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Abstract 

Domain-specific search engines exist in various fields, providing additional value by exploiting 

knowledge of their respective domains. One common mechanism used are filters which allow 

narrowing down the search results based on pre-defined filter categories. In this article we exploit 

the usage of a text classification system for the creation of these filters. The approach is tailored to 

work in large-scale settings with reduced amounts of manually annotated training data and hence 

enables a cost-efficient roll-out of new filters. An initial annotation study resulted in a corpus which 

was used for an off-line evaluation of the approach giving insights into the effect of the system’s 

parameters. Finally, a large online evaluation was executed together with a provider of a domain-

specific search engine. This article presents important aspects that need to be taken into 

consideration when implementing text classification-based filters in the industrial setting of a 

domain-specific search engine. 

Keywords: Search engines, text classification, annotation study, active learning 

1 Introduction 
The amount of digital information is growing at an enormous pace. In August 2014, around 179 

million [1] active Web sites were reachable where the majority does not consist of single pages but 

hundreds or thousands of sub-pages. While multimedia content such as video and audio is gaining 

increasing importance as a relevant type of content, text still seems to be the prevalent media type.  

After the rise of the Internet, search engines have evolved in order to provide an efficient access to 

available information. While the market is dominated by generic search engines, in particular 

Google4, an increasing number of domain-specific search engines have come up. Common domains 

for these domain-specific search engines are products, restaurants, hotels, job offers or scientific 

publications. In comparison to generic search engines, domain-specific search engines bear 

advantages by exploiting knowledge of their respective domains in order to improve the search 

experience for the user. Both recall5 and precision6 of the search can be improved compared to 

generic search engines:  

 Recall can be improved by incorporating search results from all or a high fraction of relevant 

Web pages (maintaining an index of relevant Web sites in the background) 

 Precision can be improved by giving the user the possibility to search not only based on 

string values over complete documents but to filter the search results according to their 

needs in the particular domain 

In this article we focus on the latter. Filters are a pre-defined number of attributes that can be 

combined with each other in order to narrow down the result set of a search. These filters can be 

generic or domain-specific. Examples for generic filters are file-format, top-level-domain or language. 
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5
 Recall describes in the context of search engines the percentage of relevant Web pages that were found by a 

search query out of the total number of relevant pages  
6
 Precision describes in the context of search engines the percentage of relevant Web pages out of the total 

number of Web pages found 



 
 

In contrast to these generic filters there are domain-specific filters such as the price for a product, 

the geographical region a job offer is relevant to, the color of a car or the number of rooms a hotel 

has. These filters need to be explicitly integrated into the search interface and the underlying filtering 

logic cannot easily be ported to another domain.  

Some of the filters can best be implemented by rule-based approaches, e.g. prices can be found by 

searching for a number followed by a currency symbol. This holds for all information with a small or 

restricted number of distinct expressions which are independent of the context (e.g. if there are 

several prices on one site, the price of interest can only be identified based on the textual context). In 

contrast to this, some information cannot be explicitly found in the Web pages themselves or the 

language allows for a huge variety of expressions. 

In this article, we focus on filters that require more advanced techniques for realization since the 

textual part of the document through which the filter value can be determined is of rather complex 

nature. The present work exploits text classification using machine learning techniques as a means to 

build these filters. The deployment of the used approach takes place in the industrial setting of a job 

search engine. The goal is to use the textual content of the job offers (a.k.a. documents) as input for 

text classification and use the available class labels as filter criteria for the search engine. Therefore, 

the approach has to decide for any job offer if a particular filter (a.k.a. class label) should be 

evaluated positive or negative. A filter matches for a job offer if and only if the text classifier decides 

to assign the filter class to the job offer.  

As time to market of newly identified filter is critical, it is required that the filter can be deployed fast. 

In addition to this, domain-specific search engines often start as start-ups or small-sized companies 

and do not have the manpower and/or financial resources to manually annotate large amounts of 

text documents as required by classical supervised machine learning classification approaches. At the 

same time, a certain classification quality needs to be met [2] for achieving user satisfaction. Based 

on this observation, we examine an approach that relies on active learning, which allows for a fast 

and cost-efficient deployment through reduced manual effort i.e. the time spent on annotations. This 

approach has been presented before [3] but is now, for the first time, evaluated during runtime in an 

industrial setting instead of using historical data in a lab environment for evaluation. To enable a 

meaningful deployment of the approach, we introduce a new parameter for the integration in the 

industrial setting. 

The actual deployment of the approach in an industrial setting enables a detailed description of the 

processes involved and gives insights on problems that occur in such a real-world scenario. Through 

the online evaluation, the active-learning setting is not only tested for its theoretical performance 

but for actual applicability for different problems within the daily routine of an industrial partner. The 

presented experience, gained during the experiments, allows a repeatable application of this text-

classification approach for document filtering. 

The remainder of this article is structured as follows: after this introduction, an overview on related 

work is given. Afterwards, in Section 3 the application scenario on which this article focuses is 

presented; this presentation is required in order to understand the specific needs in this scenario. 

The following section presents the approach to and the results of an annotation study executed 

within the application scenario. Section 5 describes the concept of the adapted approach while 

Section 6 describes the implementation within the application scenario. The results of the evaluation 



 
 

using the data from the annotation study are presented in Section 7. Finally, the work is concluded in 

Section 8. 

