
IEEE ICC'90, SuperCom'SO
Atlanta, April 1 990

[SSSW90] RalfSteinnretz, Her-rttarzn Sclznzutz, Berild Sclzöner; Miclzael Wasmund; Generic Sup-
port for Distributed Multimedia Applicatioiis; IEEE ICC'90, SuperComt90,
Atlanta, April 1990.

Generic Support for Distributed Multimedia Applications

R a v Src.itriiierz, Hermann Sclitrrittr, Bernd Schöner, Michael Wasmund

IBM Europetrn Networking Center,
Tiergartenstr. 8, 6900 Heidelberg. P.O.Box 10 30 68,

Federal Republic of Gerniany

Abstract
This paper addresses the question of how to build a con-
venient application programming interface for multimedia
applications in a distnbuted and heterogeneous environ-
ment. According to the objectives of distribution trans-
parency with autonomy ;of nodes, presentation
transparency, device independence and the handling of
resource allocation by the underlying System, a concept is
developed for this new area of applications.

The model comprises resources operating as sources and
sinks of transient and persistent information. These re-
sources and their interactions appear as capabilities at the
appiication programming interface. Applications do not
distinguish between local and remote operations and re-
sources. Authorization is integrated as the protection at-
tribute of the capabiiities. The model supports a level of
abstraction where unnecessary details - such as device de-
pendencies - are made transparent to application pro-
grams.

1. Introduction
The role of a computer is changing from a "wmputa-
tional" machine towards an "information processing"
machine which supports the processing, communication
and presentation of information. Information processing.
with "text" was complemented by graphics and images
and is being enhanced to cover spreadsheets, formulas,
audio, and video. New storage technologies and archi-
tectures aiiow to Store different media in a digital
computer-controllable manner, making a wide variety of
multimedia applications feasible. Local information
processing systems have been aiready available for several
years running applications like hypercard rYank85,
Kahn88J. The scientific community has also presented
several multimedia systems and applications with attrac-
tive functions ([Ludw87, Ghaf881, Athena project at
MIT). However, most of them are dedicated systems and
do not make use of high-speed interconnections to other
systems. Problems of heterogeneity, authorization and
associated protection schemes have not been considered.

With the advent of high speed networks such as DQDB,
FDDI, B-ISDN or IBCN distributed applications over
local, metropolitan or wide area networks will Open the
door for a rich Set of novel applications. Examples are
joint editing, tutoring with audio, video and data com-

munications, travel and transport booking with the op-
portunity to view a video clip of potential destinations.
or remote error diagnosis of a manufacturing process.
Cooperative work in real time between journalists who
jointly edit a newspaper article with the respective pic-
tures, chemists designing a chemical product or engineers
involved in CAD are other examples. The cooperating
Partners may be physically distributed.

Applications are executed in computers with attached
Storages for audio, video and data, sensors (camera.
microphone), reproducers (loudspeaker, display), and as-
sociated control functions (e.g., positioning of sensors.
gain control, adjusting the illumination). The computers
may be workstations as weii as mainframes and thus mal
be differently equipped. Workstations may have cameras
attached to it, mainframes are expected to have banks of
storage devices. Furthermore, the attached devices may
have different data encoding, i.e. different conventions
of analog and digital encoding. Special equipment to
perform necessary conversions exist in the network, as
well as equipment for mixing media of single or different
types. Computers are Linked by a network capable of
transmitting audio and video streams in isochronous dig-
ital form; in addition, data communication allows for
transfer of stored objects (still images, text, etc.) and re-
mote control of devices.

It is widely believed that distributed multimedia applica-
tions are useful. Before a qualified Statement on the use-
fulness of distxibuted multimedia applications can be
given, we see three Open questions:

1. To what extent are multimedia applications found
desirable by potential users ?
People wili only be willing to pay the price for the
attachment of additional devices if the expected ben-
efits pay off in their view. By experience, we know it
is very hard to predict what is ultimately liked or dis-
liked by users. On the other hand, attachments will
only be cheap if found attractive by a large commu-
nity of users. ..
Given the user's interest, there is immediately a sec-
ond question:

2. Can the apparent complexity of multimedia systems
be mastered such that user-friendly applications can
be designed, implemented, tested and maintained at a
reasonable cost ?
It is known that distributed data processing applica-
tions are already complex. The multitude of devices

.
ppppppppp ~

i..

and control operations in multimedia systems adds a
further dimension to this complexity.
Assuming tliat the complexity can be mastered, a
third Open question has to be answered.

