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Abstract	
Today's	extensive	business	process	landscapes	make	it	necessary	to	handle	the	execution	of	a	large	number	of	busi‐
ness	processes	and	individual	process	steps.	Especially	if	process	steps	require	the	invocation	of	resource‐intensive	
applications	or	a	large	number	of	applications	need	to	be	executed	concurrently,	process	owners	may	have	to	allocate	
extensive	computational resources,	leading	to	high	fixed	cost.		
In	 the	work	at	hand,	we	propose	an	alternative	 to	the	provision	of	 fixed	resources,	based	on	automatic	 leasing	and	
releasing	 of	Cloud‐based	computational resources.	 For	 this,	we	present	 an	 integrated	 approach	which	addresses	 the	
cost‐driven	optimization	of	Cloud‐based	computational resources	 for	business	processes	 in	order	to	realize	so‐called	
Elastic	Processes.	Through	an	evaluation,	we	show	the	practical	applicability	and	benefits	of	our	contributions.	Specif‐
ically,	we	find	that	our	approach	substantially	reduces	the	cost	compared	to	an	ad	hoc	approach.		
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1. INTRODUCTION	

Nowadays, IT-support for the execution of business pro-
cesses is an essential prerequisite in many industries. For 
example, in the finance industry, trade settlement or execu-
tion control processes are executed automatically (Gewald, 
Dibbern, 2009). In the energy domain, computational re-
sources are needed to carry out essential decision processes 
and a particular necessity is to support the processing of 
large amounts of data in so-called Smart Grids (Rohjans et 
al., 2012).  

Especially in large companies, the number of different 
business process models available can become extensive 
(Breu et al. 2013; Jin et al., 2013). Correspondingly, a busi-
ness process landscape may comprise a very large number 
of running business process instances, all of which are made 
up from single tasks (i.e., process steps) with differing com-
putational resource demands. Over time, the invocation of 
new process instances and the completion of running pro-
cess instances lead to ever-changing computational resource 
demands, which need to be met by a company. Apparently, 
computational resource demands during peak times (i.e., 
when many and/or resource-intensive tasks need to be car-
ried out concurrently) will be much higher than in normal 
times – especially in volatile domains (Maurer et al., 2013).  

On the one hand, permanently providing computational 
resources that can cover the demand during peak times leads 
not only to high fixed cost, but the resources will not be 
utilized most of the time (overprovisioning). On the other 
hand, providing computational resources which can cover 
only part of the processes' resource demand, will lead to 
lower fixed cost, but also to the risk that some processes 

cannot be carried out during peak times (underprovisioning) 
or will suffer from low Quality of Service (QoS). 

To avoid the drawbacks arising due to over- and under-
provisioning, computational resources should be scalable, 
i.e., the available resources should be in- or decreased based 
on the demands of the running and future business process 
instances. Applying Cloud technologies to provide the 
needed resources exactly allows this – (i) leasing and releas-
ing computational resources in an on-demand, utility-like 
fashion, (ii) rapid elasticity through scaling the infrastruc-
ture up and down if necessary, and (iii) pay-per-use through 
metered service (Armbrust et al., 2010; Buyya et al., 2009).  

So far, only few researchers have provided methods and 
solutions to facilitate Elastic Processes, i.e., processes 
which are carried out using elastic Cloud resources (Dustdar 
et al., 2011; Andrikopoulous et al., 2013). Current Business 
Process Management Systems (BPMS) do not only “lack 
the ability to learn, mine, and reason suitable resource allo-
cation knowledge in business process execution” (Pesic and 
van der Aalst, 2007; Huang et al., 2011), but are also not 
able to make use of Cloud-based computational resources. 
In our former work (Schulte et al., 2013; Hoenisch et al., 
2013; Hoenisch et al., 2013a), we have presented the Vienna 
Platform for Elastic Processes (ViePEP), which combines 
the functionalities of a BPMS with that of a Cloud resource 
management system. ViePEP is able to schedule complete 
processes as well as the involved single tasks, and lease and 
release Cloud-based computational resources in terms of 
Virtual Machines (VMs) while taking into account Service 
Level Objectives (SLOs) defined by the process owners. 

Within this paper, we extend our former work by ad-
dressing the problem of online Cloud resource allocation for 
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Elastic Processes based on process requests from various 
clients (process owners). In this scenario, it is necessary to 
schedule task executions and lease and release Cloud re-
sources in order to carry out the single tasks under given 
SLOs. To encounter the complexity of this scenario, it is 
necessary to predict the resource demands of tasks, develop 
a cost model, predict the cost, and perform a 
cost/performance analysis. This has to be done continuous-
ly, as new process requests arrive, software services repre-
senting single process tasks do not behave as predicted, or a 
process instance is changed by the process owner. The goal 
is to provide cost-efficient process scheduling that takes into 
account the given SLOs and leases and releases Cloud-
based computational resources (i.e., VMs) in order to opti-
mize cost. Hence, the main contributions in this paper are: 
 We formulate a model for scheduling and resource 

allocation for Elastic Processes. 
 We design a heuristic based on the proposed model. 
 We integrate this work into the Vienna Platform for 

Elastic Processes. 
The remainder of this paper is organized as follows: In Sec-
tion 2, we introduce the overall scenario, ViePEP, and some 
prerequisites for our research work. Afterwards, we present 
scheduling and resource allocation solution for Elastic Pro-
cesses – for this, we define an integer linear optimization 
problem and a corresponding heuristic. We evaluate the 
scheduling and resource allocation algorithms through Vie-
PEP-based testbed experiments (Section 4). In Section 5, we 
discuss the related work. The paper closes with a summary 
and an outlook on our future work. 

 

2. PRELIMINARIES	
2.1 GENERAL	SCENARIO	

Within this paper, we assume that a business process 
landscape is made up from a large number of business pro-
cesses, which can be carried out automatically. The part of a 
business process which can be executed using machine-
based computational resources is also known as a workflow 
(Ludäscher et al., 2009). Therefore, in the remainder of this 
paper, we will use the term workflow in order to identify an 
executable process. The automated processing of such 
workflows is a prominent field of research and has resulted 
in various concepts, methodologies, and frameworks 
(Mutschler et al., 2008). In recent years, the focus of this 
research was primarily on the composition of workflows 
from software services (Dustdar and Schreiner, 2005; 
Schuller et al., 2012).  

While we also assume that workflows are composed of 
software services, we do not expect that companies are 
willing to outsource important services fully to external 
providers, since these services will then be outside the con-
trol domain of the process owner. In contrast, making use of 
private and public Cloud resources to host service instances, 
which are then invoked as workflow steps, leaves the con-
trol with the process owner: If particular service instances or 

VMs fail, the process owner or the admin of the business 
process landscape is able to deploy further service instances.  

Making use of VMs to host particular services allows 
sharing resources among workflows, as the same service 
instance might be invoked within different workflows at the 
same time. Notably, it is important to distinguish between 
services, which are the basic building blocks of workflows, 
service instances, which are hosted by VMs, and service 
invocations, which denotes the unique execution of a service 
instance in order to serve a particular workflow request, i.e., 
a workflow instance.  

In our scenario, workflows may be requested at any time 
by process owners and may be carried out in regular inter-
vals or nonrecurring. It is the duty of a software framework 
(in our case, ViePEP), which combines the functionalities of 
a BPMS and a Cloud resource management system, to ac-
cept incoming workflow requests, schedule the workflow 
steps, and lease and release computational resources based 
on the workflow scheduling plan.  

