler, J., Mendling, J., Neumann, G., Rinderle-Ma, S., Schulte, S.,
Sobernig, S., Weber. B. (2013). Towards Living Inter-Organizational
Processes, Proc. of the 15th IEEE Conf. on Business Informatics (CBI
2013), Vienna, Austria, 363-366.

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., Brandic, I. (2009).
Cloud computing and emerging IT platforms: Vision, hype, and reality for
delivering computing as the 5th utility, Future Generation Computing
Systems, 25(6), 599-616.
Buyya, R., Ranjan, R., Calheiros, R. N. (2010). InterCloud: Utility-
Oriented Federation of Cloud Computing Environments for Scaling of
Application Services, Proc. of 10th Intern. Conf. on Algorithms and Archi-
tectures for Parallel Processing (ICA3PP 2010), Busan, Korea, 13-31.
Byun, E.-K., Kee, Y.-S., Kim, J.-S., Maeng, S. (2011). Cost optimized
provisioning of elastic resources for application workflows, Future Gen-
eration Computer Systems, 27(8), 1011-1026.
Cardellini, V., Casalicchio, E., Lo Presti, F., Silvestri, L. (2011). SLA-
aware Resource Management for Application Service Providers in the
Cloud, Proc. of the First Intern. Symposium on Network Cloud Computing
and Applications (NCCA ’11), Toulouse, France, 20-27.
Dustdar, S., Guo, Y., Satzger, B., Truong, H.-L. (2011). Principles of
Elastic Processes, IEEE Internet Computing, 15(5), 66-71.
Dustdar., S., Schreiner, W. (2005). A survey on web services composition,
Intern. J. of Web and Grid Services, 1(1), 1-30.
Frincu, M. E., Genaud, S., Gossa, J. (2013). Comparing Provisioning and
Scheduling Strategies for Workflows on Clouds, Proc. of the 2013 IEEE
27th Intern. Symposium on Parallel and Distributed Processing (IPDPS
2013) Works. and PhD Forum – 2nd Intern. Works. on Workflow Models,
Systems, Services and Applications in the Cloud (CloudFlow 2013), Bos-
ton, MA, USA, 2101-2110.
Gambi, A., Pautasso, C. (2010). RESTful Business Process Management in
the Cloud, Proc. of the 5th Intern. Works. on Principles of Engineering
Service-Oriented Systems (PESOS 2013) in conjunction with the 35th
Intern. Conf. on Software Engineering (ICSE 2013), San Francisco, CA,
USA, 1-10.
Gewald, H., Dibbern, J. (2009). Risks and benefits of business process
outsourcing: A study of transaction services in the German banking indus-
try, Information & Management, 46(4), 249-257.
Hoenisch, P., Schulte, S., Dustdar, S., Venugopal, S. (2013). Self-Adaptive
Resource Allocation for Elastic Process Execution, Proc. of IEEE 6th
Intern. Conf. on Cloud Computing (CLOUD 2013), Santa Clara, CA, USA,
220-227.
Hoenisch, P., Schulte, S., Dustdar, S. (2013a). Workflow Scheduling and
Resource Allocation for Cloud-based Execution of Elastic Processes
(forthcoming), Proc. of 6th IEEE Intern. Conf. on Service Oriented Compu-
ting and Applications (SOCA), Kauai, HI, USA; NN-NN.
Hoffa, C., Mehta, G., Freeman, T., Deelman, E., Keahey, K., Berriman, B.,
Good, J. (2008). On the Use of Cloud Computing for Scientific Workflows,
Proc. of IEEE Fourth Intern. Conf. on e-Science (e-Science’08), Indianapo-
lis, IN, USA, 640-645.
Huang, Z, van der Aalst, W. M. P., Lu, X., Duan, H. (2011). Reinforcement
learning based resource allocation in business process management, Data
& Knowledge Engineering, 70(1), 127-145.
Janiesch, C., Weber, I., Menzel, M., Kuhlenkamp. J. (2014). Optimizing
the Performance of Automated Business Processes Executed on Virtualized
Resources (forthcoming), Proc. of Hawaii Intern. Conf. on System Sciences
(HICSS-47), Hawaii, USA, NN-NN.
Jin, T., Wang. J., Rosa, M. L., ter Hofstede, A. H. M., Wen, L. (2013).
Efficient Querying of Large Process Model Repositories, Computers in
Industry, 64(1), 41-49.
Juhnke, E., Dörnemann, T., Bock, D., Freisleben, B. (2011). Multi-objetive
Scheduling of BPEL Workflows in Geographically Distributed Clouds,
Proc. of IEEE 4th Intern. Conf. on Cloud Computing (CLOUD 2011),
Washington DC, USA, 412-419.
Juve, G., Deelman, E. (2010). Scientific Workflows and Clouds, ACM
Crossroads, 16(3), 14-18.
Kephart, J. O., Chess, D. M. (2003). The Vision of Autonomic Computing,
Computer, 36(1), 41-50.
Kühn, E., Mordinyi, R., Lang, M., Selimovic, A. (2009). Towards Zero-
Delay Recovery of Agents in Production Automation Systems, Proc. of
2009 IEEE/WIC/ACM Conf. on Intelligent Agent Technology (IAT 2009),
Milano, Italy, 307-310.
Lampe, U., Mayer, T., Hiemer, J., Schuller, D., Steinmetz, R. (2011).
Enabling Cost-Efficient Software Service Distribution in Infrastructure

