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Abstract—The problem of selecting services from a set
of functionally appropriate ones under Quality of Service
constraints – the Service Selection Problem – is well-recognized
in the literature based on deterministic parameters. However,
Quality of Service may rather follow a stochastic distribution
and, thus, may change at runtime. In order to cope with
differing Quality of Service, we present a heuristic approach
for efficiently addressing the Service Selection Problem in
conjunction with stochastic Quality of Service attributes. Ac-
counting for penalty cost which accrue due to Quality of Service
violations, our approach reduces the impact of stochastic
Quality of Service behavior on total cost significantly.
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Optimization, Simulation

I. INTRODUCTION

The problem of selecting services from a set of func-
tionally appropriate ones and thereby best meeting cost and
Quality of Service (QoS) requirements is widely recognized
in the literature, e. g., [1]–[4]. It is commonly referred to
as Service Selection Problem (SSP). Solutions to the SSP
describe execution plans indicating, which services to select
for accomplishing the tasks of a workflow in order to satisfy
aforementioned cost and QoS requirements. Corresponding
optimization approaches for optimizing the SSP are most
often based on deterministic QoS attributes.

But QoS, e. g., the response time of a service or its
availability, is not always deterministic in reality. Various
research activities provide evidence that fluctuations in the
behavior of QoS attributes exist [5]–[7]. Service response
times, for instance, may change dynamically due to network
latency or server load. Thus, when actually executing an
execution plan, the perceived QoS might differ from the
expected QoS which has been used previously for computing
the corresponding execution plan. Thus, although having
computed an optimal solution to the SSP at design time
that satisfies the QoS constraints, it might still be possible
that these constraints will be violated at runtime.

The work at hand addresses this issue. Based on a service
broker scenario, which is presented in Section II, we describe
how differing QoS values due to stochastic QoS behavior

negatively impact total cost. In order to account for this
impact of stochastic QoS, we proposed an adaptation heuris-
tic in our former work in [8] that successfully reduces the
negative impact of stochastic QoS behavior on total cost but
requires strong computational efforts. Extending our former
work and addressing this shortcoming, we propose a Genetic
Adaptation Algorithm that also achieves cost reductions but
with significantly reduced computation times.

The remainder of this work is structured as follows. In
Section II, we present a motivating scenario that will be used
throughout the paper. In Section III, we formalize the SSP
and briefly describe our solution approach for optimizing the
SSP in the context of deterministic QoS attributes. Since
QoS is not always deterministic, we present a heuristic
solution approach that accounts for stochastic QoS behavior
in Section V and provide corresponding evaluation results in
Section VI. Finally, after having distinguished our approach
from related work in Section VII, we draw conclusions and
discuss future work in Section VIII.

II. SCENARIO

In this section, we present an example scenario used
for illustrating the impact of stochastic QoS attributes. We
assume a service broker who receives requests from his/her
customers. Paying the broker a fixed amount of money, the
customers require certain tasks and workflows, respectively,
to be executed. For this, they provide the broker with a
document that specifies the required tasks from a functional
perspective and indicates the ordering of the tasks, i. e., the
structure of the workflow. One of the broker’s customers
asks, for instance, for the workflow in Figure 1. The process
steps PSi thereby indicate the tasks that have to be accom-
plished. Each task i can be executed by a single service j.

In addition to these functional requirements, the customers
also specify their QoS needs regarding the execution of
the respective workflows. For this, they provide restrictions
in the form of upper or lower bounds for specific QoS
attributes, the so-called Service Level Objectives (SLOs).
With this information, the broker tries to select those
services among functionally appropriate ones that satisfy
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Figure 1: Example Workflow (in BPMN)

the customers’ QoS requirements, as a violation of these
requirements will be penalized by his/her customers. Having
selected respective services, the broker pays and invokes
these services in order to execute the customers’ tasks and
workflows, respectively. If the customers’ QoS requirements
are violated, penalty fees, which also have to be paid by the
broker, will become due. In order to reach an optimized
decision, the broker models the selection of services as
an optimization problem aiming at minimizing invocation
cost and satisfying QoS constraints. For this, the broker
formulates an SSP and computes an optimal solution to it,
which is described in the following Section III.

