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Abstract—Instant sharing of user-generated video recordings
has become a widely used service on platforms such as YouNow.
Yet, it still poses technical challenges, as mobile upload speed
and capacities are limited. One proposed solution to address
these issues is video composition. It allows switching between
multiple video streams–selecting the best source for a given
time–for composing a live video of a better overall quality
for viewers. Previous approaches require visual analysis of the
video streams, usually limiting the scalability of the system. In
contrast, our work allows the stream selection to be realized
solely on context information, based on video- and service-
quality aspects from sensor and network measurements. The
implemented monitoring service for context-aware upload of
video streams is evaluated in varying network conditions, with
diverse user behavior, including camera shaking and user
mobility. We show that a higher efficiency for video upload
as well as QoE for viewers can be achieved.

I . I N T R O D U C T I O N

Live streaming of User-Generated Video (UGV) has

experienced a widespread adoption driven by increasingly

powerful mobile devices and networks. A common scenario

when a significant number of users record and want to share

their experience with friends or the public are entertainment

happenings, such as sports events and concerts. As the

spectators have a similar view on the event of interest, this

has naturally given rise to collaborative video sharing.

Essential challenges for live streaming UGV are presented

by the rather low quality of the videos and the limited upload

capacities of the wireless network. Viewers often experience

poor video quality due to degradations introduced during

recording such as camera shake, or because of compression-

induced artifacts. Despite the compression of the video

streams, it is challenging to upload recordings as bandwidth

requirements are high (e.g. compared to text messaging),

and users compete for scarce upload capacity in wireless

networks. Furthermore, the available capacity for a future

video streaming session is nearly unpredictable and varies

with the current network utilization. This either leads to an

underutilized potential to stream higher video bitrates or

interrupted video streams due to over-utilized capacities.

We propose a monitoring service to observe network

conditions and user behavior for supporting video composition

applications in the selection of the best video stream at a given

time, thus achieving a better video quality in composition.

The major contributions of this work are the design and

implementation of this novel monitoring service for mobile

devices, including algorithms for the reliable detection of net-

work conditions, user activity and video quality in real-time.

The proposed monitoring service allows the prediction of

video quality independent of the Mobile Video Broadcasting

Service (MBS) and could thus be used with any existing or

future streaming services. For the evaluation purposes in this

work, the proposed system is evaluated using Live Video

Upload (LiViU) [16] which features a live video upload and

composition framework for mobile devices.

The remainder of this paper is structured as follows: In

Section II we give a brief overview on some of the existing

MBSs and show their characteristics as well as technical

foundation. Section III introduces the model and architecture

of the monitoring service, while Section IV gives an overview

of LiViU. The evaluation is described and discussed in

Section V, and conclusions are presented in Section VI.

I I . B A C K G R O U N D A N D R E L AT E D W O R K

A. Recently Proposed MBS

The work of El Essaili et al. [2] investigates the uploading

of video when the scheduling in an LTE network can

be controlled. They propose a centralized quality-oriented

decision for the uplink transmission of client-side video,

which is controlled by the eNodeBs. In contrast to their

work, we focus on providing an efficient application layer

video uploading scheme, without direct control on lower layer

network components, by using active network measurements.

Seo et al. [8] discuss how Moving Pictures Expert Group

(MPEG) dynamic adaptive streaming over HTTP (DASH)

can be used for the upload of media by leveraging hypertext

transfer protocol (HTTP) POST requests to continuously

upload video segments. The proposed system achieves

transcoding and transmission of a 480p video with a start-up

delay of approximately the duration of one segment under

good Wireless Fidelity (WiFi) conditions.

Johansen et al. [4] propose a system designed to generate

video segments and upload them immediately in order to

generate a low-delay video streaming experience. The authors

report on dynamically adapting the bitrate of a video during



the streaming session, which is a sophisticated concept to

cope with under varying network conditions.

A recently proposed system by Siekkinen et al. [10] focuses

on a better uplink utilization using scalable video codec

(SVC) and thus adapting to changing network conditions.

Unfortunately, at this point there is no efficient implementa-

tion of this video encoding standard for mobile devices.

B. Mobile Video Upload Monitoring

In previous work, a concept for MBS-monitoring was

proposed [12], introducing the director concept for selecting

uploading video sources based on monitored information

such as bandwidth, activity, location and device shaking. By

selecting only devices that promise a good video quality

given their current context, video not offering a good-quality

stream does not have to be uploaded.