Process owners are able to define different QoS con-
straints as SLOs on the level of workflow instances. With-
out a doubt, the execution deadline is the most important 
SLO: Some business-uncritical workflows may have very 
loose deadlines, while other workflows need to be carried 
out immediately and finished as soon as possible. Usually, 
workflow instances will have a defined maximum execution 
time or a defined deadline. Process owners are able to define 
complex workflows which feature AND, XOR, or loop 
patterns. However, we assume that the next steps in a par-
ticular workflow instance are always known. 

We assume that the business process landscape is vola-
tile, i.e., ever-changing, since workflow requests may arrive 
anytime. Furthermore, changes may have to be necessary 
since services or VMs are not delivering the expected QoS, 
or the next steps in a workflow instance are not as planned.  

For achieving an efficient scheduling and invocation of 
workflows and corresponding services, Cloud-based compu-
tational resources in terms of VMs required for invoking 
respective services have to be leased and released such that 
the total cost arising from leasing aforementioned Cloud 
resources is minimized. In addition, it has to be made sure 
that given QoS constraints such as deadlines, until which 
corresponding workflows have to be finished, are satisfied. 
The closer the deadline is for a certain workflow instance, 
the higher is the importance to schedule and execute corre-
sponding services accomplishing its tasks. If not carefully 
considered and scheduled, further additional Cloud re-
sources will have to be leased and paid in order to execute 
workflow instances that cannot be delayed any further. For 
avoiding such situations in which extra resources have to be 
leased due to an inefficient scheduling strategy, the execu-
tion of workflow instances along with the leasing and re-
leasing of Cloud resources has to be optimized. This makes 
it necessary to facilitate self-adaptation and -optimization of 
the overall business process landscape through replanning of 
workflow scheduling and resource allocation.  
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2.2 SELF‐ADAPTATION	FOR	ELASTIC	PROCESSES	
Self-adaptation is a common concept from the field of 

Autonomic Computing and includes self-healing, i.e., the 
ability of a system to detect and recover from potential 
problems and continue to function smoothly, self-
configuration, i.e., the ability of a system to configure and 
reconfigure itself under varying and unpredictable condi-
tions, and self-optimization, i.e., the ability to detect subop-
timal behavior and optimize itself to improve its execution 
(Kephart and Chess, 2003). The focus of this paper is on 
self-optimization. 

In order to motivate the functionalities and components 
needed to provide self-optimization of a Cloud-based pro-
cess landscape, we make use of the well-known MAPE-K 
cycle shown in Figure 1. As the scenario at hand is highly 
dynamic due to permanently arriving workflow requests and 
changing Cloud resource utilization, a continuous alignment 
to the new system status is necessary. Using the MAPE-K 
cycle, the process landscape is continuously monitored and 
optimized based on knowledge about the current system 
status. In the following, we will briefly discuss the four 
phases of this cycle:  
 Monitor: In order to adapt a system, it is first of all 

necessary to monitor the system status. In the scenario 
at hand, this includes the monitoring of the status of 
single VMs in terms of CPU, RAM, and network 
bandwidth utilization, and the non-functional behavior 
of services in terms of response time and availability.  

 Analyze: To achieve Elastic Process execution, it is 
necessary to analyze the monitored data and reason on 
the general knowledge about the system. In short, this 
analysis is done in order to find out if there is currently 
under- and overprovisioning regarding the computa-
tional resources (VMs) and to detect Service Level 
Agreement (SLA) violations in order to carry out corre-
sponding countermeasures (e.g., provide further VMs 
or re-invoke a service instance).  

 Plan: While the analysis of the monitored data and 
further knowledge about the system aims at the current 
system status, the planning also takes into account the 
future resource needs derived from the knowledge 
about future workflow steps, their SLOs, and the esti-
mated resource requirements and runtimes. For this, a 
workflow scheduling and resource allocation plan needs 
to be generated. 

 Execute: As soon as the plan is set up, each workflow 
step is executed corresponding to this plan. 

 Knowledge Base: While not really a part of the cycle, 
the Knowledge Base stores information about the sys-
tem configuration. In our case, this is the knowledge 
about which service instances are running on which 
VMs, how many VMs are currently part of the system, 
and of course the knowledge about requested workflow 
and services instances.  

In order to provide self-adaptation, ViePEP will have to 
support all four phases of the cycle and provide a 
Knowledge Base.  

	
FIGURE	1:	MAPE‐K	CYCLE	(KEPHART	AND	CHESS,	2003)	

2.3 THE	VIENNA	PLATFORM	FOR	ELASTIC	PROCESSES	
Figure 2 (using FMC notation1) depicts the high-level 

components of ViePEP and the message flow between them. 
The core functionalities of ViePEP are:  
 Provisioning of an interface to the Cloud, allowing 

leasing and releasing Cloud-based computational re-
sources (VMs) on demand. 

 Execution of workflow steps by instantiating services 
on VMs and invoking the service instances in work-
flows instances. 

 Dynamical scheduling of incoming requests for work-
flows based on their QoS requirements, i.e., timeliness 
in terms of maximum execution time or a deadline.  

 Monitoring the deployed VMs in terms of resource 
utilization and monitor the QoS of service invocations. 

ViePEP is made up from two major components and three 
helper components: The BPMS VM hosts the central func-
tionalities of ViePEP, i.e., the functionalities for resource 
allocation and workflow scheduling. Resource allocation is 
done at the PaaS level, i.e., ViePEP is able to lease and 
release VMs from Cloud providers and allocate these re-
sources to particular workflow steps. Workflows share re-
sources as they are able to concurrently invoke the same 
service instance. 

The Workflow Manager is the subcomponent both re-
sponsible for receiving workflow requests from the process 
owners via the Client API (see below) and for invoking 
single service instances running in a Backend VM. Further-
more, it monitors service invocations in order to control 
whether the service instance delivers the expected QoS and 
starts corresponding countermeasures if necessary. 

The information which services need to be invoked at 
what point of time is generated by the Scheduler and the 
Reasoner. The former subcomponent is responsible to de-
rive a detailed scheduling plan corresponding to service and 
workflow deadlines, while the latter subcomponent esti-
mates the needed resources (VMs) based on the computed 
scheduling and sends corresponding requests to the Cloud  

																																																													
1 http://www.fmc-modeling.org/ 
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FIGURE	2:	THE	VIENNA	PLATFORM	FOR	ELASTIC	PROCESSES	(VIEPEP)

providers. The functionality of these two subcomponents is 
defined through the optimization approach and heuristic 
presented in Section 3. The Reasoner interacts with the 
Load Balancer in order to estimate which Backend VM 
provides free resources for particular service instances and 
therefore could be used to invoke a service instance in the 
future.  

The subcomponents of the ViePEP BPMS are placed in 
a VM to avoid that it becomes a bottleneck. Through verti-
cal scaling, it is possible to provide ViePEP with additional 
resources if the business process and Cloud landscape be-
comes increasingly complex. 

Whenever the Reasoner issues a request to the Cloud, ei-
ther a Backend VM will be started and when its Action En-
gine is ready, a new service instance will be deployed, or (in 
case the Backend VM is already running) the Action Engine 
is directly able to execute the corresponding request. Vie-
PEP allows the following requests: 
 Start a new Backend VM, which includes deploying a 

new service instance on it. 
 Duplicate a Backend VM including the service in-

stance. 
 Terminate a Backend VM, which marks the Backend 

VM as “phasing out” and will prevent the Load Balanc-
er from requesting further service invocations from this 
Backend VM. Once all previously assured service invo-
cations have been finished, the VM is terminated. 