III. SERVICE SELECTION PROBLEM

In order to formulate an SSP and therewith to compute
an execution plan, it is necessary to aggregate the QoS and
cost values of eligible candidate services according to the
considered workflow and its structure, respectively. Regard-
ing our example scenario, this actually is a prerequisite for
comparing workflow QoS with respective bounds issued by
the broker’s customers.

The workflow depicted in Figure 1 consists of an inter-
laced XOR-block that contains an OR-block, a Repeat loop,
and an unstructured Directed Acyclic Graph (DAG). Cor-
responding aggregation specifications accounting for these
structural orchestration blocks would have to be applied
according to their actual ordering within the workflow in
Figure 1. For further details on aggregation specifications,
the interested reader is referred to our former work [8]–[10].

Applying corresponding aggregation specifications ac-
cording to the workflow depicted in Figure 1 enables the
broker to model the SSP as an (potentially non-linear)
optimization problem, which can be transformed into a lin-
ear optimization problem by applying appropriate lineariza-
tion techniques [11]. Having obtained a linear optimization
problem, the broker computes an optimal solution – mini-
mizing service invocation cost and (presumably) satisfying
the customers’ constraints – by applying Integer Linear
Programming from the field of Operations Research [12].

But applying the computed execution plan and invoking
corresponding services may lead to violations of the cus-
tomers’ constraints, as the invoked services may show a
different behavior at runtime than expected at design time.

Thus, accounting for the scenario described in Section II,
additional penalties will arise. In order to assess the impact
of uncertainty resulting from stochastic QoS behavior before
actually executing the obtained execution plan and invoking
the corresponding services, we propose to simulate the
execution plan firstly. The applied simulation approach is
briefly described Section IV. Making use of this simulation
approach, we present our proposed Genetic Adaptation Al-
gorithm in Section V.

IV. SIMULATION

As previously stated, QoS is not constant but differs in
reality, i. e., corresponding services do not always provide
their functionality with the same quality resulting in differ-
ing QoS behavior. In order to capture this differing QoS
behavior, frequencies for observed QoS values (or value
ranges) can be derived indicating how often a certain value
has been observed in comparison to the total number of
measurements. The distribution of the observed frequencies
thereby corresponds to a probability distribution indicating
the relative frequency and therewith the probability at which
a certain value has been and will be observed. Thus, in
order to address stochastic QoS attributes, the application
of probability distributions capturing the probabilities and
relative frequencies, respectively, for observing values of
those attributes appears appropriate.

As we do not focus on estimating probability distributions
but rather on the capability to appropriately account for vary-
ing QoS behavior, we use standard probability distributions
and corresponding distribution functions in this paper. An
approach for estimating QoS probability distributions in the
context of Web services and service compositions is, for
instance, provided by Zheng et al. in [13].

Accounting for the measurements conducted and re-
sults achieved in [5]–[7], the QoS attributes explicitly
accounted for in the work at hand are assumed to fol-
low standard distributions as indicated subsequently. Re-
sponse time r is assumed to follow a Normal Distribution
N(µr, σr), while for availability a, a Triangular Distribution
T (mina,meda,maxa) is assumed. For throughput d, we
consider a Uniform Distribution U(mind,maxd). This way,
we account for different distribution functions so that the
evaluation results cannot be attributed solely to dedicated
properties of the selected, single probability distribution.
For further details on different probability distributions, the
interested reader is referred to [14], [15].