International Journal of Cloud Computing (ISSN 2326-7550) Vol. 1, No. 2, October-December 2013	
	

http://hipore.com/ijcc	 	 14	
	

Clouds at Run Time, Proc. of 4th IEEE Intern. Conf. on Service-Oriented
Computing and Applications (SOCA 2011), Irvine, CA, USA, 1-8.
Lee, Y.C., Wang, C., Zomaya, A. Y., Zhou, B. B. (2010). Profit-Driven
Service Request Scheduling in Clouds, Proc. of 10th IEEE/ACM Intern.
Conf. on Cluster, Cloud and Grid Computing (CCGrid 2010), Melbourne,
Australia, 15-24.
Li, H., Venugopal, S. (2011). Using Reinforcement Learning for Control-
ling an Elastic Web Application Hosting Platform, Proc. of 8th Intern. Conf.
on Autonomic Computing (ICAC 2011), Karlsruhe, Germany, 205-208.
Ludäscher, B., Weske, M., McPhilipps, T. M., Bowers, S. (2009). Scien-
tific Workflows: Business as Usual? Proc. of 7th Intern. Conf. on Business
Process Management (BPM 2009), Ulm, Germany, 31-47.
Maurer, M., Brandic, I., Sakellariou, R. (2013). Adaptive resource configu-
ration for Cloud infrastructure management, Future Generation Computing
Systems, 29(2), 472-487.
Mutschler, B., Reichert, M., Bumiller, J. (2008). Unleashing the Effective-
ness of Process-Oriented Information Systems: Problem Analysis, Critical
Success Factors, and Implications, IEEE Transactions on Systems, Man,
and Cybernetics, Part C, 38(3), 280-291.
Pandey, S., Wu, L, Guru, M, Buyya, R. (2010). A Particle Swarm Optimi-
zation-Based Heuristic for Scheduling Workflow Applications in Cloud
Computing Environments, Proc. of 24th IEEE Intern. Conf. on Advanced
Information Networking and Applications (AINA 2010), Perth, Australia,
400-407.
Pesic, M, van der Aalst, W. M. P. (2007). Modeling work distribution
mechanisms using Colored Petri Nets, Intern. J. on Software Tools for
Technology Transfer, 9(3-4), 327-352.
Rohjans, S., Dänekas, C., Uslar, M. (2012). Requirements for Smart Grid
ICT Architectures, Proc. of Third IEEE PES Innovative Smart Grid Tech-
nologies (ISGT) Europe Conf., Berlin, Germany, 1-8.
Schuller, D., Lampe, U., Eckert, J., Steinmetz, R., Schulte, S. (2012). Cost-
driven Optimization of Complex Service-based Workflows for Stochastic
QoS Parameters, Proc. of 10th IEEE Intern. Conf. on Web Services (ICWS
2012), Honolulu, HI, USA, 66-74.
Schulte, S., Hoenisch, P., Venugopal, S., Dustdar, S. (2013). Introducing
the Vienna Platform for Elastic Processes, Proc. of Performance Assess-
ment and Auditing in Service Computing Works. (PAASC 2012) at 10th
Intern. Conf. on Service Oriented Computing (ICSOC 2012), Shanghai,
China, 179-190.
Szabo, C., Kroeger, T. (2012). Evolving Multi-objective Strategies for Task
Allocation of Scientific Workflows on Public Clouds, Proc. of IEEE Con-
gress on Evolutionary Computation (CEC 2012), Brisbane, Australia, 1-8.
Wei, Y., Blake, M. B. (2013). Decentralized Resource Coordination across
Service Workflows in a Cloud Environment, Proc. of 22nd IEEE Intern.
Conf. on Collaboration Technologies and Infrastructures (WETICE 2013),
Hammamet, Tunisia, 15-20.
Wei, Y., Blake, M. B., Saleh, I. (2013). Adaptive Resource Management
for Service Workflows in Cloud Environments, Proc. of the 2013 IEEE 27th
Intern. Symposium on Parallel and Distributed Processing (IPDPS 2013)
Works. and PhD Forum – 2nd Intern. Works. on Workflow Models, Systems,
Services and Applications in the Cloud (CloudFlow 2013), Boston, MA,
USA, NN-NN.
Wu, L., Garg, S. K., Buyya, R. (2011). SLA-based Resource Allocation for
a Software-as-a-Service (SaaS) Provider in Cloud Computing Environ-
ments, Proc. of 11th IEEE/ACM Intern. Symposium on Cluster, Cloud and
Grid Computing (CCGRID 2011), Newport Beach, CA, USA, 195-204.
Xu, M., Cui, L., Wang, H., Bi, Y. (2009). A Multiple QoS Constrained
Scheduling Strategy of Multiple Workflows for Cloud Computing, Proc. of
2009 IEEE Intern. Symposium on Parallel and Distributed Processing with
Applications (ISPA 2009), Chengdu, China, 629-634.