2 Related Work 
The present work combines the application area of domain-specific search engines with the 

technique of active learning. To the best of our knowledge, there is no existing work which has 

examined this combination so far. In this section some aspects of these two fields are highlighted. 

Furthermore, we highlight the aspect of balancing of training data, since this is relevant for our work 

as well. 

2.1 Domain-specific Search Engines 
This section presents some approaches to the implementation of domain-specific search engines. 

Hanbury et al. [4] define a domain-specific search engine as “a search engine that specifies one or 

more of the following five dimensions: 1. subject areas, 2. modality, 3. users, 4. tasks, 5. Tools, 

techniques and algorithms required to complete the tasks”. Within the scope of this work, we 

concentrate on the specification of the subject area since the web sites to be retrieved all origin from 

one subject are. 

 A consistent usage of Semantic Web7 technologies from content providers resulting in machine-

readable data would simplify the creation of domain-specific search engines [5]. Since the Semantic 

Web has not prevailed until today, search engine providers cannot rely on semantic annotations of 

Web documents but need to understand the content automatically by other means in order to make 

it retrievable in real-time. 

Some approaches to domain-specific search engines have been presented where the user’s query is 

enriched with domain-specific keywords, forwarded to a generic search engine and the returned 

result is presented to the user [6] [7]. This enrichment with keywords in order to receive only 

relevant results can be seen as a coarse-grained filtering, but in general the approach is hardly 

feasible since it entirely relies on the quality of the generic search engine and, in addition to this, 

most generic search engines would nowadays block these queries coming from a single source at 

high volume. Further, many domains and filters are too complex to be modeled by keywords only. A 

domain-specific search engine that does not rely on a generic search engine and builds generic rules 

based on given keywords was presented by Kruger et al. [8]. Another way towards an optimal user 

experience is the ranking of the result list, which can be enhanced by adding domain-specific features 

[9].  

2.2 Active Learning 
Active Learning has been a popular research topic for about 20 years now. Motivated by the fact that 

obtaining labels is expensive, the general idea is to provide only labeled instances with a high 

information value as training instances to a supervised classifier, resulting in fewer instances to be 

labeled manually. The instances to be labeled are selected by the classifier in its current state, 

assuming that the knowledge about these labels improves the future accuracy of the classifier. A 
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 One of the aims of the Semantic Web vision by Tim Berners-Lee [16]  is the machine-readability of the web. 

This requires a consistent annotation of Web pages with semantic labels on word-level yielding a closer 
interlinking of stored information. 



 
 

variety of approaches for the selection of these instances has been proposed; an overview on these 

was given by Fu et al. [10].  

In general, active learning can be and has been combined with various classification techniques, e.g. 

Bayesian models [11] and Support Vector Machines [12], which have been identified as being most 

suitable for text classification tasks [13].  

Also, different combinations of active learning and ensemble learning, which exploits a set 

(ensemble) of classifiers, have been proposed. Examples are the combination of various classifiers 

from two different classification approaches where the ratio between the classifier types in the 

ensemble is adapted during run time [14], the combination of different classifiers of the same type 

but trained with different feature selections [15] and the combination of different classifiers of the 

same type but trained with different subsets of the data [3]. 

2.3 Balancing 
It has been shown that the quality of a classifier trained on unbalanced data sets can be improved by 

balancing the training corpora [25]. A more balanced data set yields a more robust classifier when 

used for training. Common methods are random oversampling and random undersampling where 

the former involves a duplication of the minority class while the latter involves discarding of 

instances of the majority class. Running evaluations with data sets with different severities of 

imbalance it has been shown that these two approaches yield best results among various different 

balancing approaches for Support Vector Machines [18]. The approach presented in this article is 

based on Support Vector Machines which indicates the high potential of these two techniques. 

3 Application Scenario 
In order to gain insights into the feasibility of the proposed approach as a filtering means we have 

implemented it at a domain-specific search engine. Below, we explain the characteristics of this 

scenario.  

Kimeta8, founded in 2005, is one of the market leaders in the German online job search market. The 

Web site has about 20 million page views through about 2.5 million visits per month. Every day, 

80,000 to 100,000 new job offer documents enter the system via a Web crawling process and need 

to be processed so that users can retrieve them as results of their search. This processing does not 

need to happen in real-time but the time span from first publication of the document until delivery 

to the end user is a key performance feature. The main sources for the documents are (i) company 

Web sites, (ii) job offer markets and (iii) newspaper Web pages. The documents from these three 

sources display different characteristics. Each company presents the documents in their own 

(corporate design) layout with varying structure reaching from pure flowing text to well-structured 

tables. In contrast to this, job offer market pages provide a standardized layout. Finally, newspaper 

pages can be characterized by rather short job offers since the offers are often published parallel in 

print and the price for a print publication depends strongly on its length. This variety shows that the 

scenario imposes high requirements on the document processors in order to index all different kinds 

of documents reliably. The text classification system used must be highly robust in order to allow for 

classification of various kinds of documents.  
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Kimeta provides several different filter groups on its Web site, ranging from hours of work (full time, 

part time) or mode of employment (regularly employed, internship, temporary job,…) to the 

functional area of work (Consulting, Controlling, IT, Medicine, R&D….). Analyses of data on another 

job search platform have shown that such a filtering possibility is of high relevance for job searchers 

[19]. In this work we focus on binary filters which either match or do not match a document. 