 Exchange the hosted service instance on the Backend 
VM. This will also prevent the Load Balancer from re-
questing any further invocations of this particular ser-
vice instance. Once all assured service invocations have 
been finished, the instantiated service is replaced by 
another one. 

 Move a service instance from one Backend VM to an-
other one (with different computational resources). 

Within the Backend VM, service instances are hosted in an 
Application Server, which also features a Monitor to ob-
serve the current load on the Backend VM and provide this 
information to the Load Balancer via the Shared Memory. 
This Monitor should not be confused with the monitoring 
capabilities of the Workflow Manager, which monitors the 
response time of service invocations. 

The Shared Memory and the Service Repository are 
helper components. The latter hosts the service descriptions 
as well as their implementations as portable Web applica-
tion ARchives (WAR). This repository allows searching for 
services and deploying them on a ViePEP Backend VM. 
The Shared Memory provides a distributed database which 
is used to send requests from the BPMS VM to the Backend 
VM and stores monitoring data. We chose MozartSpaces 
(Kühn et al., 2009) for this, as it allows easily deploying and 
accessing a peer-to-peer-based, distributed shared memory. 
In addition, MozartSpaces allows sending notifications with 
very low latency.  

Finally, the Client API allows process owners to define 
workflows including SLOs. An owner may request many 
workflows consecutively or in parallel. When the request is 
submitted to the BPMS VM via the Workflow Manager, a 
new workflow instance is generated and taken into account 
in workflow scheduling and resource allocation.  

 
2.4 PREREQUISITES	

Before we formulate a model for workflow scheduling 
and resource allocation and define a corresponding heuris-
tic, it is necessary to introduce some prerequisites in order to 
determine the scope of our work.  

First, each Backend VM hosts exactly one service in-
stance; a particular service may be instantiated arbitrarily 
often at different VMs. Second, defined deadlines are realis-
tic, i.e., the deadlines can be met if providing corresponding 
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resources. However, defined deadlines may be violated 
because of faults in the Cloud or in the network. In this case, 
the service invocation in question will be immediately car-
ried out again. Third, it is possible to derive the total com-
putation time and resource utilization of a particular service 
on a particular VM type from historical data: Instances of 
the same service behave similarly with regard to resource 
consumption and runtime of single invocations. Fourth, 
computational resources in terms of additional VMs can be 
leased from different Cloud providers; it is also possible to 
combine resources from public and private Clouds. Indefi-
nite resources are available. Hence, all resource demands of 
the business process landscape can be met by the available 
Cloud-based computational resources (i.e., the workflow 
scheduling and resource allocation are effective). Fifth, 
different types of VMs with different computational re-
sources (CPUs, RAM, bandwidth, …) are available from 
different Cloud providers. Following Amazon’s EC2 pricing 
scheme, the cost of these VMs are proportional, e.g., the 
cost of a VM with 2 cores are half of the cost of a VM with 
4 cores with the same specifications. Sixth, it is the goal of 
our model to minimize the overall cost arising from leasing 
VMs (i.e., scheduling and resource allocation are efficient).   
 

3. SOLUTION	APPROACH	
We formulate the problem of scheduling workflow in-

stances and their individual services, respectively, as opti-
mization problem. The general approach proposed in the 
work at hand for achieving an optimized scheduling and 
resource allocation is presented in Section 3.1. A formal 
specification of the corresponding optimization problem is 
provided in Section 3.2. Finally, in Section 3.3, we describe 
a heuristic solution method for efficiently solving the opti-
mization problem. 

 
3.1 GENERAL	APPROACH	

For achieving the necessary workflow scheduling and 
resource allocation, the deadlines indicating the time when 
the corresponding workflow instances have to be finished 
are considered. In addition, in order to minimize the total 
cost of (Backend) VMs leased for executing workflow re-
quests and corresponding services, respectively, the leased 
VMs should be utilized as much as possible, i.e., leased but 
unused resource capacities should be minimized. Thus, in 
order to reduce the necessity of leasing additional VMs, we 
try to invoke services that cannot afford further delays first-
ly on already leased VMs before leasing additional VMs if 
the remaining resource capacities of already leased VMs are 
sufficient. Only if the resource requirements of workflows 
cannot be covered by already leased VMs, additional VMs 
will be leased. For instance, if the deadlines for certain 
workflow instances allow delaying their service invocations 
to another period, it can be beneficial to release leased re-
sources and delay such services invocations. However, it 
has to be considered that those service invocations have to 

be scheduled for one of the subsequent optimization periods 
to ensure that corresponding deadlines are not violated.  

In addition, since VMs are leased only for a certain time 
period and the execution of already scheduled invocations 
will be finished at a future point in time, the scheduling 
strategy to be developed cannot be static, i.e., the optimiza-
tion approach for scheduling service invocations should not 
be applied only once. It rather has to be applied multiple 
times at different optimization points in time. In this respect, 
it has to be noted that potentially further requested workflow 
instances may have to be served, which additionally have to 
be considered when carrying out an optimization step. 

Thus, an efficient scheduling strategy has to review allo-
cated service instances and scheduled service invocations 
periodically and carry out further optimization steps for 
considering dynamically changing requirements and keep-
ing the amount of leased but unused resource capacities low. 
Furthermore, the resource demand and average runtime for 
single service instances needs to be known in advance – for 
this, an approach based on linear regression – as presented 
in our former work (Hoenisch et al., 2013) – will be applied. 

 
3.2 OPTIMIZATION	PROBLEM	

In this section, we model the scheduling and allocation 
of workflows and services as an optimization problem. 
Since Cloud resources are only leased for a limited time 
period, it has to be decided whether those resources or even 
additional resources have to be leased for another period, or 
whether leased resources can be released again. In this re-
spect, we aim at utilizing leased Cloud resources, i.e., VMs 
in the context of this paper, to their full capacities. Further, 
additional resources will only be leased if capacities of 
already leased VMs are not sufficient to cover and carry out 
further service invocations that cannot be delayed.  

For considering the different (optimization) time peri-
ods, the index ݐ will be used. Depending on these periods, 
the parameter ߬௧ refers to the actual time and point in time, 
respectively, indicated by a time period ݐ. For scheduling 
different workflows, multiple workflow templates are con-
sidered. The set of workflow templates is labeled with ܹ, 
where ݓ ∈ ܹ ൌ ሼ1,… ሽ#ݓ,  refers to a certain workflow 
template. The set of workflow instances that have to be 
considered during a certain period ݐ  corresponding to a 
certain workflow template ݓ  is indicated by ܫ௪ , where 
݅௪ ∈ ௪ܫ ൌ ሼ1,… , ݅௪# ሽ refers to a certain workflow instance. 
The total number of workflow instances that have to be 
considered in period ݐ is indicated by ݅௪# . Please note that 
considering a certain instance ݅௪ in period ݐ does not neces-
sarily result in invoking corresponding service instances in 
this period. It rather makes sure that it is considered for the 
optimization step conducted in period ݐ, which may lead to 
the decision that this instance is further delayed – until an-
other optimization step is carried out in a subsequent period. 
The remaining execution time for executing a certain in-
stance ݅௪ , which might involve invoking multiple service 
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instances for accomplishing the different tasks of a certain 

workflow instance, is indicated by the parameter ݁ೢ . 

Thus, by specifying the parameter 	݁ೢ  as the remaining 
execution time of a certain workflow instance, we account 
for the fact that certain tasks of this instance might have 
already been accomplished by having invoked correspond-
ing service instances in previous periods. 