For actually simulating the execution of the previously
computed execution plan, we use aforementioned distribu-
tion functions and conduct a series of simulation runs. For
this, we draw in each iteration realizations for each QoS
attribute of each selected service using random variables
Rij ∼ N(µr, σr), Aij ∼ T (mina,meda,maxa), and
Dij ∼ U(mind,maxd). In addition, depending on the
branching probabilities of (X)OR-splits and Repeat loops,



we draw realizations of uniformly distributed random vari-
ables U ∼ U(0, 1) in order to determine the paths to
be virtually executed in the current iteration. The realized
values of the individual services are aggregated afterwards
according to the structure of the considered workflow –
applying aforementioned aggregation specifications. This
way, we compute the overall QoS for the whole workflow.
For further details on the simulation approach, the interested
reader is referred to our former work in [8].

V. GENETIC ADAPTATION ALGORITHM

Making use of the described simulation approach, it is
possible to predict potentially occurring QoS violations due
to varying QoS values, which lead – referring to the broker
scenario presented in Section II – to additional penalties.
In order to account for this (negative) impact of stochastic
QoS and therewith to reduce total cost comprising invocation
cost for invoking the selected services as well as penalty cost
accruing due to QoS violation, we propose a heuristic solu-
tion method. Since we make use of concepts from Genetic
Algorithms [16], [17] implementing the genetic operations
selection, mutation, and crossover for continuously reducing
total cost, our heuristic solution method will be referred to
as Genetic Adaptation Algorithm (GAA).

Our GAA is indicated in Algorithm 1 using pseudocode. It
is split into five steps. In the first step, the GAA is initialized
and an initial solution is computed. In the second step, we
apply aggregation specifications to compute the total cost for
the current solution comprising invocation and penalty cost.
Using this cost, we compare in the third step the current
solution with the best solution obtained so far and decide
how to proceed, i. e., whether to store the current solution
as best or temporary solution or to restore the previously
known best solution. In the fourth step, we determine the
QoS attribute for which the penalty cost has been highest.
This QoS attribute becomes the current QoS attribute, which
is used in the fifth step to compute a new solution.

More details on these steps are provided in the following.
Referring to Algorithm 1, the candidate services are firstly
sorted in the first step according to their QoS values per
process step and per QoS attribute (cf. line 2). Subsequently,
a corresponding ranking is computed (cf. line 3). In line 4,
we compute an initial solution to the SSP. How to compute
an initial solution depends on the configuration of the
GAA. For instance, regarding the evaluation presented in
Section VI, we applied the optimization approach described
in Section III.

In the second step, the computed initial solution is
simulated in line 6 and corresponding QoS violations are
computed in line 7. In line 8, we compute the total cost by
adding up the invocation cost of the current solution and the
penalty cost accruing due to determined QoS violations.

Depending on whether the cost of the current solution is
lower than the cost of the currently known best solution, we

either store the current solution in the third step as new
best solution solution (cf. lines 10-12) or, potentially, as
temporary solution (cf. lines 17-19) in case we do not restore
the currently known best solution (cf. lines 14-15). Note that
we draw a realization of a uniformly distributed random
variable U ∼ U(0, 1) in line 17 for deciding, whether to
store the current solution although it is worse compared to
the currently known best solution. Thus, we only store worse
solutions in approximately 30% of the cases, as indicated
in line 17. Whether we restore a solution depends on the
number of temporarily allowed worse solutions. Temporarily
accounting for worse solutions enables the algorithm to exit
local maxima in order to find better solutions. If the number
of allowed worse solutions is reached, the currently known
best solution will be restored. Referring to Section VI, we
evaluate the impact of the number of temporarily allowed
solutions on total cost.

In the fourth step, we compute the penalty cost for each
QoS attribute q (cf. lines 23-24) and store the QoS attribute
that causes highest penalty cost as current QoS attribute (cf.
lines 25-28). This way, we determine for which QoS attribute
the penalty cost is highest.