Depending on the concrete filter, the fraction of job offers which is supposed to be matched versus 

the fraction of job offers which should not be matched differs clearly. Classification approaches cope 

best with a balanced distribution and are challenged by such an unbalanced setting. 

In order to provide these filters for the domain-specific search in the domain of job offers, Kimeta 

relies on several different approaches to identify the characteristics of the job offers, such as 

keyword-based filtering and text classification. The creation of such filters is expensive due to the 

need of domain experts which analyze the filter scenario and create either the keyword-based filters 

or initiate the creation of a text classification based filter. To build robust text classification-based 

filters, a sufficient amount of documents has to be annotated. Because annotations of a single 

annotator can be biased, it has become a de-facto standard in research to carry out the annotation 

not only by a single annotator but by at least two annotators [24]. The result of combining these 

single annotations is considered to be more representative for the common understanding of a class 

label. Furthermore, this allows for an early identification of ambiguities in the definition of classes 

and yields finally a “clean” gold standard dataset by incorporating only instances with an agreement 

on their annotations. Kimeta’s pre-studies have shown that non-trained annotators have difficulty 

deciding on the correct filter decision. Therefore, one big challenge in the application scenario is how 

to perform a process which enables a profound and repeatable annotation by mainly non-experts to 

keep the financial burden low. The design considerations, settings and the results of an annotation 

study are presented in the following section. 

4 Annotation Study 
This section describes the annotation study, which was performed in order to provide evaluation 

data for our approach, to understand the complexity of the classification problem and to develop a 

process to cope with that complexity during the annotation phase. 

4.1 Setup 
In the beginning, three different binary filters were selected for this study. This decision was made 

based on the company’s previous experience with these three filters where it has been discovered 

that a keyword-based implementation does not yield satisfying precision and recall. Furthermore, the 

filters were selected to describe highly varying types of concepts. The first filter describes a job 

offer’s field of activity while the second filters for a characteristic which is independent from the field 

of activity and the third filter describes a mode of employment. The filters selected are the following 

ones: 

1. Service/Customer Support (S) 

2. Research & Development (R&D) 

3. Full time job (FT) 

Throughout the annotation, a group of three people was involved in the process, a domain expert 

and two non-experts. After the selection of these filters, the domain expert wrote a short informal 



 
 

definition for each of the filters. This definition was afterwards discussed within the group which led 

to some refinement of the definitions. In order to check for completeness, each of the group 

members annotated a set of 50 documents for each of the three filters based on the previously 

determined definition. For each of the documents and each of the filters, the annotators had to 

choose between three different labels: “Positive”, “Negative”, “I do not know”. During the 

annotation process, the annotators searched for cases where they incorporate implicit knowledge 

and opinions not given in the filter definition. For example, after a first definition for the FT filter was 

mutually agreed on, some further characteristics had to be agreed on e.g. whether jobs as a 

freelancer, jobs done in home office or working-on-site should be considered to be FT. The 

annotators were asked to write down such cases of implicit knowledge in order to have it included in 

the final annotation guidelines. All documents with inconsistent annotations were discussed leading 

to a further improvement of the filters’ descriptions and recorded in the annotation guidelines. In 

previous work [20], such an iterative improvement of annotation guidelines has been shown to be 

beneficial. The resulting guidelines consist of the following elements: (i) a short and informal 

definition of the filter, (ii) some indicators and examples for positive instances, (iii) some indicators 

and examples for negative instances, (iv) borderline examples together with their correct annotation 

and (v) a hand-written decision tree for the respective filter. The total amount of man-hours for the 

setup of one filter including the iterative creation of the definition, the selection of sample 

documents, discussions and documentation was 5:30h for the expert and 3:40h for the non-experts 

For the remaining annotation, the annotators were told to adhere strictly to the created definitions. 

For the creation of the evaluation corpus, 300 random documents were selected. All of these 

documents were annotated by two independent annotators (the non-experts) for each of the three 

filters. For the documents where the two annotators did not agree on the annotation (one selecting 

“Positive” and the other “Negative”) or both annotators were uncertain (selecting “I do not know”), 

the domain expert was consulted as third annotator.  

4.2 Results 
The annotation of the 300 documents by a single annotator took around 2h. The complete creation 

of the annotated documents, including selection of the documents to annotate by the expert, 

annotation, resolving disagreements and file conversions took on average 2:40 man-hours for the 

expert and 4 man-hours for the non-experts.   

The results of the annotation study are presented in Table 1. The rows represent the different filters 

while the columns represent the different levels of agreement. A perfect agreement was achieved 

when the two initial annotators agreed on the annotation. An agreement was achieved when one of 

the initial annotators decided for “Positive” or “Negative” while the other one decided for “I do not 

know” or the same. Also the cases where both initial annotators decided for “I do not know” but the 

third annotator decided for “Positive” or “Negative” were counted as agreement. The most 

prominent reason for selection of “I do not know” were titles of the document which did not totally 

match with the content and the annotators were not sure on whether they should rely on the title or 

on the content. A disagreement was assumed if either one voted for “Positive” and the other one for 

“Negative” or if both of them voted for “I do not know”. All these cases were resolved by the third 

annotator.  