It has to be noted that executing workflow instances re-
fers to invoking a service ݆ೢ  that accomplishes a task of 
those workflow instances. The service, executing the next 
task of a workflow instance, is labeled with ݆ೢ

∗ . If, for in-
stance, a workflow instance consists of five tasks, its re-
maining execution time ݁ೢ is determined by the sum of the 
execution times ݁ೢ

the services ݆ೢ require for accomplish-

ing the different tasks of the workflow instance, i.e., 
݁ೢ ൌ ∑ ݁ೢೢ∈ೢ

. The set ܬೢ thereby represents the set of 

services that have to be invoked for accomplishing all tasks 
of workflow instance ݅௪ . Allocating and executing this 
instance refers to invoking the next service ݆ೢ

∗  that accom-
plishes the next task, i.e., the first task in this example. 
Thus, four tasks of this workflow instance still remain unac-
complished. After having invoked service ݆ೢ

∗ , the remaining 
execution time ݁ೢ for this workflow instance is reduced by 
the execution time ݁ೢ

∗  of the invoked service. Thus, ݁ೢ can 

be determined by adding up the services' execution times for 
the remaining four tasks of this workflow instance (Hoe-
nisch et al., 2013a). The corresponding workflow instance 
needs to be executed again, i.e., a service instance accom-
plishing the second task has to be invoked. For accomplish-
ing this second task, the corresponding service becomes the 
next service ݆ೢ

∗ . 
The deadline at which the execution of a workflow in-

stance has to be finished is indicated by the parameter ݀ೢ. 
Assuming a continuous flow of time, ݀ೢ refers to an actual 
point in time as, for instance, “23.10.2013, 14:10:00”. For 
executing a certain workflow instance ݅௪, i.e., for invoking 
the next service ݆ೢ

∗ , of a workflow instance, a certain 
amount of computational resources from a VM are required. 
The resource requirement for the corresponding next ser-
vices is indicated by ݎೢ.  

Regarding the leasing of Cloud resources, we assume 
different types ݒ of VMs. The set of VM types is indicated 
by the parameter ܸ, where ݒ ∈ ܸ ൌ ሼ1,… ,  ሽ refers to VM#ݒ
type ݒ . The corresponding resource supply of a VM (in 
terms of CPU, RAM, bandwidth) of type ݒ is indicated by 
the parameter ݏ௩ . For counting and indexing leased VM 
instances of type ݒ , the variable ݇௩  is used. Although in 
theory unlimited, we assume the number of leasable VM 
instances of type ݒ in a time period ݐ to be restricted by ݇௩# 
for modeling reasons, i.e., in order to make the idea of in-
definite resources, provided by Clouds, tangible.  

 

Model 1 Optimization Problem 
Objective function 

(1) Minimize∑ ܿ௩௩∈ ⋅ ሼ௩,௧ሽߛ  	∑ ∑ ⋅ೡ,௧ݕ ݂ೡೡ∈ೡ௩∈  

so that 

(2) ߬௧ାଵ  ݁ೢ െ ݁ೢ
∗ ⋅ ೢ,௩ೖ,௧ݔ  ݀ೢ	∀ݓ ∈ ܹ, ݅௪ ∈  ௪ܫ

(3) ߬௧ାଵ  ߬௧  ݁ೢ
∗ ⋅ ೢ,௩ೖ,௧ݔ  ൫1 െ ೢ,௩ೖ,௧൯ݔ ⋅ 		ܯ

ݓ∀ ∈ ܹ, ݅௪ ∈  ௪ܫ

(4) ߬௧ାଵ  ߬௧  ߳ 

(5) ∑ ∑ ೢೢ∈ூೢ௪∈ௐݎ ⋅ ೢ,௩ೖ,௧ݔ  ೡݏ ⋅ ݒ∀	ೡ,௧ݕ ∈
ܸ, ݇௩ ∈  ௩ܭ

(6) ∑ ೡ,௧ೡ∈ೡݕ  ݒ∀	௩,௧ߛ ∈ ܸ 

ೡ,௧ݕ (7) ⋅ ೡݏ െ ∑ ∑ ݎ ⋅ ೢ,ೡ,௧ݔ  ݂ೡೢ∈ூೢ ݒ∀	 ∈௪∈ௐ

ܸ, ݇௩ ∈  ௩ܭ

ೢ,ೡ,௧ݔ (8) ൌ ݓ∀	1 ∈ ܹ, ݅௪ ∈ ,௪ܫ ݒ ∈ ܸ, ݇௩ ∈
 runs	݅௪	|	௩ܭ

Thus, we assume a maximum number ݇௩# of leasable VMs. 
The set of leasable VM instances of type v is indicated by 
௩ܭ , where ݇௩ ∈ ௩ܭ ൌ ሼ1,… , ݇௩#ሽ. The cost for leasing one 
VM instance of type ݒ is indicated by ܿ௩. 

For finally deciding at period ݐ which service to instanti-
ate and invoke, binary decision variables ݔೢ,ೡ,௧ ∈ ሼ0,1ሽ are 
used. A value ݔೢ,ೡ,௧ ൌ 1 indicates that the next service ݆ೢ

∗  
of workflow instance ݅௪ should be allocated and invoked in 
period ݐ  at VM ݇௩ , whereas a value ݔೢ,ೡ,௧ ൌ 0  indicates 
that the invocation of the corresponding service should be 
delayed, i.e., no service of workflow instance ݅௪ should be 
invoked in period ݐ. For indicating, whether a certain in-
stance ݇௩ of VM type v should be leased in period t, another 
decision variable ݕೡ,௧ ∈ ሼ0,1ሽ is used. Similar to ݔೢ,ೡ,௧, a 
value ݕೡ,௧ ൌ 1 indicates that instance ݇௩  of VM type ݒ  is 
leased. The total number of VMs of type ݒ to lease in period 
 .௩,௧ߛ is labeled with ݐ

Using these parameters and variables, we formulate the 
optimization problem in Model 1 for deciding which work-
flow instances ݅௪  and corresponding services ݆ೢ , respec-
tively, should be allocated and invoked in period ݐ. 

The constraints in (2) make sure that the deadlines ݀ೢ 
for workflow instances ݅௪ will not be violated. For this, the 
sum of the remaining execution time ݁ೢ	and the next opti-
mization point in time ߬௧ାଵ has to be lower or equal to the 
deadline. By scheduling a service invocation, the corre-
sponding remaining execution time ݁ೢ is reduced, because 
the execution time for the next service ݁ೢ

∗  will be subtract-

ed in this case. 
The constraints in (3) and (4) determine the next optimi-

zation point ߬௧ାଵ. In order to avoid optimization deadlocks, 
which would result from not advancing the next optimiza-
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tion time ߬௧ାଵ, ߬௧ାଵ is restricted in (4) to be greater or equal 
to ߬௧ plus a small value ߳  0. In order to replan the sched-
uling and invocation of workflows instances as soon as a 
service invocation has been finished, ߬௧ାଵ should be lower 
or equal to ߬௧ାଵ  plus the minimum execution time of the 
services invoked in period ݐ. Using an additional parameter 

ܯ  max ቀ ݁ೢ
ቁ, the last term in (3) thereby makes sure that 

services that are not invoked in this period do not restrict 
߬௧ାଵ,  to be lower or equal to ߬௧. However, a replanning will 
anyhow be triggered if events such as the request of further 
workflow instances or the accomplishment of a certain in-
voked service occur. 