Using the current QoS attribute, a new solution is com-
puted during the fifth step (cf. line 31). The procedure for
computing the new, i. e., the next solution, is indicated in
Algorithm 2 using pseudocode. Note that the current QoS
attribute refers to the variable q in Algorithm 2. In line 1
of Algorithm 2, we determine a set of tasks for which we
try to improve the values for the current QoS attribute.
For instance, if highest penalty cost is caused by violating
the constraint on response time – which then becomes the
current QoS attribute – we try to improve the workflow
response time by exchanging the services currently selected
to accomplish the set of tasks determined in line 1 for
other services that have lower and therewith better values on
response time. In line 2, we determine the genetic operator
to be applied, i. e., either selection, mutation, or crossover.
For this, we draw a realization of U ∼ U(0, 1). The values
s ∈ [0, 1) and m ∈ (s, 1] thereby serve as thresholds for
determining the genetic operator. If, for instance, the value
v obtained by drawing a realization of U is lower than s,
a selection will be performed. If v is between s and m,
i. e., s < v ≤ m, a mutation will be carried out. Finally, if
v > m, we will perform a crossover. For the evaluation in
Section VI, we set s = 0.6 and m = 0.9. Using the switch
statement in line 3, we route the execution of the algorithm
to the right case.

In case, a selection needs to be carried out, we determine
in line 6 the service number of the service that is currently
selected for accomplishing a task t ∈ taskList. We retrieve
its rank, i. e., its position in the sorted list of services
according to the considered task t and current QoS attribute
q, in line 7. Using the service ranking computed in line 2 of
Algorithm 1, we determine the number of a candidate service



with a better rank in line 8. For deciding, how much better
the rank of the new service should be, we use a parameter
γ. The value of γ depends on the configuration of the GAA.
For the evaluation presented in Section VI, we used a value
of γ = 2. For instance, if the currently selected service for
task t has the rank 7 with respect to response time, which
indicates that it constitutes the 7th best candidate service
for task t regarding response time, the service determined
in line 8 will have the rank 7− 2 = 5. Thus, we will select
the corresponding 5th best candidate service. This way, we
(try to) improve the overall workflow response time. Finally,
in line 9, the newly identified service will then be set as
selected for accomplishing task t. This procedure, i. e., steps
6-9, will be repeated for all tasks in the determined task list.

In case, a mutation should be performed, we randomly
select services for the tasks t ∈ taskList by drawing
realizations of U ∼ U(0, 1) for each task t and multiplying
the result with the number of candidate services for this task
in line 13. In line 14, we include the newly selected service
into the solution for accomplishing task t.

For carrying out a crossover, we use the tasks t ∈
taskList and their corresponding task numbers, respec-
tively, as crossover points. The currently known best solution
as well as the solution stored in line 18 of Algorithm 1
will be used as parent solutions. In lines 17 and 20 of
Algorithm 2, we initialize a range of task numbers, for which
the first swapping should be carried out, by setting the first
task number to 0 (cf. line 17) and the last task number
to the number of the first task t ∈ taskList (cf. line 20).
Since we need only one next solution with which we want to
proceed, we take only one child solution from crossing the
parent solutions. For deciding whether to use the selected
services from the best solution or from the temporarily
stored solution, we apply a boolean operator swap, which
is initialized in line 18. For all task numbers ti inside the
current range, i. e., startTaskNo ≤ ti < endTaskNo
(cf. line 21), we either take the selected services from
the currently best or from the temporarily stored solution,
depending on the current value of swap. Afterwards, we set
swap to its opposite in line 28 and store the number of the
current task t as new start task number in line 29. In the next
iteration of the loop starting in line 19, the number of the
next task t ∈ taskList will be set as new end task number
(cf. line 20), so that the range of task numbers is updated
for the next iteration. Finally, the loop in lines 31-37 makes
sure that also the tasks with task numbers ti between the
number of the last task t ∈ taskList and the number of the
last task of the workflow are considered for crossover.