Cohen’s Kappa [17] is a robust statistical measure for the inter-annotator-agreement between two 

annotators since it subtracts out the by-chance agreement. The inter-annotator-agreements of the 



 
 

two initial annotators are as follows: κR&D=0.745, κFT=0.659 and κS=0.520.  One can conclude from the 

data that the decision for filter R&D was the easiest one for humans while the annotation for S led to 

some confusion. The “substantial agreement”9 on the annotation, in particular for the classes R&D 

and FT, gives an impression on how the thorough and concerted filter definition with the domain 

expert helped the non-experts to cope with the given problems. 

Table 1: Percent agreement for two annotators 

Filter Perfect Agreement Agreement Disagreement 

R&D 92.67% 96.33% 3.67% 
FT 94.33% 97.00% 3.00% 
S 84.00% 88.00% 12.00% 

 

As already mentioned in Section 3, the filters in the application scenario are highly unbalanced. Out 

of 300 documents, 36 were finally labeled as positive for the filter R&D (12%). For the filter FT 277 

documents were labeled as positive (92.3%) and for the filter S 50 instances were labeled as positive 

(16.7%). 

Besides the experiences with the presented iterative process of annotation through a mix of experts 

and non-experts in a real-world active-learning scenario for text-classification based filters, we 

introduce a new tuning parameter for the approach which will be explained in the following section. 

5 CENFA Approach 
Within this work we make use of CENFA [3]. Full details of this approach are given in the respective 

article, but its big picture is presented in Figure 1 which shows the combination of an ensemble 

classifier which is only trained initially (“the base classifier”) and a single SVM which is iteratively re-

trained, applying active learning (“the specialized classifier”). As shown [3], the re-training of the 

specialized classifier is significantly faster than a re-training of the complete ensemble while at the 

same time, the system provides better results compared to a system trained with a similar number of 

documents that were sampled randomly instead of selecting them by the use of active learning. 

The classifier returns a confidence value for each classified document which is given by either the 

base or the specialized classifier and derived by the voting scheme of the ensemble or the single 

confidence value respectively. In this binary class setup, the confidence value for the more probable 

class per document is used which results in a range of [0.5;1.0] for the confidences. The setup 

presented by Schnitzer et al. [3] uses one single confidence threshold to determine whether the 

classifier marks a document for human annotation (steps 3/8), or provides a confident annotation 

decision (steps 7.1 - 7.3). 
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 A Kappa value between 0.61 and 0.80 is considered as “substantial agreement” according to Landis and Koch 

[26] 



 
 

 

Figure 1: Classifier Setup as described in [3] 

In contrast to the previous work, these two confidence thresholds are decoupled into the annotation 

confidence threshold (act) and the decision confidence threshold (dct), respectively. This adaptation 

was chosen to allow for the deployment in a large-scale setting of the industrial application in 

contrast to the lab environment of the previous work. The two parameters can now be set 

independently of each other. This change is motivated by the fact that the number of documents in 

the application scenario is very high and the act needs to be adapted to the actual throughput in a 

scenario while the dct needs to be adapted based on the characteristics of the data. 

The documents to be annotated for the active learning step are detected based on the act. Its range 

of [0.5;1.0] is determined by the range of possible confidences of a binary classifier. If the overall 

classification confidence of the base classifier for a document is smaller than act, the document is 

stored for annotation by human in the first iteration. Such a document is assumed to be ambiguous 

and will be referred to like this throughout this article since the base classifier did not identify any 

agreement on its class label. These annotated documents serve as training data for the specialized 

classifier. That means that a low act yields fewer documents to be annotated and hence less training 

data for the specialized classifier and vice versa. Implicitly, the percentage of documents that need to 

be annotated can be tuned by the act.  

To determine whether the decision of the complete system is carried out by the base classifier or the 

specialized classifier, the dct is used. In scenarios with high throughput this decoupling allows to 

“produce” only a reasonable amount of documents to be annotated while also sending documents 

with a lower confidence to the specialized classifier. This advantage can only be exploited if 

𝑑𝑐𝑡 ≥ 𝑎𝑐𝑡. 

6 Realization in the Application Scenario 
The approach described above holds several challenges for a realization with the industrial partner. 

The process on how such a system is initially deployed and maintained throughout the iterations as 

well as the integration of the workflow in the company is described in this section. 

At first, the steps described in Section 4 are followed to create a well-defined filter’s description. To 

gather the training documents for the respective filter, a representative selection of job offers is 



 
 

taken from the current stream of documents and stored in a separate database. These documents 

are then annotated independently by the two non-experts involved in the filter definition and the 

results are stored back into the database. The results are then analyzed towards the agreement of 

the annotators, so that the domain expert can draw the disagreed-on documents from the database 

to impose a final decision as described before. Now that the basic training set of documents is given, 

the model for the particular filter is created and can be deployed in the ensemble classifier of the 

classification engine.  