The constraints in (5) make sure that the resource ca-
pacities required by the next services for workflow instances 
݅௪ assigned to instance ݇௩ of VM type ݒ are lower or equal 
to the capacities these VM instances can offer. If processes 
are assigned to a certain instance ݇௩  of type ݒ , the corre-
sponding decision variable ݕೡ,௧  will assume a value of 1. 
The sum of all decision variables ݕೡ,௧ determines the total 
number ߛ௩,௧ of instances for VMs of type ݒ, as indicated in 
(6). In (7), the amount of unused capacities for VM instance 
݇௩, which is indicated by the variable ݂ೡ, is determined. In 
order to account for running service instances invoked in 
previous periods, corresponding decision variables are set  
to 1, which is indicated in (8). 

The objective function, which is specified in (1), aims at 
minimizing the total cost for leasing VMs. In addition, by 
adding the amount of unused capacities ݂ೡ of leased VMs 
to the total cost, the objective function also aims at minimiz-
ing unused capacities of leased VM instances. 

 
3.3 HEURISTIC	SOLUTION	APPROACH	

 
Due to its formulation as integer linear program, the so-

lution approach from the previous section features relatively 
high computational complexity, which renders its applica-
bility to realistic, large-scale scenarios difficult. Hence, for 
efficiently solving the optimization problem presented in the 
last subsection, we develop a heuristic solution method.  

This heuristic basically examines which workflow in-
stances ݅௪ and services ݆ೢ, respectively, have to be sched-
uled and invoked in the current optimization period ݐ  in 
order to avoid violating corresponding deadlines ݀ೢ . For 
this, the heuristic initially determines the point in time ߬௧ାଵ, 
where the next optimization step has to be carried out – at 
the latest. Corresponding to this (latest) subsequent optimi-
zation time, a virtual time buffer is calculated for each work-
flow instance, which will be referred to as slack, indicating 
the time, the corresponding instance ݅௪ may be delayed at 
maximum, before a violation of the corresponding deadline 
݀௪ takes place. Those instances, for which the slack is low-
er than 0, i.e., those instances, for which a further delay 
would result in violating a workflow deadline, are consid-
ered as critical. Thus, at first, we try to invoke the critical  

ALGORITHM	1:	HEURISTIC	SOLUTION	APPROACH	
1: //Initialize variables 
2: d[w,i]; //Deadline for instance i of 

workflow w 
3: e[w,i]; //Remaining execution time for 

instance i of workflow w 
4: s[v]; //Resource supply for VM of type v 
5: k[v]; //Number of already leased VMs of 

type v 
6: leasedVM[v,k]; //kth VM instance of type 

v 
7: unusedRes[v,k]; //Unused resources for 

kth VM of type v 
8: sl[w,i] := new Double[w#,i#]; //Array for 

slack 
9: rcrit := 0; //Aggregated resource demand 

for critical instances 
10: vmTypList; //List of available VM types, 

sorted by size ascending 
11: sortList := new List(); //Sorted List 

corresponding to slack 
12: critList := new List(); //List 

containing critical instances 
13: t+1 = d[1,1]; //Initialize next 

optimization point in time 
14: //Compute t+1 
15: for (w=1;w≤w#;w=w+1) do 
16:   for (i=1;i≤i#;i=i+1) do 
17:     if d[w,i]-e[w,i]-t+1 then 
18:       t+1=d[w,i]-e[w,i];//Get minimum t+1 
19:     end if 
20:     if t+1≤t then 
21:       t+1=t+;//Avoid deadlocks 
22:     end if 
23:   end for 
24: end for 
25: //Compute slack sliw 
26: for (w=1;w≤w#;w=w+1) do 
27:   for (i=1;i≤i#;i=i+1) do 
28:     sl[w,i]=d[w,i]-e[w,i]-t+1;//Get slack 
29:     if sl[w,i]<0 then 
30:       critList.add(getInst(w,i)); 
31:       rcrit=rcrit+getInst(w,i).  

  resNextService(); 
32:     else 
33:       sortList.     

  insert(getInst(w,i),sl[w,i]); 
34:     end if 
35:   end for 
36: end for 
37: //Invoke critical instances on leased 

but unused resources 
38: usedRes=placeOnUnusedRes(critList); 
39: rcrit= rcrit-usedRes; 
40: //lease new VMs until rcrit is satisfied 
41: leaseNewVMs(rcrit); 
42: //Place further non-critical instances 

on unused resources 
43: placeOnUnusedRes(sortList); 
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services instances on such VM instances that are already 
leased and running. Afterwards, we lease new VM instances 
such that all remaining critical service instances are allocat-
ed and invoked in the current period. Finally, in order to 
minimize unused resources of leased VM instances, we 
invoke service instances on the leased VM instances corre-
sponding to their slack.  

This heuristic solution method is provided in Algo-
rithm 1 using pseudocode. Corresponding methods used in 
Algorithm 1 are indicated in Algorithm 2, Algorithm 3 and 
Algorithm 4. In lines 1-13 of Algorithm 1, the required 
parameters and variables are initialized. For instance, the 
deadlines ݀ೢ  for workflow instances ݅௪  of workflow tem-
plate ݓ are initialized in line 2. In this respect, it has to be 
noted that the corresponding parameter ݀ሾݓ, ݅ሿ represents an 
array containing all deadlines ݀ೢ of workflow instances ݅௪ 
that are considered at optimization period ݐ. Analogously, 
݁ሾݓ, ݅ሿ  represents an array for the remaining execution 
times of workflow instances ݅௪ , which is initialized in 
line 3. The resource supply ݏ௩ for a VM of type ݒ is initial-
ized in line 4, whereas the number of instances ݇௩ of leased 
VMs of type ݒ is initialized in line 5. Note that VM instanc-
es potentially have been leased in previous periods. Thus, 
the number of instances ݇௩ is not necessarily 0 when carry-
ing out an optimization step.  

Correspondingly, leased VMs as well as unused re-
sources of already leased VMs, which are indicated by the 
arrays ݈݁ܽܯܸ݀݁ݏሾݒ, ݇ሿ  and ݏܴ݁݀݁ݏݑ݊ݑሾݒ, ݇ሿ , have to be 
considered (cf. lines 6-7). For computing the slack of all 
workflow instances and aggregating the resource demands 
of the critical instances, the array ݈ݏሾݓ, ݅ሿ and the variable  
 
ALGORITHM	2:	METHOD	PLACEONUNUSEDRES(LIST)	
1: //Variable Initialization 
2: usedRes = 0; 
3: removeList = new List(); 
4: for 

(iter=1;iter≤list.size();iter=iter+1) do 
5:   inst = list.get(iter); 
6:   r = inst.resNextService(); 
7:   placed = false; 
8:   for (v=1;v≤v#;v=v+1) do 
9:     if (!placed) then 
10:       for (k=k[v];k≥1;k=k-1) do 
11:         if (r≤unusedRes[v,k]) then 
12:           placeInst(inst,leasedVM[v,k]); 
13:           placed = true; 
14:           unusedRes[v,k]=unused[v,k]-r; 
15:           usedRes = unused[v,k]-r; 
16:           removeList.add(inst); 
17:           break; 
18:         end if 
19:       end for 
20:     end if 
21:   end for 
22: end for 
23: list.remove(removeList); 
24: return usedRes; 

 ௧ is used (cf. lines 8-9). Since in this heuristic, differentݎ
sizes of VMs are considered, i.e., they differ in the amount 
of available resources, a list of the available VM types is 
stored in ݐݏ݅ܮݕܶ݉ݒ in line 10. This list is sorted in ascend-
ing order by the VMs’ sizes, i.e., the smallest VM comes 
first. In lines 11-12, empty lists are created for storing the 
critical instances as well as the non-critical instances, which 
are sorted in the list ݐݏ݅ܮݐݎݏ corresponding to their slack. 
Finally, the point in time ߬௧ାଵ, where the next optimization 
step has to be carried out at latest, is initialized with an 
arbitrary deadline, as, e.g., ݀ଵభ. 

