
ECEASST

D4M, a Self-Adapting Decentralized Derived Data Collection and
Monitoring Framework∗

Karsten Saller1, Dominik Stingl2, and Andy Schürr2

1 karsten.saller@es.tu-darmstadt.de, 3 andy.schuerr@es.tu-darmstadt.de
Real-Time-Systems Lab, Technische Universität Darmstadt, Germany

2 dominik.stingl@kom.tu-darmstadt.de
Multimedia Communications Lab, Technische Universität Darmstadt, Germany

Abstract: Peer-to-peer systems are evolving as a viable distributed resource sharing
paradigm on the Internet. The trend is growing towards the usage of such decentral-
ized systems because they are more scalable and resource efficient than centralized
systems. Current decentralized systems, like peer-to-peer networks, lack function-
ality to adapt the transmission of certain information artifacts, according to their
access patterns. Additionally, there is still no approach for an efficient dependency
management between distributed and dependent information in decentralized net-
works. This paper presents our ideas of D4M, a framework for the management of
distributed derived data in decentralized systems, and how such data can be handled
in an efficient manner.

Keywords: Decentralized Systems, Monitoring, Self-Adapting Systems

1 Introduction

Nowadays, in many application domains, the trend to use more and more decentralized IT system
solutions instead of still relying on centralized client-server applications is growing. Sample
applications that already rely on decentralized systems are federated data management systems in
the health care sector [STMB07], globally distributed development environments, Wiki engines
[MLS08], or generalized monitoring approaches [GSR+09].

Recent work on peer-to-peer (P2P) overlay networks offer scalable and fault tolerant services
for data management in decentralized systems [RD01]. These systems operate without any need
for a centralized server and guarantee the accessibility of stored artifacts by means of sophis-
ticated replication strategies. Unfortunately, none of the existing P2P overlays offer solutions
to manage dependencies between artifacts stored on different peers in the network in order to
keep derived data in a consistent state. As a consequence, a dynamically distributed derived data
management (D4M) facility must be developed, that extends the basic services of a P2P overlay
without reintroducing any centralized dependency management servers.

When developing such a D4M framework on top of a P2P data management overlay, we have
to take requirements into account, like minimizing the number of recomputation steps of derived
data, when a specific artifact has been changed, and disseminating the changes as early or as late
as possible. Since decentralized systems, like P2P, deal with the dynamics within the network

∗ This work has been (partially) funded by the DFG research unit 733 QuaP2P

1 / 12 Volume 37 (2011)

mailto:karsten.saller@es.tu-darmstadt.de
mailto:andy.schuerr@es.tu-darmstadt.de
mailto:dominik.stingl@kom.tu-darmstadt.de
rst
Textfeld
Karsten Saller, Dominik Stingl, Andy Schürr: D4M, a Self-Adapting Decentralized Derived Data Collection and Monitoring Framework. In: ECEASST: Workshops der wissenschaftlichen Konferenz Kommunikation in Verteilten Systemen 2011 (WowKiVS 2011), vol. 37, p. 245 - 256, March 2011.

D4M, a Self-Adapting Decentralized Derived Data Collection and Monitoring Framework1

by self-adaptation, a distributed data management solution must also be able to adapt itself to
the current environment. Until today, there is no mechanism for an efficient and self-adapting
data management that can operate on graph-based communication structures like decentralized
systems. It is, therefore, our goal to develop a D4M framework that operates as an over-overlay
on existing P2P overlays and that efficiently maintains dependencies between multiple artifacts
across an arbitrary number of peers, by using self-adapting data propagation and recomputation
heuristics based on locally monitored access patterns. According to these information, D4M will
choose the most suitable strategy to compute and propagate specific information to all dependent
peers, thereby decreasing the traffic overhead.

The compiler construction community developed quite a number of algorithms in the past for
the optimal recomputation of derived attributes of syntax trees and graphs in centralized systems
for that purpose [SSK00]. Considering the capabilities to operate on graph structures, the exten-
sion of such incremental attribute evaluation mechanisms to decentralized systems seems reason-
able. These mechanisms are characterized by operating strategies that are most efficient under
particular circumstances. Hence, the presented framework will leverage incremental attribute
evaluation mechanisms and adapt them to the dissemination capabilities within a distributed
(and decentralized) environment.