The following process is carried out for each iteration. Throughout the day, the stream of newly 

discovered and therefore yet to be classified documents runs through the classification engine and 

the high confidence results per document are added as a characteristic of the job offer which enables 

the filtering in a later search. During this phase, the documents for which the classification results 

stays below the defined threshold (act) are added to the separate database and marked for post-

annotation in the respective filter. Now non-expert annotators can draw sets of documents for 

annotation from a certain filter, for the purpose of evaluation we ask the annotators to draw the 100 

most ambiguous documents in each iteration. Due to the well-defined filter’s description, annotators 

who were not involved in the initial creation of the filters require a very short training period and can 

therefore draw documents from various filters. The annotation of the 100 most ambiguous 

documents takes between 0:30h and 1:30h depending on the filter and the experience of the 

annotator. The system has to ensure that the two independent annotations required for a document 

are carried out by different individuals. Afterwards, the domain expert retrieves the small set of 

documents which require a final decision and judges them. The model is re-trained with the now 

completely annotated set of ambiguous documents, and deployed in the specialized classifier of the 

classification engine which takes less than ten minutes. With this step, one iteration is finished and 

the next one can start afresh. Hence, the iteration takes 24 hours for collecting a sufficient amount of 

ambiguous documents and around 2 hours for annotation, data transformation and deployment of 

the updated classifier. Since the system runs continuously, the time frame for the collection of 

ambiguous documents can in general be extended arbitrarily and annotation and re-training can 

happen whenever it is favored.  

The inter-annotator-agreement of the first two iterations is presented in Table 2. One can observe 

the drop in terms of agreement for each of the classes compared to the values during the initial 

annotation phase and within the two iterations. This shows, that documents with a high ambiguity 

for the classifier (which are the ones passed to the annotators for post-annotation) are also hard to 

classify for the annotators. 

Table 2: Cohen’s Kappa for the inter-annotator-agreement of the two annotators during the two iterations 

Iteration κR&D κS κFT 

1st  0.55 0.48 0.40 
2nd  0.38 0.24 0.40 

 

7 Evaluation 
This section describes the process of the system’s evaluation. After introducing relevant measures 

and explaining the overall setup, the results of the tuning experiments in an offline setting are 

presented. Afterwards the results of integrating the approach into the live system are shown. It 



 
 

should be noted that within this article, no comparison to related approaches is presented. These 

comparisons to other active learning approaches were presented before [3] and it was shown that 

CENFA is addressing the trade-off between classification quality and reduced manual annotation 

effort as well as a performant classification and re-training. The focus of the evaluation in this article 

is rather the experience in the industrial setting with the particular approach. 

7.1 Evaluation Measures and Setup 
As introduced before, this work copes with an unbalanced application scenario, where the number of 

positive and negative instances is highly different. In such a setting, the usage of the weighted F-

measure, as often done, represents a certain trade-off between precision and recall. However, the 

given industrial scenario describes an information retrieval problem, where the scenario-dependent 

metric of choice is the precision of the classifier, since false-positives are a major issue in search 

engine results and should be avoided. In other scenarios, depending on the concrete setting, the 

major aim might be to tune towards other metrics like a high specificity or a high sensitivity of the 

classification model. In order to get information about the tuning of both and allow for an unbiased 

evaluation in an unbalanced setting, the Receiver Operating Curve (ROC) is commonly used.  The 

Area-under-the-Curve (AUC) is the respective singular numerical value representing the overall 

discriminative performance of the model [21] [22]. 

Therefore, we use as performance measurements the scenario- and balance-independent macro-

averaged AUC of the ROC, as well as the scenario-dependent and industrially motivated macro-

averaged precision. 

Another relevant key aspect of the classifier is the number of ambiguous instances identified during 

the iterations since this corresponds directly to the number of instances that need to be manually 

annotated. Ideally, the system would identify only small amounts of ambiguous documents which 

lead to a huge improvement in the iteration step. 

Throughout all evaluations the corpus consisting of 300 instances per class, gathered during the 

annotation study, is used as gold standard10. The feature set used consists of the 10,000 most used 

unigrams using the term frequency – inverse documents frequency (tf-idf) weighting scheme. The 

number of bagged SVMs was fixed to 10. This value is a trade-off between the accuracy of the single 

SVMs which need enough instances to be trained properly and a sufficient number of SVMs in order 

to gain a robust ensemble [23]. 

 

7.2 Tuning Experiments 
Before the system is deployed in the industrial setting, two different tuning experiments are 

executed in order to find the best act and evaluate the influence of balancing for the examined 

application scenario. For these tuning experiments, a stratified 4-fold cross validation was applied for 

each of the three classes resulting in a split with 225 training instances and 75 test instances. 

Furthermore, for each of the given training set sizes, 10 random samples were drawn out of the 225 
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 The complete corpus and the corpus created during the post-annotation (see Section 6) can be found online: 
http://www.kom.tu-darmstadt.de/fileadmin/Externer_Bereich/Downloads/software/
Paper_TextClassificationBasedFilters_EvalData.zip 



 
 

Figure 2: AUC and standard deviation for the Base Classifier with varying numbers of training instances for different 
classes 

available training instances. The given results for each of the sizes are obtained from the resulting 40 

evaluation runs. 

Effect of Balancing 

As mentioned in Section 2.3, previous experiments have shown that a balanced training set yields a 

more robust classifier. Oversampling as well as undersampling has been identified as the most 

appropriate techniques for balancing. This section presents the results for a comparison of 

unbalanced vs. balanced training data. In order to have datasets with a comparable common size 

across the different classes we combine for the balanced training set oversampling with 

undersampling so that the total amount of available training instances is at 225. The test documents 

were left unmodified.  

Figure 2 presents the average AUC together with its standard deviation for the base classifier 

(without any iteration) for the different filter classes comparing balanced unbalanced data. It can be 

observed that the overall trend is an increase in terms of AUC with increasing number of training 

instances. Comparing the balanced setting to the unbalanced setting, the balanced setting provides 

slightly better results for small amounts of training data than the unbalanced setting. In general it has 

to be noted, that the standard deviation is relatively high. 