By carrying out either a selection, a mutation, or a
crossover, a new solution is determined which will be con-
sidered as next solution provided by the GAA. Repeating the
second step (in Algorithm 1), this new solution is simulated
again and its total cost is computed. If the total cost for the
new solution is lower than the cost of the best solution, it

Algorithm 1 Genetic Adaptation Algorithm

1: //First step – initialize algorithm
2: sortedServices = sortServices();
3: serviceRanking = computeServiceRanking();
4: solution = computeInitialSolution();
5: //Second step – determine current cost
6: sim = simulate(cs);
7: v = computeQoSViolation(sim);
8: cost = computInvCost(solution) + computePanalty(v);
9: //Third step – decide procedure

10: if cost < bestCost then
11: bestSolution = solution;
12: bestCost = cost;
13: else
14: if restoreBestSolution() then
15: solution = bestSolution;
16: else
17: if random() ≤ 0.3 then
18: storedSolution = solution;
19: end if
20: end if
21: end if
22: //Fourth step – determine the current QoS attribute
23: for all q ∈ QoSattributes do
24: penaltyCost = computePenaltyForAttribute(q);
25: if penaltyCost ≥ highestPenaltyCost then
26: highestPenaltyCost = penaltyCost;
27: currentQoSattribute = q;
28: end if
29: end for
30: //Fifth step – compute next solution
31: computeNextSolution(currentQoSattribute);

will be stored as new best solution (third step). Otherwise, it
will potentially be stored as temporary solution, or it will be
replaced by the currently known best solution. Afterwards,
the current QoS attribute causing highest penalty cost will
be determined (fourth step) and a new solution will be
computed (fifth step), which will then be simulated and
so on and so forth. Thus, depending on whether further
iterations of the described GAA have to be performed, the
corresponding steps will be repeated.

Having provided details on the proposed GAA, we eval-
uate our solution approach in Section VI.

VI. EVALUATION

As a proof of concept, we prototypically implemented our
GAA using the Java programming language. For evaluating
its performance, we conducted a set of experiments. The
experiments have been performed on an Intel Core 2 Quad
processor at 2.66 GHz, 4 GB RAM, running Microsoft
Windows 7. Accounting for our broker scenario in Section II,



Algorithm 2 ComputeNextSolution(q)

1: taskList = comuteTaskWeights();
2: goMethod = determineGoMethod(s,m);
3: switch goMethod do
4: case selection
5: for all t ∈ taskList do
6: serviceNo = solution[t];
7: rank = sortedServices[t,q,serviceNo];
8: newNo = serviceRanking[t,q,rank − γ];
9: solution[t] = newNo;

10: end for
11: case mutation
12: for all t ∈ taskList do
13: newNo = random() · numOfServices(t);
14: solution[t] = newNo;
15: end for
16: case crossover
17: startTaskNo = 0;
18: swap = true;
19: for all t ∈ taskList do
20: endTaskNo =numberOfTask(t);
21: for startTaskNo ≤ ti < endTaskNo do
22: if swap then
23: solution[ti] = bestSolution[ti];
24: else
25: solution[ti] = storedSolution[ti];
26: end if
27: end for
28: swap = not(swap);
29: startTaskNo =numberOfTask(t);
30: end for
31: for startTaskNo ≤ ti ≤ numberOfTasks do
32: if swap then
33: solution[ti] = bestSolution[ti];
34: else
35: solution[ti] = storedSolution[ti];
36: end if
37: end for

we considered the workflow depicted in Figure 1 and applied
the solution method indicated in Section III for computing
optimal solutions to the SSP based on deterministic values,
i. e., without accounting for stochastic QoS. For solving the
obtained linear optimization problem, we used the linear
programming solver CPLEX1. This solution approach will
be referred to as Solver. Computed results have been com-
pared with results obtained by applying the proposed GAA
as well as with results obtained by applying the adaptation
heuristic A2ESTD proposed in our former work in [8]. In
brief, A2ESTD removes services with high uncertainties
from the list of candidate services.