Section 2 introduces, our research issue of distributed dependency management by using a
running example. In the following Section 3 we present our framework D4M and how it deals
with the problems of a distributed dependency management. This section also introduces three
propagation strategies in detail and gives a short comparison of those strategies. Afterwards,
Section 4 presents our future work and research questions. Finally, we discuss our approach
with an outline to alternative approaches and related work in Section 5, before we conclude in
Section 6.

2 The Distributed Derived Data Management Problem

The D4M framework can be used in various scenarios where related artifacts are stored in a
distributed environment, like monitoring P2P systems [GSR+09], information handling in smart
grids [BD07], or distributed development environments. This section introduces the usage of
D4M within a distributed build environment as a running example. The example is then used to
outline the main problems and the major requirements for D4M.

We chose the example of a distributed build environment, since this scenario is easily under-
standable within the overall computer science community. However, we have to point out that a
distributed build environment is only one amongst many application scenarios, we are currently
examining. The presented distributed build approach represents an extension to our previous
research towards a P2P-based global software development environment [MLS08].

2.1 Example

The example in Figure 1 shows one possible scenario for the management of distributed data
in a P2P network. It describes an abstract distributed build environment for a simple software
application, where the components are distributed and built over four different peers and have

Proc. WowKiVS 2011 2 / 12

ECEASST

Figure 1: Distributed build example for D4M within a P2P system

overlapping dependencies. This forms a dependency graph which is distributed over all partici-
pating peers. In this example, the source code of a component represents the basis of an artifact
and the corresponding binary code represent the derived artifact of this basis, which is built by a
computation function.

Overall there are two kinds of artifacts: Basic artifacts have no incoming dependencies, but
may be used by a computation function to generate derived data, like building the source code
components A, B, C, D, E, and F. Derived artifacts, or derived data, are generated by a computa-
tion function, like the binary code α , ω , φ , δ , ε , and ϑ . In the upcoming sections, the term Basis
refers to basic artifacts, Derivative to derived artifacts, and Artifact to both kind of artifacts if a
distinction is not needed.

Computation functions have only one target Derivative but they can evaluate multiple source
Artifacts (Bases or Derivatives). A corresponding example is the binary code Derivative ω ,
which is built by computation function 2, and therefore requires α , B, and δ .

Changes in a Basis or computation function may alter the directly or transitively dependent
Derivatives. Hence, changes have to be disseminated to all dependent computation functions, so
that they can update their Derivatives. According to our distributed build scenario in Figure 1, a
change in the source code or the computation function may alter the corresponding binary code.
For example, if component A is changed, the computation function 1 has to be recomputed and
the Derivative has to be disseminated to the computation function 2. Since all needed information
is stored on the same peer, the dependency is well known and ω can easily be updated by Peer
I locally. Remote dependencies, like the one between ω and computation function 3, are more
complicated to handle. After an update of B, computation function 2 must be recomputed and
the newly derived data ω needs to be disseminated to computation function 3 which is stored on
remote Peer II. To keep the network in a consistent state, it has to be guaranteed, that an update
is disseminated to all its dependent computation functions. Inconsistencies like two Derivatives
relying on different versions of the same remote Derivative have to be avoided. In the example
in Figure 1 an update of ω has to be consistently disseminated to computation function 3 and 5.

An Update-Path consists of a sequence of Derivatives in a topological order that have to be
updated if one of its Basis, computation functions or required Derivatives have been changed.
This path can directly be mapped to the dependency graph of the corresponding Derivative, such
as in the example a Update-Path for component D may look like {D: δ , ω , φ , ε , ϑ}.