Having initialized required parameters and variables, 
߬௧ାଵ  is determined in lines 15-24 by computing the mini-
mum difference between deadlines ݀ೢ  and the remaining 
execution times ݁ೢ  for all workflow instances. For this 
point in time, the difference between remaining execution 
time and deadline, i.e., the slack, will be 0 for at least one 
workflow instance. In order to avoid deadlocks that will 
result if the subsequent optimization time ߬௧ାଵ  is equal to 
the current time ߬௧ାଵ , a small value ߳  0  is added (cf. 
lines 20-21).  

In lines 26-36, the slack for each workflow instance is 
computed (cf. line 28) and the corresponding workflow 
instances are either added to the list of critical instances (cf. 
line 30) or inserted into a sorted list of (non-critical) in-
stances (cf. line 33) corresponding to their slack. In addi-
tion, the resource requirements for the next services of the 
critical workflow instances are aggregated (cf. line 31). 

The corresponding critical service instances need to be 
allocated and invoked in the current period – either on al-
ready leased and running VM instances or on further VM 
instances that have to be additionally leased in this period. 
Invoking critical service instances on already leased VM 
instances is accounted for in line 38 by calling the method 
ݏܴ݁݀݁ݏݑܷܱ݈݊݊݁ܿܽ , which is provided in Algorithm 2. 
Within Algorithm 2, the method ݐݏ݊ܫ݈݁ܿܽ is called, which 
is provided in Algorithm 3. 

 
ALGORITHM	3:	METHOD	PLACEINST(LIST,VM,K)	

1: //Variable Initialization 
2: v = VM.getType(); 
3: removeList = new List(); 
4: unusedRes = supply[v]; 
5: for (iter=1; iter≤list.size(); 

iter=iter+1) do 
6:   inst = list.get(iter); 
7:   r = inst.resNextService(); 
8:   if (unusedRes≥r) then 
9:     placeInst(inst,leasedVM[v,k]); 
10:     unusedRes=unusedRes-r; 
11:     removeList.add(inst); 
12:   end if 
13: end for 
14: list.remove(removeList); 
15: return supply[v]-unusedRes; 
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ALGORITHM	4:	METHOD	LEASENEWVMS(RES)	
1: //Variable Initialization 
2: vm; //Temp variable for new VM 
3: while (rcrit>0) do 
4:   for (iter=1; iter≤vmTypList.size(); 

iter=iter+1) do 
5:     v := vmTypList.get(iter); 
6:     if (supply[v]≥rcrit OR 

iter==vmTypList.size()) then 
7:       //start a new VM of type v 
8:       vm = leaseVM(v); 
9:       k[v] = k[v]+1; 
10:       leasedVM[v,k[v]-1] = vm; 
11:       unusedRes[vm,k[v]-1] = supply[v]; 
12:       usedRes = placeInst(critList,vm, 

k[v]-1); 
13:       rcrit = rcrit-usedRes; 
14:       break; 
15:     end if     
16:   end for 
17: end while 

 
In line 39, the resource requirements of the successfully 

invoked critical instances are subtracted from the aggregated 
resource demand of the remaining critical service instances. 
In line 41, additionally required resources are acquired. For 
this, the method ݈݁ܽݏܯܸݓ݁ܰ݁ݏ (Algorithm 4) is called. 

The types of the new VMs are chosen according to the 
following procedure: In general we successively try to ac-
quire VMs with rather high resource supply aiming at reduc-
ing unused resource capacities due to having a large number 
of rather small-sized VMs. In addition, the cost of VMs in 
our scenario is proportional (see Section 2.4), i.e., larger 
VMs will provide a proportionately lower basic load that is 
not available to service instances. Therefore, as long as 
more resources are required, i.e., ݎ௧  0  (cf. line 3 in 
Algorithm 4), a new VM having the least amount of provid-
ed resources, but still bigger or equal to the required re-
source demand ݎ௧  (cf. line 6), will be leased. If no VM 
type fulfills this requirement, the biggest available VM type 
will be leased (cf. line 7, i.e., if the end of vmTypList is 
reached). Subsequent to that, a new VM having this type 
will be leased (cf. line 8). If a new VM is leased, the re-
source demand ݎ௧ will be reduced by the amount of actu-
ally used resources, i.e., after having placed critical instanc-
es on this VM (cf. line 12-13). Before this, we update in 
lines 9-11 the number of leased VM instances of type ݒ, i.e., 
݇௩, store the corresponding VM instance, and set the value 
of its unused resource supply to the (maximum) supply of a 
VM of type ݒ. Using the method	ݐݏ݊ܫ݈݁ܿܽ, which is pro-
vided in Algorithm 3, we allocate critical service instances 
on the newly leased VM such that no further critical service 
instances can be placed on it due to its limited resource 
capacity. Subsequently, a “break” statement will stop the 
 loop and the procedure will be repeated until enough ݎ݂
resources are available.  

Corresponding to the presented algorithm for leasing 
additional resources (Algorithm 4), it is possible that re-

sources are still available on the leased VMs , i.e., they are 
not fully utilized. Therefore, we invoke further scheduled 
service instances on (already) leased VM instances in order 
to reduce the amount of unused VM resources. This is real-
ized in line 43 of Algorithm 1 by calling the method 
 .another time (cf. Algorithm 2) ݏܴ݁݀݁ݏݑܷܱ݈݊݊݁ܿܽ

Based on the results of the algorithms, the Reasoner is 
able to lease/release resources corresponding to the calculat-
ed resource demand. In addition, the Workflow Manager 
gets the information at which point in time to invoke which 
service instance as part of which workflow instance.  

 

4. EVALUATION	
The Vienna Platform for Elastic Processes is a purely 

Java-based framework and was developed and tested in a 
Unix-based environment. The evaluation was done in a 
private Cloud running the OpenStack operating system. The 
individual services are deployed in an Apache Tomcat-
based Application Server. In the following, we present our 
General Evaluation Approach (Section 4.1), i.e., the evalua-
tion scenario including the evaluation criteria. The experi-
ment’s results are presented in Section 4.2. 
 
4.1 GENERAL	EVALUATION	APPROACH	

While ViePEP and the presented reasoning approach are 
applicable in arbitrary process landscapes and industries, we 
evaluate the heuristic using a data analysis process from the 
finance industry. Choosing this particular process does not 
restrict the portability of our approach. We apply a testbed-
driven evaluation approach, i.e., real Cloud resources are 
used. For the individual services, we simulate differing 
workloads regarding CPU and RAM utilization and service 
execution time (see below). However, real services are de-
ployed and invoked during workflow executions. 

To simplify an interpretation of the chosen evaluation 
settings, we decided to make use of one single workflow 
which will be processed 20,000 times. This sequential work-
flow consists out of five individual service steps: The light-
weight Dataloader Service simulates the loading of data 
from an arbitrary source; afterwards, the more resource-
intensive Pre-Processing Service is invoked; next, the Cal-
culation Service simulates data processing, which leads to 
high CPU load; then, the Reporting Service generates a 
simple report – it generates a load similar to the one of the 
Pre-Processing Service. Last, the Mailing Service sends the 
report to different recipients – this is a lightweight service 
comparable to the Dataloader Service. The user-defined 
maximum execution time for workflow instances has been 
set to 5 minutes, commencing with the request. 