1http://www.ibm.com/software/integration/optimization/cplex-optimizer/

Table I: Assumed values for stochastic QoS attributes

Attribute PS10, PS11 PS1-PS9, PS12, PS13

Rij
µe ∼ U(160, 240)
σe ∼ U(0, 40)

µe ∼ U(80, 120)
σe ∼ U(0, 20)

Aij

mina ∼ U(0.9, 0.94)
meda ∼ U(0.94, 0.98)
maxa ∼ U(0.98, 1.02)

mina ∼ U(0.95, 0.97)
meda ∼ U(0.97, 0.99)
maxa ∼ U(0.99, 1.01)

Dij
mind ∼ U(70, 105)
maxd ∼ U(110, 135)

mind ∼ U(70, 105)
maxd ∼ U(110, 135)

cij
U(0.7, 1.3) · (80 + (0.3 ·
(µd − µe)) · µ2a)

U(0.7, 1.3) · (40 + (0.3 ·
(µd − µe)) · µ2a)

In the following, we describe our experimentation setup.
As previously stated, we draw realizations of the random
variables Rij ∼ N(µr, σr), Aij ∼ T (mina,meda,maxa),
and Dij ∼ U(mind,maxd) for determining QoS values
for the candidate services. The parameterization of the
random variables Rij , Aij , and Dij is indicated in Table I.
We assume the invocation cost of a service to be partly
dependent on its QoS, i. e., good QoS values in terms of low
response time r, high availability a, and high throughput
d result in higher invocation cost. Thus, we compute the
invocation cost as indicated in Table I, using a uniformly
distributed random variable U(0.7, 1.3).

For comparing the results of the aforementioned solution
methods, we use computation time, i. e., the time it took the
applied solution method to compute its results in millisec-
onds (msec), as well as total cost, i. e., the sum of invocation
and penalty cost in monetary units, e. g., cents, as dependent
variables. As independent variables, we use the number of
iterations that the different adaptation heuristics, i. e., GAA
and A2ESTD, have to perform as well as the number of
thereby temporarily accepted worse solutions. The number
of iterations – referred to as greed – will be varied from
0 to 20, step 2. The number of temporarily accepted worse
solutions – referred to as annealing – will be varied from 0
to 10, step 1. In addition, we account for different levels of
penalty fees as third independent variable. In this respect,
we assume linear penalty fees per unit of QoS violation,
e. g., cents per second the actual workflow response time
has been higher than restricted by the corresponding bound,
or cents per percent point the availability was lower than
restricted. We could have alternatively used variable penalty
fees that increase quadratically or exponentially with the
size of the violation. Since this would have only influenced
the calculation of the actual penalty cost depending on
the chosen penalty cost model but does not change our
approach, we sticked to linear penalty fees for the sake
of simplicity. In this respect, we varied the penalty fee
percentage from 0.0 to 0.2, step 0.2, i. e., from 0% to 20%.
The resulting penalty fees are computed by multiplying the
absolute QoS violation per QoS attribute with the product
of penalty fee percentage and invocation cost. Thus, the
absolute penalty cost is dependent on the current invocation



cost. As previously stated, we could have considered other
cost models but finally sticked to the described cost model
for simplicity reasons. For the evaluation, we chose a partial
factorial design and fixed the values for the independent
variables greed, annealing, and penalty fee percentage to
10, 2, and 0.1, if not currently varied. The evaluation results
are depicted in Figure 2 and Figure 3.