3 / 12 Volume 37 (2011)

D4M, a Self-Adapting Decentralized Derived Data Collection and Monitoring Framework2

The opposite to an Update-Path represents the Evaluation-Path. This path describes a se-
quence of Derivatives that have to provide their latest data to the target Derivative. If the Deriva-
tives on this path are outdated, they have to request the latest derived data from Derivatives they
depend on, which may be transitively nested. If in the example, the components α , ω , φ , and D
are outdated and the binary code for φ is rebuild, a corresponding Evaluation-Path may look like
{φ: δ , ω , α}.

2.2 Research issues

In this section the main problems of distributed dependency management will be identified and
summarized. To ensure an efficient derived data management, our approach has to deal with the
following six challenges:

1. Dependency management: In order to handle distributed dependencies among Artifacts
it is necessary to keep track of these dependencies locally. If a computation function or
Artifact is locally changed, all directly dependent or directly required Derivatives have to
be known to initiate a recomputation or at least an invalidation.

2. Guarantee of validity: After an Artifact is updated, it has to be guaranteed that the depen-
dent Derivatives rely on the same derived data. If an Artifact is accessed, nothing may
be outdated anymore. This can be done in a random and naive way, or the dissemination
and necessary recomputations can be ordered according to the Update- or Evaluation-Path.
This avoids unnecessary computations and network traffic.

3. No global view: Because information is stored on various peers in the network, a retrieval
of information costs time. During this retrieval, the information may be outdated. It
is therefore hard to collect up-to-date global information from the network, such as the
distributed dependency graph for a Derivative.

4. Self optimization: To improve the efficiency of an update propagation, the most suitable
algorithm has to be chosen for each Derivative according to the current situation. Since the
behavior of the peers is dynamic, the frequency of accesses, updates, and references may
change constantly. To realize self-optimization, local access information of the according
Derivative has to be present.

5. Termination: Derivatives can rely on multiple distributed Artifacts in the network and in
turn the required Derivatives can transitively depend on further Derivatives in the network.
Hence, even if only one dependency is locally known, the Derivative can depend on mul-
tiple remote Derivatives. In the worst case, these dependencies form a cycle and, because
global view cannot be locally provided without additional mechanisms, these cycles can-
not be detected and the algorithm might end up in a non-terminating update loop.

6. Time constraints: Derivatives can rely on time constraints and therefore, have to be up-
dated until a given deadline, like in real-time environments such as monitoring the power
consumption of electrical devices (smart grids) [BD07]. Hence, during an update process,
the computation of all dependent Derivatives has to be prioritized in order to accelerate the
update and to meet the time constraint.

Proc. WowKiVS 2011 4 / 12

ECEASST

Wait for change in
required Artifacts

Recompute
Derivative

Disseminate
updated

Derivative into
network

Request update for all
invalid or missing
remote Derivatives

Check
validity/availability

of required
Derivatives

[Derivative
has not
changed]

[Derivative
has
changed][No invalid or missing

remote Derivatives]

[Invalid or
missing
Derivatives]

Change
occured

(a) Activity diagram Eager

Wait for change in
required Artifacts or

remote request

Invalidate
Derivative

Disseminate
Invalidation to

dependent peers

Wait for remote
request

Check
validity/availability

of required
Derivatives

Request update
for all invalid or
missing remote

Derivatives

Recompute
Derivative

Transmit updated
Derivative to

requesting peer

[No invalid or
missing remote
Derivatives]

[Invalid or
missing
Derivatives]

Change
occured

Request
occured

Request
occured

[Derivative is
valid]

[Derivative
is not
valid]

(b) Activity diagram Lazy

Wait for request

Recompute
Derivative

Transmit Derivative
to requesting peer

Request update
for all invalid or
missing remote

Derivatives

Check
validity/availability

of required
Derivatives

Request
occured

[Invalid or
missing
Derivatives]

[No invalid or
missing
Derivatives]

(c) Activity diagram Quiet

Figure 2: Activity diagrams handling local Derivative

3 The D4M Framework

The following section describes our idea of a dynamic distributed derived data management
framework which is designed to solve the described problems in the previous section. First, three
Derivative-specific operating modes are presented that can be combined in different ways and
that intend to deal with the distributed dependency management. Then, three different strategies
are introduced and show how they can optimize the performance of the system.