In order to test our optimization approach against a base-
line, we have implemented a very basic ad hoc approach. As 
the name implies, this approach is only able to take into 
account currently incoming workflow requests in an ad hoc 
way. While this includes the scheduling of workflow re-
quests, the baseline approach does not take into account 
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future resource demands. Instead, whenever a Backend VM 
is utilized more than 80%, an additional single-core 
Backend VM for the according service is leased. When the 
utilization is below 20%, the VM is released again. Notably, 
the baseline approach will only lease single-core VMs, as it 
is not able to take into account future resource demands. 

Arrival Patterns We make use of two distinct workflow 
request arrival patterns: In the Constant Arrival pattern, the 
workflow requests arrive in a constant manner. This means, 
the same amount of workflows arrives in a regular interval. 
In our evaluation, the number of simultaneously executed 
workflows is set to 200 and is send to ViePEP every 20 
seconds. In the Linear Arrival pattern, the workflows are 
executed following a linear rising function, i.e., ݕ ൌ ݇ ∗

ቔ௫
ଷ
ቕ  40,	where ݕ is the amount of concurrent requests and 

40 is the start value. This value is increased by ݇ ൌ 40 at an 
interval of 60 seconds.  

Metrics In order to get reliable numbers, we executed 
each arrival pattern three times and evaluated the results 
against three quantitative metrics. First, we measure the 
overall execution duration which is needed to process all 
20,000 workflow requests (Duration in Minutes). This is the 
timespan from the arrival of the first workflow request until 
the last step of the last workflow instance has been pro-
cessed successfully. The second metric is the amount of 
concurrently leased number of cores, i.e., the sum of (CPU) 
cores of the leased VMs (Active Cores). The combination of 
the first two metrics, results in Cost in Core-Minutes, i.e., 
these tell us the resulting cost of the overall evaluation. The 
Core-Minutes are calculated following a similar pricing 
schema as Amazons EC2, i.e., the VMs cost increase pro-
portionally with the number of provided resources. Our 
evaluation environment, i.e., the private Cloud we are run-
ning ViePEP in, provides four different VM types with 1-4 
cores respectively In order to get the resulting cost, we sum 
up the active cores over time and get the overall Core-
Minutes.  

 

4.2 RESULTS	AND	DISCUSSION	
Table 1 and Figures 3-4 present our evaluation results in 

terms of the average numbers from the conducted evaluation 
runs. Table 1 presents the observed metrics as discussed in 
the last section for both arrival patterns. For each pattern, 
the numbers for evaluation runs are given for the baseline 
algorithm as well as the deployed optimization approach. 
The table also states the standard deviation for each metric. 
In general, the observed standard deviation is low, and 
therefore indicates a low dispersion in the results of the 
evaluation runs. Figures 3-4 complete the presentation of the 
average evaluation results by depicting the arrival patterns 
over time and the number of active cores until all workflow 
requests have been served. To combine numbers from dif-
ferent evaluation runs, we apply nearest-neighbor interpola-
tion to the next full minute.  

The numbers in Table 1 indicate a substantial perfor-
mance difference between the baseline and the optimization 
approach. Most importantly, the cost in terms of Core-
Minutes is lower in both cases, leading to almost 16.5% cost 
savings for the Constant Arrival pattern and 22.6% for the 
Linear Arrival pattern. Hence, we can deduce that the opti-
mization approach helps to achieve a significantly better 
utilization of VMs, thus preventing additional cost arising 
from overprovisioning of Cloud-based computational re-
sources. Also, the optimization approach is faster in abso-
lute numbers, as it needs 25% less time to execute all work-
flow requests in the Constant Arrival pattern and 22.3% in 
the Linear Arrival pattern.  

For both arrival patterns, the baseline approach is in 
many cases not able to comply with the workflow deadlines 
(5 minutes), as can be seen from the backlog after all work-
flow requests have arrived. This can be traced back to the 
applied ad hoc approach, i.e., it takes the baseline approach 
too long to react to new workflow requests and adjust the 
number of leased VMs correspondingly. 

 

TABLE	1:	EVALUATION	RESULTS	

 Constant Arrival Linear Arrival 
 

Baseline 
Reasoner 

+ Scheduler 
Baseline 

Reasoner 
+ Scheduler 

Number of Workflow Requests 20,000 
Interval between two  

Request Bursts (in Seconds) 
20 20 

Number of Requests in  
one Burst 

ݕ 200 ൌ 40 ∗ ቔ
ݔ
3
ቕ  40 

Duration in Minutes 
(Standard Deviation) 

52 
(σ = 2.16) 

39 
(σ = 0.81) 

28.67 
(σ = 1.25) 

22  
(σ = 0.82) 

Max. Active Cores 
(Standard Deviation) 

11 
(σ = 0) 

10 
(σ = 0) 

18 
(σ = 0) 

16.66 
(σ = 0.47) 

Cost in Core-Minutes 
(Standard Deviation) 

443.67  
(σ = 7.72) 

370.33 
(σ = 5.90) 

314.71  
(σ = 25.36) 

243.59 
(σ = 6.70) 
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FIGURE	3:	CONSTANT	ARRIVAL	RESULTS	

	

FIGURE	4:	LINEAR	ARRIVAL	RESULTS	

Interestingly, for the Constant Arrival pattern, Figure 3 
shows clearly that ViePEP was able to optimize the sys-
tem’s landscape almost perfectly, i.e., the number of active 
VMs vary only a few times during the experiment. It can be 
perfectly seen that the optimization approach (i.e., “Reason-
er + Scheduler”) is not only faster than the baseline, but also 
acquired less overall computing resources, i.e., VMs.  

For the Linear Arrival pattern, the number of active 
cores increases quite similarly for the optimization and the 
baseline. However, the biggest difference is that in the 
“Reasoner + Scheduler” approach, VMs with more than one 
core are acquired while in the baseline approach only single-
core VMs are acquired. This results in a slower processing 

of the whole workflow queue since the overhead of the 
operating system is comparable higher in a single-core VM 
than in a quad-core VM. 

To summarize, the evaluation results show that the pro-
posed optimization approach indeed leads to a more effi-
cient allocation of computational resources. As a result, 
ViePEP is able to provide a higher cost-efficiency than 
approaches that do not take the process perspective into 
account – in our evaluation, such approaches where repre-
sented by the baseline. In addition, ViePEP is able to de-
crease the risk of under- and overprovisioning and therefore 
adds an important functionality to BPMS. 
 

5. RELATED	WORK	
Research on the utilization of Cloud-based computation-

al resources for the execution of business processes is still at 
its beginning (Dustdar et al., 2011; Andrikopoulos et al., 
2013). To the best of our knowledge, the number of ap-
proaches is still very small, but nevertheless, there is related 
work from other fields of research which should be taken 
into account, i.e., resource allocation and service provision-
ing for single tasks (Section 5.1), for Scientific Workflows 
(Section 5.2), and for business processes (Section 5.3). 

 
5.1 SINGLE	TASKS	

In the field of Cloud Computing, resource allocation and 
automated service provisioning is a major research chal-
lenge (Buyya et al., 2009), and many methods and algo-
rithms to allocate or schedule single service requests in an 
ad hoc manner have been proposed in recent years. These 
approaches focus on different aspects, with cost optimiza-
tion and resource utilization naturally being the most obvi-
ous ones. For instance, Lampe et al. (2011) define the Soft-
ware Service Distribution Problem in order to appoint ser-
vices on the Software as a Service (SaaS) level to particular 
VMs on the Infrastructure as a Service (IaaS) level. The 
authors make use of a Knapsack-based heuristic approach in 
order to solve the problem. Li and Venugopal (2011) pro-
vide mechanisms to automatically scale applications up and 
down on the IaaS level. For this, a reinforcement learning 
approach is followed, which learns the best server and ap-
plication actions. QoS and SLA enforcement are also taken 
into account, e.g., by Buyya et al. (2010), who propose the 
federation of independent Cloud resources in order to deliv-
er the needed QoS in a cost-efficient way, or by Cardellini 
et al. (2011), who model resource management in terms of 
VM allocation for services as a mixed integer linear optimi-
zation problem and propose heuristics to solve them. Wu et 
al. (2011) discuss dynamic resource allocation from the 
perspective of a SaaS provider, aiming at profit maximiza-
tion. Scheduling of service requests is based on defined 
SLAs between the provider and its customers.  