3. What are the right primitives to be offered a t the ap-
plication program interface (API) ?

We don't claim to have a wmplete answer to any of the
questions raised above. Instead, we suggest to find these
answers by systematic experiments and analysis in realistic
scenarios based on prototypes driven by ultimate end-
Users. We advocate to build early prototypes to gain as
much experienck and feedback as possible, to have the
right answers ready when the expected high bandwidth
networks become available. The approach presented in
this paper is a first step towards answering the above
questions.

We will present a concept for the development of an API
for distnbuted multimedia applications. The proposed
approach is driven by some fundamental design objectives
like distribution transparency with node autonomy, pres-
entation transparency, device independence, real resource
allocation, and incorporation of synchronization mech-
anisms.

A different kind of API is considered in [Leun88,
Leun891. There, a Set of operating system primitives
based on the notions of active devices and connectors are
presented to deal with multimedia devices in a UNIX en-
vir~nment. The functionality of UNIX primitives is en-
hanced with the goal of getting a UNIX style API. In
contrast, our objectives were independence of a specific
operating system and use in a heterogeneous multivendor
environment.

In the foilowing section we describe the design objectives.
The model for multimedia processing is presented in sec-
tion 3. We explain the concept and illustrate its usefulness
by means of an example. In the the wnclusion we sum-
marize the results and indicate the future direction.

2. Design Objectives
The support for distributed multimedia applications
sented in this paper was derived with a well defined Set
of objectives in mind. We combine weU aocepted objec-
tives from the distributed systems area with additional
objectives denved from the multimedia environment.

Distribution Transparency

In a local multimedia system the operations on the mul-
titude of possible different attachments, like the control
of a camera and its interconnection with monitors, rnay
already be a wmplicated task, though the device names
are known by a proper configuration process, and the
links between the devices rnay be initiated by calls to de-
vice dnvers.

In a distnbuted environment a video signal derived from
a camera may be displayed at different remote locations.
This is more complex due to the involvement of several
distributed instances like local and remote processes and
devices. Actions conceming the network with the respec-
tive wmmunication protocols are involved. The name of

a camera must be madc kiiown to the applications located
on other workstations. The video stream originated rroiu
the camera has to be routed from one workstation via a
high speed network using proper protocols to the other
stations which in turn have to be Set up properly to re-
ceive the video inforination.

From the application pi.ogramming point of view i t is
desirable to hide these details by providing Support from
the underlying system. The access to remote resources
should be as easy as the access to 10cal resources, in the
ideal case there should be no difference; i.e. the distrib-
ution should be transparent. However, it is not desirabie
to make all resources within the network accessible to
everyone, because the local User wants to maintain full
control over the resources in his environment. Consider.
for example, the microphone of a multimedia workstation
located in an oftice. The respective oftice worker would
not like the idea that others can listen at any time.
Therefore, the distributed system must provide mech-
anisms to control access to local and remote devices. The
local node has to remain autonomous and has to maintain
control over its 10-1 resources. However, it should.be
easy to give access rights ternporarily to remote nodes.

Presentation Transparency

A distributed system rnay consist of heterogeneous hard-
Ware and software components; i.e. the attached devices
and the operating systems as well as the involved machine
architectures rnay be different. Prototypes of intercon-
nected heterogeneous systems without any multimedia
devices already exist and their resultsmay be extended for
rnultimedia systems [KnieSS, Notk881. But additional
effort is required concerning the attached devices.