3.1 Operating modes for dependency management

The most promising approach to improve the efficiency of handling distributed dependencies is
the optimization of the propagation during a communication. Therefore, three different operating
modes have been identified, in which a Derivative can be configured. The operating modes,
illustrated in Figure 2, represent different possibilities to propagate information:

1. Eager: Possibly changed derived data is immediately recomputed and changed values are
then immediately redisseminated to interested peers.

2. Lazy: Derived data is only (re-)computed, locally cached, and sent to other peers on re-
quest. Furthermore, messages, which invalidate dependent Derivatives (invalidation mes-
sages), are sent to peers that manage data that depend on invalidated or recomputed data
of the just regarded peer.

3. Quiet: Derived data is recomputed for each incoming request and never cached or dissem-
inated beforehand.

If the Derivative is in an Eager operating mode, it is always kept up-to-date. As soon as
one required Basis or remote Derivative, on which the current Derivative depends, is updated,
an update of the current Derivative is computed as shown in Figure 2a. To do this, all remote
Derivatives, which are required to recompute this Derivative, have to be available and up-to-date.

5 / 12 Volume 37 (2011)

D4M, a Self-Adapting Decentralized Derived Data Collection and Monitoring Framework3

The previous content of the updated Derivative is not immediately overwritten but cached, after
the update is finished. Thereby, the old and newly computed content can be compared and only
if the content has changed, the updated Derivative is pushed to its dependent peers. Not every
change in a required Artifact will change the Derivative: For example, the computation functions
from our distributed build in Section 2.1 could be configured to skip comments. Therefore, a
change in the source code will not change the corresponding binary code.

Another possibility to propagate changes to dependent Artifacts is the Lazy operating mode
which is shown in Figure 2b. In Lazy mode, the traffic is being minimized by transmitting every
Artifact only if necessary, but at the same time, all depending Derivatives are informed about
changes on their Evaluation-Path. If a local Basis or a remote Derivative on the Evaluation-Path
is changed, the depending local Derivative is invalidated but not yet recomputed. An invalidation
message is disseminated along the Update-Path of the invalid Derivative and thus, all directly and
transitive dependent Derivatives are invalidated. When the invalidated Derivative is requested, it
is recomputed, and therefore flagged as valid, before it is transmitted to the requesting peer. If a
valid Derivative is requested, it is not recomputed but directly transmitted to the requesting peer.

The opposing approach of Eager is the Quiet operating mode, since every required Derivative
has to be explicitly pulled instead of being pushed automatically in case that it has changed. In
this operating mode, a Derivative will be computed for each request, which means that the actual
computed Derivative is never saved, neither locally nor on the depending remote peer. If any of
the directly depending Derivatives is updated, the required Derivatives, which operate in Quiet
mode, always have to be explicitly pulled from the network and recomputed on the corresponding
peers. The behavior illustrated within the activity diagram in Figure 2c describes the handling of
a local Derivative, that is operating in a Quiet mode.

All three operating modes - Eager, Lazy, and Quiet - have their advantages and disadvan-
tages. For example, a Lazy mechanism always has a higher latency, because it starts its working
process when the resource is requested. In contrast, with an Eager approach, the work is pro-
cessed immediately and the system is therefore always up-to-date, even if this is not necessary
for the moment. Eventually, the Quiet mode produces no overhead, if the access frequency of
the Derivative is low, since the Derivative is directly requested and transmitted, but the over-
head constantly increases with a higher access frequency. Hence, Eager processing produces
more overhead but provides superior time constraints, Lazy minimizes the overhead for popular
Derivatives, and, Quiet is the most suitable for unpopular Derivatives.

3.2 Quantitative assessment of the traffic overhead

To provide a more detailed analysis of the three previously introduced operating modes, a com-
parison of the traffic consumption in Eager, Lazy, and Quiet mode for three simplified scenarios
will be discussed in this section.