 

 

Impact of Annotation Confidence Threshold 

A key factor for the deployment of the approach in a real-world setting is the amount of documents 

found to be ambiguous since these need to be annotated which requires manual effort, i.e. 
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employees’ time. The variable act was introduced in order to allow for a tuning of the fraction of 

documents to be annotated manually. Figure 3 shows the impact of the act on the fraction of 

documents identified as ambiguous with a varying number of documents used for training the base 

classifier using the balanced dataset. The steady increase in all curves proves that the overall goal of 

the introduction of act was achieved. From the varying fraction between the different classes one 

can infer a different complexity of the classification into these classes. Interestingly, the class which 

was most complex for the ensemble to classify (class S) is also the class with the lowest inter-

annotator agreement (see Section 4.2). Further, it can be seen that a larger number of initially 

annotated documents leads to an increase in the flattening of the curves. This shows the value of the 

initial effort for the training of the base classifier. In particular in settings with a high throughput, it 

pays off to train the base classifier properly so that it is more confident about the classification and 

fewer documents need to be post-annotated. 

  

  
  
Figure 3: Fraction of documents to be annotated against the act parameter for the different classes. The numbers in the 

upper left corner denote the number of training instances for the base classifier 

7.3 Experiments within the Industrial Setting 
The evaluation in the application scenario requires to run the classifier for a certain time, collect 

documents that are ambiguous to the particular classifier, annotate these documents manually by 

two to three annotators and re-train the specialized classifier with the annotated documents. In 

order to examine the behavior over several iterations, these steps need to be repeated. Since the set 

of ambiguous documents depends on the set of initial training documents and the manual 

annotation of ambiguous documents is the most expensive process step (in terms of human 

resources), it is impracticable to run the same experiment with different folds of the training data. 

We therefore had to select one fold for each of the three classes (consisting of 225 annotated, 

balanced training documents), built the classification models out of these and relied on the results 

for these three initial training sets only instead of averaging over the different folds. The remaining 

75 annotated documents are used as test data. A randomly chosen part of the documents of the 

daily throughput were classified by the models and depending on the act selected for annotation. 
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These post-annotated documents were then used to train the specialized classifier. Afterwards, the 

classifier consisting of base and specialized classifier was evaluated. This iterative cycle of 

classification, post-annotation, re-training and evaluation was repeated two times.  

The results of the execution in the application scenario allow examining four different aspects of the 

classification task. To gain further insight about the impact of dct and act, we gathered different data 

through the iterations. We also analyze the number of documents which were selected for the 

annotation by the system and discuss their class distribution. The performance of the classifier is 

analyzed as well by describing the behavior of precision and AUC throughout the iterations. 

Impact of Annotation Confidence Threshold 

For the first iteration almost 30,000 documents were classified. The fraction of documents which 

were selected for annotation in the first iteration can be seen in Figure 4. Similar to the tuning 

experiments the higher the act is chosen, the more documents are selected for annotation. Because 

of the large throughput in this setting even the smallest possible act (0.5) led to more documents 

than planned to be annotated.  

 

Figure 4: Fraction of ambiguous documents in iteration 1 

For the second iteration a second set of documents was used, because some of the documents of the 

first set were now included in the training set for the model. Here the model did not select enough 

documents for annotation, and therefore the number of documents for classification was increased 

to slightly more than 80,000 documents. The same number of documents was used in a 3rd iteration 

which was stopped after having identified the number of ambiguous documents. The results for the 

iterations can be obtained from Table 3. The fraction of documents that are selected for annotation 

decreases from the first to the second iteration. The act was set to 0.8 for demonstration purposes 

only, using a smaller value would not demonstrate the decrease during iterations that clearly. 

Table 3: Fraction of ambiguous documents across the iterations (act = 0.8) 

Iteration R&D S FT 

1st  5.68% 11.25% 3.57% 
2nd  0.25% 0.38% 0.09% 
3rd  0.01% 0.02% 0.01% 
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Impact of Decision Confidence Threshold 

The impact of the dct is shown in Figure 5, where the act was fixed to a value of 0.5 in order to keep 

the number of documents that need a post-annotation relatively low. That means that only such 

instances were chosen for annotation that appeared hardest to classify for the ensemble. For the 

different classes the performance changes differently. The figure shows the results for the different 

dct for the two iterations that were executed completely (<class> it 1 and <class> it 2). Furthermore, 

the results for the base classifier only are presented (<class> base). Since in this case no instances are 

routed to the specialized classifier for decision, the evaluation metrics stay constant. Finally, the 

results of the extended classifier, as introduced before [3], are shown for the two iterations (<class> 

ext it 1 and <class> ext it 2). The extended classifier an ensemble of SVM similar to the base classifier 

being trained with all available training instances after iteration 1 or iteration 2 respectively. Hence 

the training set for the extended classifier consists of the training instances of the base classifier and 

the training instances for the specialized classifier from iteration 1 or iteration 2 respectively.  

Examining the results of CENFA for the S class, the AUC decreases first but finds a peak at a dct of 0.8. 

In the FT class, the AUC increases from a dct of 0.5 to 0.55 and stays on that level until it decreases 

sharply for dct over 0.8.For the R&D class, the dct between 0.5 and 0.65 leads to no improvement of 

the AUC and makes it decline for higher dct, though not as sharply as seen for the FT class. This 

shows that a reasonable dct has to be identified separately for each scenario as a general best value 

cannot be found.  