In the envisaged environment, media streams from vari-
ous sources rnay be directed to multiple types of sinks.
Consider a scenario with a NTSC camera which should
be connected to a monitor working at the PAL standard.
In this case a NTSC / PAL data strearn converter is nec-
essary. This expensive converter might be located and
adrninistrated by a central service at a different node.
Presentation transparency requires that the involved ap-
plications should not have to handle t h i conversion and
should not even need to know about the-conversion and
the location of the converter. All kind of necessary ad-
aptations should be initiated and s u p e ~ s e d by the dis-
tributed multimedia system software. The goal of
presentation transparency is to shield the application from
the underlying device heterogeneity. The system is ex-
pected to perform the required conversions.

Device Independence

The variety and large amount of attached devices implies
a huge Set of functions which rnay be supported by these
devices. Similar devices with the Same fuctionality may
be operated with different interfaces at the hardware level.
The application program should be independent of tlie
actual system configuration up to a maximum extent.

It would be unacceptable to reduce the support of oper-
ations applicable to certain device types to a common
subset. For example, all loudspeakers in the network ma)
have the function 'set volume', but only a few also pro-

vide the function 'Set tone'. Or. all cameras have focus
setting, only a few of them allow zooming. These 'extra'
functions would be excluded which is clearly not desira-
ble. Device independence, as understood here, requires
that application programs should be able to take advan-
tage of available functions, but can also cope with situ-
ations where the full Set of functions is not available.

Real Resource AIIocation

In wnventional data processing systems, we are accus-
tomed to handle resources by provision of virtual re-
sowces which are multiplexed on real resources. For
example, writing spool files rnay be viewed as virtual
printing. In general, it is not necessary to have exclusive
or non-preemptive use of a real resource.

Many multimedia applications require devices to be allo-
cated as real resources. It does not make sense to share
a microphone by a time slicing mechanism. Devices are
often allocated for a longer time period. Mechanism to
guarantee controlled and deadlock-free access to these
devices are required. Either adequate reservation strate-
gies have to be developed or deadlock detection and re-
covery has to be supported by the system.

Synchronization of Multimedia Objects

Isochronous data streams are generated by input devices
like cameras which have no or very restricted Storage
properties and are fed into output or intermediate devices.
Such data streams rnay have to be synchronized with
other data streams or ordinary processes. This is a new
requirement particularly for multimedia systems. For ex-
ample, transmission of live video via the network and text
generated in the local environment. The application rnay
require a certain coherence between the two media 'text'
and 'video'. Synchronization operations are needed to
perform this task. In [Salm89, Stei901 the required
properties were outlined. In [Salm891 some techniques for
synchronization are discussed, and [Stei90] introduces the
functions necessary a t the API level.

3. The Application's View of Multimedia
Devices
In this section we present a model of how distributed ap-
plications rnay control and protect multimedia devices.
In essence, the model is derived from concepts of systems
such as ACCENT or RSC, which Support capabilities or
access rights, however, only in the domain of data com-
munications [Rash81, Eber881. We will focus subse-
quently on the concept for the API which is supported by
a Run Time Environment (RTE) residing in each partic-
ipating node. In the examples we mainly use audio, video
and illumination devices; however, the model is general
and can be applied to other devices. . .

A multimedia workstation environment comprises many
hardware devices attached to the Computer. Such devices
are microphones, loudspeakers, amplifiers, cameras,
monitors, any kind of measuring equipment, lights, etc..
Devices rnay be sources and/or sinks of media streams and
rnay allow for control operations like the zooming of a

camera. Other devices rnay allow for control operations
only, e.g. the setting of intensity and the moving of an
illumination device. Also, a dedicated digital Signal
processor generating a sine wave rnay be a device. A dc-
vice is located at a certain place in the system and inter-
faced by a device driver. The role of the device driver is
to map the calls into device specific control sequences and
to handle also the involved data transfer as required by
the attached device.

Each device appears as an object which is described by its
attributes and operations. The operations have ultimately
to be supported by the associated device driver. Each
device is known to the RTE by a device descriprion, which
contains all information with respect to the use of the
device, including addresses of device drivers and presen-
tation information.