Comparison of Eager, Lazy, and Quiet modes To identify the best application scenarios for
the three operating modes, the consumed traffic has to be compared. Because an implementation
of D4M is not yet available, a simplified mathematical model was used to visualize the approxi-
mated behavior. Therefore, only the additional traffic which is produced in Eager, Lazy, or Quiet
mode for one Derivative and its direct remote dependencies has been analyzed. The P2P related

Proc. WowKiVS 2011 6 / 12

ECEASST

network traffic was not considered to be of relevance in this scenario and it was assumed that
all required Artifacts, for the Derivative under consideration, are locally available and always
up-to-date.

The update and access patterns for a specific artifact are the most crucial parameters that influ-
ence the three operating modes (cf. Section 3.1). For example, in the distributed build scenario
from Section 2.1 the update and access patterns may represent write and read operations on dis-
tributed software components. An additional parameter, that is needed to provide a meaningful
comparison of the traffic behavior, is the size of the propagated data. With these assumptions
the traffic may be calculated for a specific point in time t with the defined update interval IU and
access interval IA as well as the size of the Derivative SD and the size of the invalidation message
SIM . A parameter that is needed to calculate the traffic in Eager is the probability PC that the
Derivative really changed its content after an update. To include directly dependent Derivatives,
the number of dependencies is denoted as ND and the number of actual remote requests as NRR,
with NRR ≤ ND. The following six formulas have been implicitly proposed to approximate the
network traffic for an Eager, Lazy, and Quiet operating mode in a simplified environment.

With Proposition 1 the traffic consumption of the Quiet mode may be calculated. The Quiet
operating mode strongly depends on the frequency a Derivative is being accessed and thereby
relies on the number of requests. Every time it is accessed, it has to be transmitted to the request-
ing peers, and therefore traffic is increased by the size of the Derivative SD times the number of
requesting peers NRR.

Proposition 1 Traffic calculation for the Quiet mode

Q(t) =
{

Q(t −1)+(SD ×NRR), if t mod IA = 0
Q(t −1), otherwise

To approximate the traffic consumption in the Eager operating mode, Proposition 2 may be
used. Contrary to the Quiet mode, in Eager mode, the traffic strongly depends on the frequency
IU that the Derivative is being updated and the probability PC that the content of the Derivative
really changes after an update. Every time it is updated, it has to be disseminated to all dependent
peers, and therefore the network traffic is increased by the product of the size of the Derivative
SD multiplied with the number of dependencies ND with each changing update.

Proposition 2 Traffic calculation for the Eager mode

E(t) =
{

E(t −1)+(SD ×PC ×ND), if t mod IU = 0
E(t −1), otherwise

The traffic approximation for the Lazy operating mode is more complicated, and therefore is
divided in three propositions. First of all, it has to be calculated whether the Derivative is valid or
not at time t with Proposition 3. A Derivative is either invalid, if it was valid and is now updated,
or if it was already invalid and has not yet been accessed.

Proposition 3 Validity calculation for the Lazy mode

V (t) =

Invalid, if (V (t −1) = Valid & t mod IU = 0)

∥(V (t −1) = Invalid & t mod IA ̸= 0)
Valid, otherwise

7 / 12 Volume 37 (2011)

D4M, a Self-Adapting Decentralized Derived Data Collection and Monitoring Framework4

Secondly, with information about the validity of the Derivative, the traffic consumed by inval-
idation messages can be calculated with Proposition 4. If the Derivative is valid and has been
updated, an invalidation message is disseminated to all dependent peers, and therefore the traffic
is increased by the size of the invalidation message SIM times the number of dependencies ND.

Proposition 4 Invalidation traffic calculation for the Lazy mode

V T (t) =
{

V T (t −1)+(SIM ×ND), if (V (i) = Valid & t mod IU = 0)
V T (t −1), otherwise

Thirdly, the Derivative-specific traffic consumption in Lazy mode can be calculated with
Proposition 5. If the Derivative is accessed in an invalid state, it has to be disseminated into
the network to all requesting peers NRR. Hence, the traffic is increased with each request but only
if the Derivative is invalid.

Proposition 5 Derivative traffic calculation Lazy

DT (t) =
{

DT (t −1)+(SD ×NRR), if (V (i) = Invalid & t mod IA = 0)
DT (t −1), otherwise

Finally, in Proposition 6 the overall traffic consumption for the Lazy operating mode at time t
can be calculated by adding the Derivative and invalidation traffic at time t.