   

   
Figure 5: AUC and weighted average precision for the different classes with varying dct throughout the iterations (act=0.5). 

The y-axis are scaled differently because of the different magnitudes of change. 
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Analyzing the single classes in more detail and with regard to the precision of the model, the 

evaluation results show that the tradeoff differs between the different scenarios. One can see that 

the precision for the S class can be increased, depending on the value of the dct and that precision 

and AUC reach their peaks both at a dct of 0.8. After the second iteration we achieve here an 

increase in precision of 5.3% and an increase in AUC of 1.4% while for other dct values only the 

precision can be increased.  

The figures for the FT class look different. Here the AUC is constantly increased by 0.012 and there is 

no impact on the precision until a dct greater than 0.8 is chosen. After that threshold, the AUC drops 

dramatically while the precision is improved a little. Looking at the results for R&D, the results for 

precision and AUC run more parallel than for the other classes. Here the iterations have no effect for 

a dct between 0.5 and 0.65 while AUC drops for higher dct and precision increases. Comparing the 

AUC of the base classifier (0 .74) with the average AUC for 180 training instances in the tuning 

experiments (0.83) (cf. Figure 2), one can observe a decreased value. This is assumed to result from 

the particular fold selected for the experiments in the industrial setting. The standard deviations in 

the tuning experiments (cf. Figure 2) show the variety for the different folds.  

It was shown before [3] that in some cases the extended classifier outperforms the CENFA classifier in 

terms of classification quality while in some cases the CENFA classifier outperforms the extended 

classifier. This trend can be observed in this industrial setting as well. As presented before [3], CENFA 

provides a good trade-off between a good classification quality and a significantly better behaviour in 

terms of computation time compared to a pure ensemble learner such as the extended classifier. 

Distribution of Ambiguous Documents 

As mentioned in Section 4.2, the class distribution of the examined documents is highly unbalanced. 

Table 4 gives an overview on the distribution during the different phases of the approach’s usage. 

The first row shows again the unbalanced results from the annotation study. The following rows 

show the results of the two post-annotation rounds during the iterations. Interestingly, the 

distribution becomes more balanced in these phases. One reason for this might be that the act 

represents an uncertainty window which spreads from the center of uncertainty equally into both 

classes. With respect to the applied classification algorithm of SVM, the model selects instances 

which are close to the separating SVMs’ hyperplanes for the classes on either side and not randomly 

from the complete geometric space. 

Table 4: Fraction of documents annotated as positive for the respective class during the different phases 

Phase R&D S FT 

Evaluation Data 12.0% 16.7% 92.3% 
1st Iteration 41.2% 42.3% 54.9% 
2nd Iteration 28.4% 45.5% 48.3% 

 

8 Conclusion 
This work describes and evaluates a procedure for the creation of filters for domain-specific search 

engines in an industrial setting including an offline annotation study to train non-experts and 

applying an active-learning framework to use in an online evaluation. 

The annotation study provides the description of a process to easily transfer the knowledge of a 

domain expert to non-experts for the annotation of complex filter scenarios. The high inter-



 
 

annotator agreement allows the conclusion that the collaborative, iteratively improved definition of 

the filters helped to create a common understanding of the problems. However, the differences in 

the agreement for the different problems show that for humans some filter problems remain more 

complex than others even after a thorough common definition. 

Another result of the annotation study and the online evaluation is the created corpus, which is 

openly accessible and provides insights on the character of the identified ambiguous documents and 

enables repeated and comparative studies on the same data. 

Furthermore, the previously presented concept of CENFA is adapted for the online setting and 

evaluated in a live-scenario with real data streams as a means for filtering of documents for a 

domain-specific search engine. The results give interesting insights into the suitability of the 

approach. One main contribution is the study on the impact of the different parameters on the 

classification results.  

The article is completed by practical considerations such as time requirements for creation of filter 

definitions and human annotations that can help developers from industry to better calculate for the 

implementation of any text classification based filter. 

An aspect that would be of interest for future work is the system’s behavior during long term usage. 

It might be interesting to see at which point of time the classification results stabilize and a re-

training of the base classifier rather than the specialized classifier would be beneficial.  

Furthermore, a qualitative analysis of the ambiguous documents might help to identify suitable 

instances for the initial training data annotation. 

Acknowledgements 

The work presented in this paper was partly funded by the German Federal Ministry of Education and 

Research (BMBF) under grant no. 01IS12054 and partly funded by a research grant of the German 

Research Foundation (DFG) in the project "Design und Bewertung neuer Mechanismen für 

Crowdsourcing". We extend deep gratitude to kimeta GmbH, in particular Elena Neuschild and Sven 

Kloppenburg, for enabling us to carry out this work within a real application scenario and to permit 

the publication of the resulting corpus. 