The actual interface to a device is via a capability. A ca-
pability contains the attributes and Set of operations.
which are allowed to be executed by the respective appli-
cation. It contains only the information required by an
application.

There is only one device description per device, but mul-
tiple capabilities identifying the Same device rnay be con-
structed from the respective device description or from
earlier created capabilities. A denved capability is a sub-
Set of the original capability attnbutes and objects, which
rnay in the extreme be the full Set of operations. A device
description is always held at the node, to which a device
is attached. A capability rnay be passed to a remote node.
however, the node, which owns the associated device. re-
mains the home node of the capability. A home node
rnay withdraw a capability. In this way, capabilities are
the means, by which the owner of a device controls access
to it.
Figure 2 shows the different components discussed so far.

device

Figure 2. Example of components of the multimedia ca-
pability concept

We will illustrate our concepts by considering two inter-
connected workstations of which one supervises a pro-
duction process via a surveillance device composed of ;i

Figure 1. Picture of the

W

surveillance system

camera, two microphones and a lamp as shown in
Figure 3 and Figure 1. The intensity of the light may be,
regulated. The whole device may be moved in one axis.
The distance of the microphones with respect to the cam-
era may be changed. The camera may be rotated, zoomed
and focused.

phone
workstot ion

. .
r i g h t

. . micro-
. .. phone

high speed
workstot ion

i n t e r
connection

Zoudspeokers Ed (I - lloudspeokerrl

Figure 3. Schema of the surveillance system

Figure 4 contains the device description, which is named
"surveyor".

device-description "surveyor"
attnbutes -

: 1 *surveillance combination"
: 5, Video, pres = PAL driver = address2 >

source : 3, Audio. ~ ~ ~ ~ = M A $ c A M , driver= Caddress3.
source : 4, Audio, p-s = MASCAM, dnver = < address4 :
e n ~ n e : 5. "illumnation". driver = < address5 >

ope&tions '
null 1
move 1, 0..10 .
expand 1- 0..10
rotate 2 -\0..10
Zoom 5, 50..80
focus 2, 50.. 120
intensity 5 0..100
connect (2,3,4)

Figure 4. Example of a device description

The attribute specification includes the information nec-
essary for the capabilities. Note, that the device has Se-
veral access points (1 to 5). Access point 1 identifies thc
device as a whole, 2 identifies the camera, 3 and 4 refer
to the microphones and 5 refers to the lamp. The attri-
bute "type" associates a description with the device (sur-

vcillance coinbination). The "source" attribute defines
access point, type of tlie source, and media presentation
properties. Note, that the description contains informa-
tion on encoding (e.g. PAL, MASCAM) which should
reinain transparent to the application program, but must
be kiiown by the RTE. The attribute "engine" describes
tlie access point and properties of individually controlla-
ble parts of a device, which are neither source nor sinks
but inay be subject of control operations.

The operations section of the device description lists the
set of operations supported by the device. Each operation
has a name, is related to one or more access points, and
has individual Parameters. The access points used in the
operations are defined in the attribute section and are
used to bind an operation to a specific part of the device.
For example "zoom" can be associated with the camera
via the access point 2. The range of the zooming function
is between 50 and 80mm. Some operations may be asso-
ciated to many individual devices, as the connect opera-
tion.

However, not every operation may be bound to an attri-
bute of the Same object, the RTE will check compatibility
and deny illegal or unsupported operations.

After this explanation of the device description let us dis-
cuss the example of an application running on the local
environment of workstation WS1 in Figure 3, which
makes use of the attached equipment. It will use the
camera, the microphones and control the light. Before
an application can make use of a device, it must build a
capability. In contrast to the device description, which is
configured in the system, mpabiiities are created by ap-
plication prograrns a t run time. The execution of
capl : = make-capability ("surveyor")
creates the capability capl. The. operating system Checks
availability and access rights to the device before provid-
ing the capability to the application. This capability capl
points to the device description "surveyor". Only the
application which created this capability may use it.