Regarding the impact of the number of iterations on
total cost, the evaluation results depicted in Figure 2a show
that both, GAA and A2ESTD, achieve remarkable cost
reductions. While the solution computed by applying the
Solver without accounting for stochastic QoS causes total
cost of 408.8 cent, solutions obtained after having performed
20 iterations of GAA and A2ESTD only cause 371.8 and
339.0 cent, respectively, which corresponds to a reduction
by 9.1% and 17.1%. Thus, the broker could save up to 9.1%
and 17.1% of the total cost when applying the corresponding
adaptation heuristic. But, as Figure 3a reveals, this reduction
in total cost acually “costs” additional computation time.
While the Solver requires 143.1 msec for computing its
solution, GAA and A2ESTD need 914.6 and even 6075.4
msec, i. e., up to 6.4 and even 42.3 times as much, for
performing aforementioned 20 iterations.

Regarding the impact of the number of temporarily al-
lowed worse solutions depicted in Figure 2b, again both,
GAA and A2ESTD, achieve cost reductions compared to the
Solver – up to 8.6% and 20.2%, respectively. But these cost
reductions do not increase monotonously with higher values
of annealing, as the number of iterations to be performed
does not depend on the value of annealing but on the value
of greed, which has been fixed to 10 in this case. Similar
to the results for varying greed, higher values of annealing
lead to higher computation times. While GAA requires up to
1456.9 msec, A2ESTD needs up to 7885.6 msec as indicated
in Figure 3b, which corresponds to an increase by a factor
of 10.2 and 55.1. Note that the total cost the Solver achieved
as well as the therefore needed computation time is not
impacted, neither by greed nor by annealing. Thus, neither
total cost nor computation time changed.

Finally, increasing the penalty fee percentage results in
higher penalty fees and, thus, in higher total cost. While
the total cost achieved by the Solver amounts up to 570.7
cent, GAA and A2ESTD achieve 408.1 and 395.5 cent
for a penalty fee percentage of 0.2, which corresponds
to a reduction by 28.4% and 30.7%, respectively. Since
the accruing penalty costs depend on performed simulation
results for which we drew realizations of random variables
(cf. Section V), they do not increase linearly with higher
penalty fee percentages. Thus, we do not observe a linear
increase in total cost. Since neither the GAA nor A2ESTD
can find better solutions than the Solver for a penalty fee
percentage of 0.0, i. e., for a scenario without penalties,
they cannot reduce total cost. In fact, only for penalty fee
percentages > 0, they start adapting. Thus, for a penalty fee

percentage of 0.0, their computation times are nearly the
same as for the Solver. Further, it can be observed that the
computation time for GAA and A2ESTD does not increase
remarkably with growing penalty fee percentages, because
the number of iterations to be performed does not depend on
the penalty fee percentage. While the GAA requires 516.9
msec in average, A2ESTD needs 3173.3 msec in average,
which corresponds to an increase in computation time by a
factor of 3.6 and 22.2, respectively.

Summing up, it turns out that GAA also achieves cost re-
ductions, but they are not as high as the reductions A2ESTD
achieves. On the other hand, the proposed GAA requires less
(additional) computation time compared to A2ESTD, which
actually was the goal for its development.

Having described our approach, we discuss related ap-
proaches in the following Section VII.

VII. RELATED WORK

As previously stated, the SSP is well-recognized in the
literature based on deterministic QoS attributes. A survey of
current approaches can be found in [4]. In principle, current
approaches can be divided into two categories: heuristic
approaches which try to find rather good solutions within
a reduced amount of computation time, e. g., [2], [18], [19],
and approaches aiming at finding an optimal solution to the
SSP, e. g., [1], [3], [20]. All those approaches presume that
the use QoS attributes are deterministic. Related work in the
area of stochastic QoS attributes, however, is rather sparse.

Rosario et al. consider probabilistic QoS, but not for
the purpose of services selection [5]. They rather focus
on SLA and contract composition, respectively, using soft
probabilistic contracts. Hwang et al. use Probability Mass
Functions (PMFs) instead of deterministic QoS values [21].
Providing approaches for aggregating the PMFs of single
services, the authors aim at computing and estimating QoS
for service-based workflows using a preselected set of ser-
vices with discrete PMFs. Thus, they also do not address
service selection. In their work in [22], Li et al. use historic
data for predicting QoS values, which they then use for
service selection instead of predefined values guaranteed by
service providers. Thus, in effect, the authors use (predicted)
deterministic values.