Proposition 6 Overall traffic calculation for the Lazy mode
L(t) =V T (t)+DT (t)

To visualize the proposed traffic consumption over time in the described simplified scenario,
the three operating modes have been compared in Figure 3. Parameters SD and SIM have been
set to 10 kilobytes (kb) and 1 kb, respectively, and the scenario starts at t = 0 seconds (sec) and
finishes at t = 400 sec. Handling the remote requests NRR, a random value is chosen between 5
and 10 at every time t, the overall ND is defined with 10. To show the major impact of PC, we
looked into two different Eager configurations: one assumes a high probability for a change with
70% (High-Eager) and the other one a low probability with 30% (Low-Eager).

Figure 3a illustrates the first scenario, in which IU was assumed 3 sec and IA with 12 sec. It
has been shown, that the Eager mode with a high probability for a change performed the worst,
directly followed by the Low-Eager mode. Both, the Lazy and Quiet mode, performed better than
the Eager modes and at the end, Quiet had the least traffic overhead under these circumstances.
This can be explained by the high frequency of updates, which caused a lot of traffic in the Eager
modes, because every update, that changed the content, caused a complete dissemination to all
dependencies.

Figure 3b shows the traffic consumption in a well balanced scenario, where IU and IA were 10
sec. The three modes - High-Eager, Quiet, and Lazy - performed similar, but Low-Eager pro-
duced slightly less traffic compared to the others. This can be explained, by the small probability
for a change: Only 30% of all updates really changed the content of a Derivate. The figure shows
that no additional traffic was consumed between t = 200 and t = 375, because the Derivative had
not changed during that time.

The third scenario is shown in Figure 3c, where the access interval IA with 3 sec is four times

Proc. WowKiVS 2011 8 / 12

ECEASST

higher than the update interval IU with 12 sec. Under these circumstances, the Quiet mode
performed worst followed by High-Eager. The Lazy mode performed slightly better than the
Eager modes because it transmits the updated Derivative only to the requesting peers and the
invalidation messages caused only a minimal overhead.

 0

 1000

 2000

 3000

 4000

 5000

 0 50 100 150 200 250 300 350 400

T
ra

ffi
c

[k
b]

Time [sec]

Quiet
High-Eager
Low-Eager

Lazy

(a) High update frequency

 0

 1000

 2000

 3000

 4000

 5000

 0 50 100 150 200 250 300 350 400
T

ra
ffi

c
[k

b]

Time [sec]

Quiet
High-Eager
Low-Eager

Lazy

(b) Equal update and access frequencies

 0

 1000

 2000

 3000

 4000

 5000

 0 50 100 150 200 250 300 350 400

T
ra

ffi
c

[k
b]

Time [sec]

Quiet
High-Eager
Low-Eager

Lazy

(c) High access frequency

Figure 3: Traffic comparison Eager, Lazy, and Quiet

3.3 System Optimization

In D4M the three presented operating modes will be combined in three different evaluation strate-
gies. Each strategy will bring further improvements to the overall performance of the system:

1. Standard algorithm: One of the three provided operating modes will be uniformly config-
ured in every Derivative and its computation functions. In our example in Figure 1 each
binary code component is uniformly handled by the same operating mode (all Derivatives
are configured to operate in Eager mode for example).

2. Derivative-specific: In our first step to improve the efficiency of a distributed dependency
management, the operating mode for each individual Derivative may be chosen manually.
If the access and update pattern for an Derivative is known, the efficiency of the system can
be improved by choosing the most suitable operating mode. Otherwise, if no behavioral
patterns are known, a Lazy operating mode can be chosen, since it is the only one that
performs acceptably in all scenarios. To implement this strategy in our distributed build
scenario, shown in Figure 1, a system architect may configure each particular binary code
component individually.