By executing
description : = view (capl),
the description of the capability can be retrieved. The.
content is of the same stmcture as the device description
except that implementation dependent information is
omitted. As shown in Figure 5, the video description
parameter PAL, the audio description parameter

. . MASCAM, and the device driver addresses do not ap-
. pear.

. .
:.. . . .

capability capl (of device-descnption "surveyor")
.. > . " attributes

. .::..; ..,, ::i. , . type : 1 "~rveillance combination"
. C . :. - ; :.- source : 5, Video .

~. source : 3, Audio ' .
source : 4, Audio

" I engine : 5. "illumination"
... opeFations
. ' . null 1

move 1 0..10
expand 1: 0..10
rotate 2,-10..10
Zoom 2, 50..80
focus 2, 50.. 120
intensity 5, 0.. 100
connect (2.3.4)

Figure 5. View of a capability object capl

Xow, the multimedia device and its cornponents attached
to the workstation can be programmed in the local envi.
ronment using the available operations. For example, b!
executing
lluil (cupl , I) ,

the whole surveillance equipment is Set to the home posi-
tion. With
inrensiry (cup1,5,70),
the light is set to 70% of the maximal intensity.

As next, we consider workstation WS2 which is connected
to WS1 as shown in Figure 3. Assume, the User of WS1
wants to consult the User of WS2 showing him some spe-
cial parts of the production process and allowing him to
adjust the camera by focusing and zooming. WS1 firsi
constructs a capability with the desired operations by ex-
ecuting
cap2 := copy-capability (capl, zoom. 2, focus, 2.
connect, (2.3.4)).
The rtsulting capability is shown in Figure 6.

capability cap3 (of device-dcscription "surveyorn)
attnbutes

: 1, "surveillance combination"
:OU"rce : 2. Video
source : 3, Audio
SOU. : 4, Audio
engine : 5, "illurnination"

o~erations
>oom 2, 50..80
focus 2. 50..120
connect (2,3,4)

Figure 6. View of the capability object cap3 (and cap2) -
Now cap2 has to be moved to WS2. It can be sent in a
message or passed as parameter in a call. or it can be
granted via export / import. For simplicity, we will sub-
sequently describe the last alternative only. With the op-
eration
export (cap2, global-name-2. user-group-A)
the capability mp2 is offered under a global name
(global-name-2). The availability is restricted to the User
group "user-group-An, of which we assume the WS2 User
to be a member and to be accordingly authenticated.

All operations explained so far were executed on work-
Station WSl. On the workstation WS2, the capability
must first be imported. After execution of
cap3 : = import (global-name-2),
the surveillance device may be referenced via cap3 at WS2
as illustrated in Figure 7. This capability is now held at
WS2, but still owned by WSl. Note that with this
mechanism the autonomy of the nodes is preserved ! 11
is important, that cap3, which is now held at WS2, cannoi
be forged (e.g to contain more privileges). This is ensured
by the implementation. Actually the owner holds a sur-
rogate of cap3. At each access to the device from WS2.
WS1 checks the legality of the operation against the sur-
rogate. Illegal operations will not be performed. WS2
can now execute operations in the same way as WSI, only
with the restrictions irnposed by cap3. With execution of
description : = view (cap3),
the attributes and the restricted Set of operations available
at WS2 can be viewed as shown in Figure 6. The exe-
cution of "import" as well as "view" implies communi-
cation between WS1 and WS2, which remains transparent
to the application programs.

oppl icat ion appl ication on
on WS1 on WS2

I surveyor device
descript ion I . ..