 

References 

[1] Netcraft, LTD, August 2014 Web Server Survey, 2014. 
[2] M. Bagdouri, W. Webber, D.D. Lewis, D.W. Oard, Towards Minimizing the Annotation Cost of 
Certified Text Classification,  Proceedings of the 22nd ACM International Conference on Information 
& Knowledge Management, ACM, 2013, pp. 989-998. 
[3] S. Schnitzer, S. Schmidt, C. Rensing, B. Harriehausen-Mühlbauer, Combining Active and Ensemble 
Learning for Efficient Classification of Web Documents, Polibits, (2014) 39-45. 
[4] A. Hanbury, M. Lupu, Toward a Model of Domain-specific Search,  Proceedings of the 10th 
Conference on Open Research Areas in Information Retrieval, Le Centre de Hautes Etudes 
Internationales d'Informatique Documentaire, Lisbon, Portugal, 2013, pp. 33-36. 
[5] K.W. Wöber, Domain-specific Search Engines,  Destination Recommendation Systems: 
Behavioural Foundations and Applications, CABI, 2006, pp. 208-213. 
[6] S. Oyama, T. Kokubo, T. Ishida, Domain-specific Web Search with Keyword Spices, IEEE 
Transactions on Knowledge and Data Engineering, 16 (2004) 17-27. 



 
 

[7] P. Sondhi, R. Chandrasekar, R. Rounthwaite, Using Query Context Models to Construct Topical 
Search Engines,  Proceedings of the Third Symposium on Information Interaction in Context, ACM, 
New Brunswick, New Jersey, USA, 2010, pp. 75-84. 
[8] A. Kruger, C.L. Giles, F.M. Coetzee, E. Glover, G.W. Flake, S. Lawrence, C. Omlin, DEADLINER: 
Building a New Niche Search Engine,  Proceedings of the Ninth International Conference on 
Information and Knowledge Management, ACM, McLean, Virginia, USA, 2000, pp. 272-281. 
[9] G. Bo, Y. Yichen, X. Chao, H. Xian-Sheng, Ranking Model Adaptation for Domain-Specific Search, 
IEEE Transactions on Knowledge and Data Engineering, 24 (2012) 745-758. 
[10] Y. Fu, X. Zhu, B. Li, A Survey on Instance Selection for Active Learning, Knowl Inf Syst, 35 (2013) 
249-283. 
[11] D. Vasisht, A. Damianou, M. Varma, A. Kapoor, Active Learning for Sparse Bayesian Multilabel 
Classification,  Proceedings of the 20th ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining, ACM, New York, New York, USA, 2014, pp. 472-481. 
[12] S. Tong, D. Koller, Support Vector Machine Active Learning with Applications to Text 
Classification, The Journal of Machine Learning Research, 2 (2002) 45-66. 
[13] T. Joachims, A Statistical Learning Model of Text Classification for Support Vector Machines,  
Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development 
in Information Retrieval, ACM, 2001, pp. 128-136. 
[14] Z. Lu, J. Bongard, Exploiting Multiple Classifier Types with Active Learning,  Proceedings of the 
11th Annual Conference on Genetic and Evolutionary Computation, ACM, Montreal, Quebec, 
Canada, 2009, pp. 1905-1906. 
[15] M. Sugiyama, N. Rubens, Active Learning with Model Selection in Linear Regression,  
Proceedings of the Eighth SIAM International Conference on Data Mining (SDM2008) 2008, pp. 518-
529. 
[16] T. Berners-Lee, J. Hendler, O. Lassila, The semantic web, Scientific American, May 2001, pp. 28-
37. 
[17] J. Cohen, A coefficient of agreement for nominal scales. Educational and Psychological 
Measurement, 20 (1960) 37-46 
[18] J. Van Hulse, T.M. Khoshgoftaar, A. Napolitano, Experimental Perspectives on Learning from 
Imbalanced Data,  Proceedings of the 24th International Conference on Machine Learning, ACM, 
2007, pp. 935-942. 
[19] Y. Kim, Analysis of Query Entries of a Job Search Engine, in: A. Marcus (Ed.) Design, User 
Experience, and Usability. Web, Mobile, and Product Design, Springer Berlin Heidelberg 2013, pp. 
203-211. 
[20] Z. Lu, M. Bada, P. Ogren, K.B. Cohen, L. Hunter, Improving Biomedical Corpus Annotation 
Guidelines,  Proceedings of the joint BioLink and 9th Bio-Ontologies Meeting, 2006, pp. 89-92. 
[21] S. Ertekin, J. Huang, L. Bottou, L. Giles, Learning on the Border: Active Learning in Imbalanced 
Data Classification,  Proceedings of the sixteenth ACM conference on Conference on Information and 
Knowledge Management, ACM, 2007, pp. 127-136. 
[22] N.V. Chawla, Data Mining for Imbalanced Datasets: An Overview,  Data Mining and Knowledge 
Discovery Handbook, Springer, 2005, pp. 853-867. 
[23] S. Schnitzer, Effective Classification of Ambiguous Web Documents Incorporating Human 
Feedback Efficiently,  Faculty of Computer Science, University of Applied Sciences Darmstadt, 
Darmstadt, Germany, 2013. 
[24] E. Hovy, J. Lavid, Towards a ‘science’ of corpus annotation: a new methodological challenge for 
corpus linguistics, International Journal of Translation, 22.1 (2010) 13-36. 
[25] Q. Gu, Z. Cai, L. Zhu, B. Huang, Data mining on imbalanced data sets, Proceeedings of the 2008 
International Conference on Advanced Computer Theory and Engineering, IEEE, 2008, pp. 1020-1024. 
[26] J. R. Landis, G.G. Koch, The measurement of observer agreement for categorical data, 
Biometrics, 1977, pp. 159-174 