9 / 12 Volume 37 (2011)

D4M, a Self-Adapting Decentralized Derived Data Collection and Monitoring Framework6

3. Profile-based: A further improvement can be achieved, if the operating mode is chosen
automatically based on meta information of the corresponding Artifacts. With this in-
formation, each Derivative will choose the optimal combination on its own, based on its
update and access frequency, and the probability of a change by an update. This approach
is called profile-based Artifact evaluation, since the local access and update behavior for
each Artifact has to be monitored. A set of rules, like mapping of access and update
intervals to the corresponding operating mode, has to be globally known on every peer.
With these rules, the most suitable operating mode can be chosen at any time individually
for every Derivative. For example, in our distributed build scenario, in every binary code
component, meta data has to be gathered by monitoring-specific parameters, like build
frequency or the ratio of all source code updates to those updates that modify comments
only (i.e. do not require any recomputation efforts)

4 Future Work

Currently, we are implementing a first version of the D4M framework and preliminary results of
our research, regarding the operating modes, are encouraging. In the early stages of D4M, we will
evaluate the framework by simulations with PeerfactSim.KOM5. The results of these simulations
will be used to optimize the rule sets in the profile-based system optimization strategy. After we
established and configured a first operating version, we will look into scheduling and priority
management mechanisms to optimize quality of service and to enable real-time communication
capabilities.

Our intention is to apply the advantages of the D4M framework in a monitoring mechanism for
completely decentralized systems. With this approach the most recent value of various system
parameters may be monitored and distributed, so that a snapshot of the current system state will
be generated efficiently. According to the global system state, the system may configure itself
by adapting parameters, and thus improve its overall performance. But not only the network
can benefit from the monitored information. D4M itself can use this information to optimize the
global rule sets and operating modes, which will again influence the overall performance of the
system.

Besides the given research goals, we want to answer the following research questions:

• How can globally monitored system parameters be used to our advantage?

• Do we have a benefit, if we coordinate the operating modes of dependent Derivatives?

• How can we detect and resolve cyclic dependencies?

5 Related Work and Discussion

Our techniques for disseminating dependent information, according to locally monitored access
patterns, may be applied in most existing approaches that have to deal with collecting and dis-
seminating information in decentralized systems. Therefore we provide an outline of our ideas
5 http://peerfact.kom.e-technik.tu-darmstadt.de/

Proc. WowKiVS 2011 10 / 12

http://peerfact.kom.e-technik.tu-darmstadt.de/

ECEASST

against existing approaches for self-optimization in decentralized systems in this section. Al-
though, we presented an example for a distributed build scenario, we will concentrate on the
comparison with existing monitoring approaches for decentralized systems, because this will be
a major focus of our future research. Subsequently we explain why we adopted the principles of
incremental attribute evaluation.

An alternative approach for managing data is represented by SkyEye.KOM [GSR+09]. Sky-
Eye.KOM is an efficient over-overlay for information management and is applicable as a further
layer on any DHT-based P2P system. The monitoring capabilities of SkyEye.KOM provide
interesting possibilities for self-management features within a P2P system. The approach is
specifically designed to collect statistics on the current status of the P2P system. This is done
within a tree topology, where every participating peer communicates specific information about
its current status, such as available disk space, to its parent peer. The parent peer aggregates all
the received information with its own and forwards the aggregated information to its own parent,
until the root peer is reached. In contrast to D4M, SkyEye.KOM is more rigid and is restricted
to a specific application domain, because the information is always aggregated in the same man-
ner within the tree and only the root peer can compute the global view from the aggregated
information of all participating peers.

The Push-Sum protocol represents a gossip-based monitoring and information dissemination
approach [KDG03]. In gossip-based protocols, each peer randomly contacts one or more other
peers in the network in each round, to exchange information. Thus, the Push-Sum protocol
is a graph-based approach, like D4M, but it can only aggregate information to create a global
snapshot of the system state and not evaluate them for various purposes. In fact, the dynamics
of the gossip-based information spreading leads to high fault tolerance, but the peers always
communicate in the same manner and therefore lacking self-adaption.