Figure 7. Capabilities capl, cap2/cap3 of the surveillance
example

The User on WS2 wants to see ihe production process and
listen to the respective noise. His application program
creates a local capability for the loudspeakers by execut-
ing
capl : = make-capability ("loudipeakers") .
A video sink is created with the execution of
cap5 : = make-capability ("monitor").
The operation "wnnect" allows routing of streams from
a source to a sink. The connection of the audio and video
sources to the respective sinks is performed by the exe-
cution of the following three Statements:
audio-leji : = connect (cap3.3. cap4,2)
audio-right : = connect (cap3.4, cap4,3)
video : = connect (cap3.2. cap5.2).
By executing the connect function, a connection is cre-
ated, which is again an object with attributes and oper-
ations, and appears as capability (see Figure 8). The Set
of operations applicable to a connection rnay contain
functions for synchronization and mixing. The very
simple looking connect operation rnay cause a consider-
able amount of system handling. Apart from the estab-
lishment of a network connection with the expected
quality of Service, the compatibility of the devices has to
be checked. Incompatible Signals rnay have to be trans-
formed with the respective equipment (e-g. from PAL to
NTSC). The RTE of the participating workstations take

, . care of this functionality completely transparent to the
- appiication program. Now the application program at

WS2 can execute the operations on the surveillance
:- - equipment as allowed by capability cap3. For example

by executing
Zoom (cap3.2,90),
the Zoom is Set to the value of 90mm. In agreement with
the requirement for distribution transparency, it makes
no differente to the application program, whether the de-
vices are located a t the workstation itself or at some other
place:
The above example outlined the basic features of the ca-
pability model. Objects rnay have further attributes and
operations associated with them. Operations like snap-
shot, overlay, mix, or record rnay be applied to con-
nections. Media Storage rnay act as sink for persistent

. media inforrnation. This stored information rnay be used
as source of other media streams. The capability model,
as introduced above, is general enough to accommodate
the variety of attributes and operations in the context of
distributed multimedia applications.

application on opplicotion on
WS1 WS2

- I
COP 1 video cop5 . . .

t I
mon i tor

I device
descr., . . . 1 driver

t

...
Figure 8. Some capabilities of the surveillance exarnple

4. Conclusion
A generic application program interface for distributed
multimedia applications based on the notion of device
capabilities has been introduced. A device is an assembly
of equipment with sources and sinks of media streams and
control functions. Operations on a device are performed
through capabilities pointing to a device descnption
which in turn is linked to the device drivers.

Capability passing in distributed systems is a proven
concept for combining distribution transparency with a
strict access control mechanism, which is essential for
mixed media cooperative processing in real time. In the
proposed model, the' concept of a capability is the key to
the ambination of the desired flexibility in program
structuring with the necessary protection mechanism. The
holder of a capability accesses the identified device inde-
pendent of where the device is located. At the Same time.
the autonomy of the owner of a device or node is main-
tained.

By the association of descriptive information with capa-
bilities, the development of flexible distnbuted applica-
tions is made possible. Programs rnay be written such.
that they can take full advantage of the functionality of
a device without being dependent on a large Set of func-
tions. This is important, since the vanety of functions
possibly supported is enormous and the assumption of an
acceptable common subset among all multimedia attach-
ments in a network is unrealistic.

Capability descriptions are reduced to those attributes
and operations, which are necessary from an application
point of view. Implementation dependent attributes and
operations, such as media stream enwding expected at a
source, or underlying network protocols and transfer
modes are handled transparently by the system extensions
to the operating systems (i.e. by the run time environ-
ment). There is no need for applications to establish net-
work connections and to address media strean-
converters, mixers or synchronization devices. It is suffi-
cient for the application to specify what it wants, the sys-

tem takes care of the rest. This is aii important System [Krue88] G-Kriiger, G.Miiller (Ed.); Hector, Heteroge-
contribution to the reduction of the cornplexity. n&us Computers together, Volume 11: Basic

Projects; Springer-Verlag, 1988.
Multimedia communications mav involve the use of de- .
vices for longer time periods. ~ h i s requires the exclusive
allocation of rcal resources, which carries with it the
danger of deadlock. Classical techniques for dealing with
this danger can recidily be accommodated in the run time
environment. Again, application programs are liberated
from a burden.