Authors	

Dr.-Ing. Stefan Schulte is a Postdoctoral
Researcher at the Distributed Systems Group
at Vienna University of Technology and the
project manager of the ongoing EU FP7 pro-
ject SIMPLI-CITY - The Road User Infor-

mation System of the Future (http://www.simpli-city.eu).
His research interests span the areas of SOA and Cloud
Computing, with a special focus on QoS aspects.

Dr.-Ing. Dieter Schuller is a Postdoctoral
Researcher at the Multimedia Communica-
tions Lab of Technische Universität Darm-
stadt, Germany. Conjointly with Ulrich Lam-
pe, he leads the research area on “Service-
oriented Computing”. Dieter’s research inter-

ests are in the areas of Service-oriented Computing, specifi-
cally on QoS and efficient service selection.

Dipl. Ing. Philipp Hoenisch is a first year PhD
student at the Distributed Systems Group at
Vienna University of Technology. Before
starting his PhD, Philipp collected hands-on
software developing experiences in several

Open Source projects. His research interests cover the whole
spectrum of Cloud computing, with the main focus on cost-
efficient automatic scaling in order to provide a high QoS.

Dr.-Ing. Ulrich Lampe is a Postdoctoral Re-
searcher at the Multimedia Communications
Lab of Technische Universität Darmstadt,
Germany. Conjointly with Dieter Schuller, he
leads the research area on “Service-oriented
Computing”. Ulrich’s research interests are in

the areas of Service-oriented Computing and Cloud Compu-
ting, specifically on efficient software service distribution,
auction-based capacity allocation, and Cloud-based multi-
media services.

Prof. Dr.-Ing. Ralf Steinmetz is a professor in
the Department of Electrical Engineering and
Information Technology as well as in the
Department of Computer Science at
Technische Universität Darmstadt, Germany.
Since 1996, he is managing director of the
"Multimedia Communications Lab". He is the

author and co-author of more than 750 publications. He has
served as editor of various IEEE, ACM and other journals.
He was awarded as Fellow of both the IEEE and the ACM.

Schahram Dustdar is a full professor of
computer science with a focus on Internet
technologies and heads the Distributed
Systems Group at the Vienna University
of Technology. He is an ACM Distin-
guished Scientist (2009) and recipient of

the IBM Faculty award (2012). He is an Associate Editor of
IEEE Transactions on Services Computing, ACM Transac-
tions on the Web, and ACM Transactions on Internet Tech-
nology and on the editorial board of IEEE Internet Compu-
ting. He is the Editor-in-Chief of Computing (an SCI-ranked
journal of Springer).

rst
Textfeld
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