With the D4M framework, we have presented a promising and flexible alternative approach
for monitoring and disseminating related parameters within the network effectively. Existing
approaches lack flexibility and reconfigurability and operate in a rather static manner, that is
the reason why a dependency management framework like D4M is needed. We solve the issue
of rigid communication by using three different operating dissemination modes - Eager, Lazy,
and Quiet - and by using generalized evaluation functions instead of specific global aggregation
functions. The correct usage of these three modes, according to the current system state, will
save a great deal of traffic, and therefore improve the overall performance of the system.

The principle of our three operating modes originate from the field of incremental attribute
evaluation, which is used during compilation of source code and to analyze programming lan-
guages [SSK00]. Incremental attribute evaluation approaches are used in todays textual pro-
gramming language editors to check the static semantics and correctness of the program. The
paradigm of linking dependent attributes in a graph or tree-based structure is very similar to
dependency management in decentralized systems, because both, the dependencies and the dis-
tribution of artifacts, are organized in a graph structure. Hudson describes an efficient algorithm
for attribute evaluation in a lazy manner [Hud91], which evaluates only those attributes that are
affected by a change and that are directly or indirectly needed for the evaluation. We adopted
the basic principle of this algorithm and modified it for operating in decentralized environments,
because it is the only algorithm that operates on generic graph structures instead of tree-based
structures.

11 / 12 Volume 37 (2011)

D4M, a Self-Adapting Decentralized Derived Data Collection and Monitoring Framework7

6 Conclusion

In this paper we have presented our approach to provide distributed dependency management for
decentralized systems and their possible optimization strategies. At first, an in-depth discussion
about the dependency management of related information in P2P systems based on a running
example has been conducted, leading to the distinction between Basis and Derivative informa-
tion artifacts. Based on the research issues we identified in the presented example, we presented
our D4M framework which approaches the distributed dependency problem by combining three
different propagation strategies and applying them according to a given rule set and locally mon-
itored behavior patterns. These three operating modes, namely Eager, Lazy, and Quiet, induce
little overhead in their target behavioral scenario, respectively. Finally we provided three dif-
ferent strategies for a stepwise optimization of the system until a self-sustaining and -adapting
dependency management is reached. For our future work, a discussion was conducted how D4M
can be used to optimize existing monitoring mechanisms and, therefore, bring further improve-
ments to existing self-optimization approaches for decentralized systems.

Bibliography

[BD07] H. Beitollahi, G. Deconinck. Peer-to-Peer Networks Applied to Power Grid. 2007.

[GSR+09] K. Graffi, D. Stingl, J. Rueckert, A. Kovacevic, R. Steinmetz. Monitoring and man-
agement of structured peer-to-peer systems. IEEE Ninth International Conference
on Peer-to-Peer Computing, pp. 311–320, Sept. 2009.

[Hud91] S. Hudson. Incremental attribute evaluation: A flexible algorithm for lazy update.
ACM Transactions on Programming Languages and Systems (TOPLAS) 13(3):315–
341, 1991.

[KDG03] D. Kempe, A. Dobra, J. Gehrke. Gossip-based computation of aggregate informa-
tion. In 44th Annual IEEE Symposium on Foundations of Computer Science, 2003.
Proceedings. Pp. 482–491. IEEE Computer. Soc, 2003.

[MLS08] P. Mukherjee, C. Leng, A. Schürr. Piki - A Peer-to-Peer based Wiki Engine. Eighth
International Conference on Peer-to-Peer Computing, 2008.

[RD01] A. Rowstron, P. Druschel. Pastry: Scalable, decentralized object location, and rout-
ing for large-scale peer-to-peer systems. Conference on Distributed Systems Plat-
forms, 2001.

[SSK00] J. Saraiva, D. Swierstra, M. Kuiper. Functional incremental attribute evaluation.
Compiler Construction, pp. 279–294, 2000.

[STMB07] N. Stolba, A. Tjoa, T. Mueck, M. Banek. Federated Data Warehouse Approach to
Support the National and International Interoperability of Healthcare Information
Systems. Conference on Information Systems (ECIS), 2007.

Proc. WowKiVS 2011 12 / 12

rst
Textfeld
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

	Unbenannt