This paper addressed the basic question of handling re-
mote multimedia devices with distribution transparency
and device independence. It gives an answer at the lowest
level of primitives with these transparency properties.
Further research is necessary to develop concepts for
structuring complex multimedia applications a t a higher
leveL For example, it may be desirable in a tutoring ap-
plication, that groups of devices (for the students) can. be
operated upon via a single capability. This type of higher,
level structuring is not yet well understood. We advocate,
to approach the whole area of distributed rnultimedia
applications step by step and in a systematic way. P r a e
tical experience with operational prototypes and real ap- '

plications will be very helpful in understanding the
problems and the importance of their solutions to the
application programer. In this way, we hope to con-

[Leun88] W . H . h n g . - G. W-Luderer, . M . J.,\forgail,
P.R.Roberrs. S.C.Tu; A Set of Operating Sys-
tem Mechanisms to Support Multi-Media ~ p -
piications; Proc. 1988 International Seminaren
Digital Communications, Zürich, March 1988.

[Leun89] W.H.Leung. T.J.Baumgartner, Y.H.Hic.arig,
M.J.Morgan. S.C.Tu; A Software Architecture
for Workstation Supporting Multimedia Con-
ferencing in Packet Switching Networks; 2nd
IEEE COMSOC International Multimedia
Communications Workshop, Montebello.
Quebec, Canada, Apr. 1989.

[Ludw87] L.F. Ludwig. D.F.Dunn. Laboratory for Emu-
lation and Study of Integrated and h r d i n a t e d
Medip Communication. Frontiers in Computer
Technology, Proc. of the ACM SIGCOMM '87
Workshop, Aug. 11-13.1987. '

[Notk88] D-Notkin. ~ . ~ l a c k , E.Lazowska. H.Lmy.
J.Sanislo. J.Zaliorjan; Interconnecting Heter-
ogeneous Computer Systems; Comm. of the
ACM, Vol. 31, Nr. 3, März 1988, pp.258-273.

tribute to an understanding of the usefulness and use-
ability of distributed multimedia applications and to the [Rash81] ~ . R a s h i d , G.G.Roberzson; Aocent: A Com-
development of proper interface concepts. munication Oriented Network Operating System

Kamel; PrOceedings 8th Symposium on Oper-
ng System Principles, Vo1.15, pp. 64-75, De-

5. References nber 1981. -
. . . . ~.

. ,
- vbefi8], &.EberIk,',': l i o e i h ' : . ~ s & i l ~ . ' X Schmu&. . . : :, [salm89]'- h f ~ a l m o n ~ , -DShepherd: Extending: OS1 t o

. . . .
, . , B : S ~ ~ M ; . , Ceneric' support .ior ~ i ~ ~ ~ d . , . ,

:. . , - , - Support Sy~~chroniZation -Required . b ~ Multime-
Processing . in ' Heteiogeneous' . Nehvorks; . In:'. -' - . ' .dia Applications; IBM ENC Technical Report
G.Krüger, G.Müller (Ed.); Hector, Heteroge- . . : No.43.8904, Apr. 1989 (available through the
neous Computers together, Volume 11: Basic . author). ,

Projects; Springer-Verlag, 1988. [~tei90] . R-Steinmetz; ' ~~nchronization propekes in
[Ghaf88] A.Ghafoor, C. Y . R . c ~ = ~ . P.B.Berra A ~ i s & b - Muitimedia Systems; to appear in: IEEE Jour-

uted Multimedia Database System; IEEE, ,:. . . nal of Selected Areas in Communications, issue
Workshop-on the Future Trends of Distributed ..- .; ' '

, . on 'Multimedia Communications', Volume 8.
. . . ' - . . Computing Systems in the 1990s, Sep. 1988, lggO-' . - . ,.

. . . -
. 1 . ' . pp. 416-469. . ' . ' , . . .

.- , ' .. . [Yank85] 'N. YankeI~ich, N . M ~ ~ ~ O W & , A. . van. DU;^:
[Kahn~q ' P.-; : ,., . ' .,: :: :, , :: :, ;;Reading e d . Writing in: Eieebonic Book IEEE

. . . , in adapting published material into Intermedia !. ::': . . , : .. . Computer, '.vol.l8, no.10, . October ;. '. 1985.
documents; IRIS, Brown University, Technical pp.15-30. ,

' Report Number 88-8.