Cardellini et al. use α-percentiles (with α = 95%) instead
of deterministic values for the QoS attribute response time
[23]. Accordingly, the corresponding restriction on response
time demands the probability of violating the bound for re-
sponse time to be lower or equal to 1−α, i. e., 1−0.95 = 5%.
Projected to our broker scenario, this means that the broker
can assume satisfying the respective bound with a probabil-
ity of 95%. But Cardellini et al. do not account for penalty
costs accruing due to QoS violations in the remaining 5%
of the cases. Depending on the ratio between invocation
and penalty cost, it could be beneficial for the broker to
select rather cheap services, which statistically cause QoS
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Figure 2: Evaluation results regarding total cost
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Figure 3: Evaluation results regarding computation time

violations more often, and paying the corresponding penalty
cost rather than selecting expensive services for which the
probability of violating QoS constraints is low. In contrast to
Cardellini et al., out approach accounts for such situations.

In [24], Leitner et al. assume fixed service compositions
and fixed sets of potential adaptations such as “use Express
Shipping” instead of “ use Standard Shipping”. The authors
thereby aim at selecting and applying adaptations in order
to minimize total cost comprising invocation cost, penalty
cost for QoS violation, and cost for applied adaptations.
Abstracting from the term adaptation and interpreting avail-
able adaptations as alternative services, it can be stated that
Leitner et al. are solving an SSP with the aim to minimize
total cost considering penalties for QoS violation. Similar
to Li et al., Leitner et al. predict prospective QoS values
– and therewith expected QoS violation. In contrast to the
work at hand, Leitner et al. estimate the impact of stochastic
QoS behavior for each service separately and perform an
optimization with these estimated, deterministic QoS values.
Our approach does not consider stochastic QoS behavior of
services independently from each other, but account for the
whole workflow using the described simulation approach.
Thus, potential reverse QoS deviations of different services
from expected behavior can be considered, which is not pos-
sible in [24] due to their isolated consideration of expected
QoS per service.

In summary, our approach extends related work as it
considers on the one hand the impact of QoS violation in
terms of accruing penalty costs. On the other hand, we do not
only regard isolated stochastic QoS behavior for individual
services, but account for probably compensating reverse
QoS deviations of different services. Thus, we consider the
impact of stochastic QoS behavior for the whole workflow.
Conclusions are drawn in the following Section VIII.

VIII. CONCLUSION

The SSP is well-recognized in the literature based on
deterministic QoS parameters. In the work at hand, we
addressed the SSP in conjunction with stochastic QoS at-
tributes which has been considered as yet only insufficiently
in the literature. In our former work in [8], we proposed
an adaptation heuristic – referred to as A2ESTD – that
successfully reduces the negative impact of stochastic QoS
behavior on total cost but requires strong computational
efforts. Addressing this shortcoming, we proposed in this pa-
per a Genetic Adaptation Algorithm (GAA) that also achieves
cost reductions but with significantly reduced computation
times. For instance, referring to Figure 2c, the GAA achieves
cost reductions up to 28.4% whereas A2ESTD achieves
reductions up to 30.7%. On the other hand, referring to
Figure 2c, computation times increased only by a factor
of 3.6 when applying GAA, whereas A2ESTD leads to an
increase in computation time by a factor of 22.2. Thus, the



goal of achieving cost reductions with a significantly reduced
computation time compared to our former work has been
achieved. In this respect, it has to be noted that the provided
absolute results strongly depend on the considered scenario.
However, the proposed approach appears appropriate to
reduce potentially negative impacts of stochastic QoS.

In our future work, we aim at merging the proposed GAA
with the optimal solution approach in order to consider
stochastic QoS during the optimization.
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