All approaches discussed so far lack a process perspec-
tive across utilized resources, but focus on the ad hoc alloca-
tion of Cloud resources for individual services and tasks.  
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5.2 SCIENTIFIC	WORKFLOWS 
There have been several approaches to utilize Cloud re-

sources for the execution of Scientific Workflows (SWFs), 
e.g., by Hoffa et al. (2008) or Juve and Deelman (2010). 
Pandey et al. (2010) propose the usage of Particle Swarm 
Optimization for scheduling SWFs on Cloud resources. The 
authors especially take into account the cost of data trans-
missions and storage cost and focus on the minimization of 
total cost. SLAs or QoS aspects are not taken into account. 
Szabo and Kroeger (2012) apply evolutionary algorithms in 
order to solve scheduling for data-intensive SWFs on a fixed 
number of VMs. Deadlines are not explicitly regarded and 
only one workflow is considered at a time. The latter con-
straint also applies to the works by Byun et al. (2011) and 
Abrishami et al. (2013), who both present resource alloca-
tion and scheduling approaches to optimize cost under a 
user-defined deadline. While these approaches offer inter-
esting ideas and insights, there are certain differences be-
tween business processes and SWFs that prevent a direct 
adaptation of such approaches (Ludäscher et al., 2009).  

 
5.3 BUSINESS	PROCESSES 

Approaches which directly address business processes 
are still scarce, but recently, a number of researchers have 
started to present corresponding work: Xu et al. (2009) 
provide some basic assumptions for the work at hand, most 
importantly, that workflows are interdependent and share 
services. Optimization of scheduling is done with respect to 
cost and time, but SLAs are not taken into account. While 
not explicitly regarding business processes, Lee et al. (2010) 
allow the execution of applications composed from interde-
pendent services running on different machines. The authors 
focus on maximizing the profit for an IaaS broker, who 
leases resources and provides VMs to service consumers.  

Juhnke et al. (2011) provide an extension to a standard 
BPEL workflow engine, which allows making use of Cloud 
resources to execute business processes. As BPEL is ap-
plied, workflows are composed from services, which mir-
rors our approach. It is possible to execute several work-
flows in parallel and optimize their scheduling and the re-
source allocation with respect to cost and overall execution 
time; apart from the cost for VMs, data transfer cost are also 
taken into account. A genetic algorithm is applied to solve 
the optimization problem. However, workflow deadlines are 
not regarded. Hence, this approach makes use of a similar 
resource model as done by the SWF approaches discussed 
above. The same applies to the work by Bessai et al. (2013), 
who also assume that workflows are composed from single 
software services. The authors propose different methods to 
optimize resource allocation and scheduling, aiming at cost 
or time optimization or to find a pareto-optimal solution 
covering both cost and time. Tasks may be shared among 
concurrent workflows, but in contrast to our work, tasks will 
not share the same VM (and service instance) concurrently. 
Deadlines are also not regarded. As the discussed approach-

es do not regard deadlines, they are not able to optimize 
resource allocation through postponing particular workflows 
steps to future timeslots. 

Wei and Blake (2013) and Wei et al. (2013) propose a 
similar approach – again, workflows are built from single 
services and the authors focus on resource allocation. While 
service instances may be part of different workflows (Wei et 
al., 2013), the authors do not allow for parallel service invo-
cations in different workflows, i.e., one service instance can 
only be invoked by a particular workflow at a time. In con-
trast, we follow the “classic” service composition model, 
which allows exactly this. The authors do not take into ac-
count SLAs or workflow deadlines, but a workflow owner 
may define some generic QoS constraints (Wei et al., 2013). 
Since deadlines are not taken into account, the authors do 
not provide scheduling mechanisms. Cost areCosts are also 
not regarded explicitly, but mechanisms are presented which 
aim at saving cost. Because workflows are not able to con-
currently share service instances, the potential for optimiza-
tion of resource allocation is not completely exploited. Simi-
lar to Bessai et al. (2013), Wei et al. also do not implement a 
testbed to test their algorithms, but use simulation in their 
evaluation. Despite the differences between our work and 
the work by Wei et al., there are also some commonalities, 
e.g., to allow different sizes of VMs at proportional cost. 
Furthermore, Wei and Blake (2013) also discuss the usage 
of resource demand prediction as a prerequisite for resource 
allocation. 

Janiesch et al. (2014) provide an extensive conceptual 
model for Elastic Processes and implement an correspond-
ing testbed which makes use of Amazon Web Services. The 
authors take into account SLAs (including workflow dead-
lines) and cost optimization, but do not provide automatic 
scheduling and resource allocation methods yet. In contrast 
to our work, the authors do not make use of workflow moni-
toring data to derive resource demands for upcoming ser-
vices, but assume that there is a correlation between the 
resource demands of different tasks in a workflow. Apply-
ing a complementary scenario to the work presented within 
this paper, Gambi and Pautasso (2013) define design princi-
ples for RESTful business processes executed using Cloud 
resources. However, the authors propose to place complete 
processes on the same VM instead of allowing distributing 
services which belong to different workflows on different 
VMs. Hence, it is not possible to share resources between 
workflows. Finally, Frincu et al. (2013) analyze the applica-
tion of resource provisioning and scheduling approaches for 
Grid workflows to Cloud-based workflows.  

 

6. CONCLUSION	
Resource-intensive processes and their execution using 

workflow and service technologies play an increasingly 
important role in many industries. The usage of Cloud re-
sources to allow the execution of such processes in an elas-
tic way seems to be an obvious choice, but so far, BPMS do 
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lack the ability to lease and release Cloud resources and 
allocate them in order to execute workflows. 

In this paper, we have presented the Vienna Platform for 
Elastic Processes, which combines the functionalities of a 
BPMS with that of a Cloud resource management system. 
We have also presented an extended optimization model and 
heuristic for workflow scheduling and resource allocation 
for Elastic Process execution. As has been shown in our 
evaluation, the optimization approach leads to significant 
cost saving and time savings  

Research on Elastic Processes is just at the beginning. 
There are several research directions that should be pursued 
in the future. First of all, we would like to extend the basic 
model of our workflow scheduling and resource allocation 
approach by allowing several different service instances per 
VM, vertical and horizontal scaling of VMs, a more com-
plex VM model (e.g., non-proportional cost for VMs, mini-
mum lease periods for VMs from public Clouds), include 
data transfer cost when scheduling workflows, and explicit-
ly taking into account more complex workflow patterns. 
Second, while ViePEP was conceptualized for usage in 
hybrid Clouds, we are currently running it within a private 
Cloud environment. In the future, we will extend it by mak-
ing it possible to combine public and private Cloud re-
sources. Third, while the evaluation provides important 
results, we consider it as preliminary. In our future work, we 
want to make use of a more realistic Elastic Process test 
collection; we will also provide this test collection to inter-
ested researchers. Last but not least, we are currently reen-
gineering ViePEP in order to make it ready for distribution 
as Open Source software. 
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