Richerzhagen et al. [6] employ a similar concept for source

selection in collaborative video upload. The proposed system

selects uploading sources based on derived data such as

the client’s network bandwidth, where unused nodes do not

upload video. Further, they suggest local network resource

sharing between nearby clients to address situations where

the upload capacity is insufficient for transmission of the

desired video source. The system’s performance has been

evaluated in a simulation, showing that the hybrid concepts

allow continuous playback for low bandwidth situations in

cases where direct upload strategies do not deliver such good

results.

A deployed monitoring system for live video upload was

analyzed by Stohr et al. [11]. The observed platform YouNow

collects various device and network related parameters (such

as connection type and provider) during live video upload.

Depending on the used network type, a significant variation

in the video bitrate could be seen, suggesting a variation of

the video quality based on the current connection context.

As the system does not allow video composition, a selection

between multiple source-streams is not addressed.

C. Mobile Video Composition

The proposed monitoring system for UGV is evaluated

in combination with LiViU [16] which is responsible for

live recording and upload of video streams from mobile

devices. Further, it allows for live video composition and

broadcasting [15].

Other composition systems have been proposed, as e.g.,

Engström et al. [3], considering video quality to compose a

video mix. It is a semi-automatic system and therefore not

considered for our work.

MoviMash [7] introduces an automatic composition, com-

bining a video quality metric with an analysis of video record-

ing degradations. The latter describe phenomena common in

user-generated video, caused by lack of skills of the recording

user or technical limitations of the recording device. Their

video composition algorithm combines video streams from

different sources, analyzes them and neglects those views in

which recording degradations occur.

Cricri et al. [1] show a first step towards replacing video

content analysis with mechanisms that leverage different

sensors in the recording devices to compose the video.

The advantage of such an approach lies especially in the

significantly reduced processing time. Cricri et al. solely

inspect the camera movement for composition decisions.

Thus, network related aspects, addressed in our work, are

not considered.

A sophisticated, formalized automatic composition is

introduced by Shrestha et al. [9] (see details in Section IV-C),

offering an algorithm using an objective quality function. It

maximizes the quality for music video clips, integrating the

completeness of the composed video, suitable cutting points,

length of the individual shots and diversity of views.

We leverage the approach by Shrestha et al. in our work

and extend it to be used in combination with ideas of Cricri

et al. to make decisions in real-time by not inspecting the

video itself, but by employing auxiliary metrics provided by

the monitoring service.

I I I . M O N I T O R I N G F R A M E W O R K

The key goal for the proposed Mobile Video Composition

(MVC) monitoring framework is the efficient measurement

and collection of client and network metrics to support

the selection and upload of live streams to a server, thus

allowing quality optimization of the live video. Ultimately,

the aim is to provide a better overall quality of experience

(QoE) for viewers of generated collaborative live streams

and to eliminate the upload of unused streams. Metrics in

four categories provide indicators for the expected QoE

of recorded streams and can be classified into: i) Static

parameters such as camera properties–they are only collected

and transmitted once to the server, at the time when a session

is initiated; ii) Activity-related dynamic metrics including

shake estimation and activity recognition–derived based on

device sensor information; iii) Network properties–measured

and compared with an estimation of the uploading bandwidth;

iv) Content relevance for a given Point of Interest (POI)–

derived based on the recording location. All non-static metrics

are periodically collected.

We will now introduce the system’s components and

architectural considerations beginning with the employed

messaging protocol.

A. Messaging Protocol

For messaging, an asynchronous client-server pattern1 was

implemented using JeroMQ. The process of establishing a

monitoring session is explained next.

First, the client sends a JoinInfo message to the server,

which includes static information about the device, such

1http://zguide.zeromq.org/page:all/#toc76

http://zguide.zeromq.org/page:all/#toc76


as the model and camera characteristics (megapixels, image

stabilization capabilities etc.), along with dynamic parameters,

including the current location. The server replies with a

JoinInfoAck message, which not only acknowledges the

receipt of the JoinInfo message, but also specifies an

update interval at which the device is to periodically send

information about the quality of service (QoS) parameters.

After that, the client prepares and sends such messages, which

include positioning information, shake-related data, presumed

activity that the holder of the device is currently performing,

and network information. The server may also request an

immediate update if more up-to-date data is required. At the

end, the client can gracefully quit by sending a LeaveInfo

message.

In addition to this messaging protocol, the server checks

the time of arrival of UpdateInfo messages from each

active device. If the maximum time between update intervals

is exceeded, the server assumes that the node has gone offline

and removes it as a potential stream producer.

B. Metrics

Information is collected on the device and sent to the

monitoring server with the specified periodicity. This includes

location data for the device, shaking, detected activities, the

network connection type. In addition, the server stores the

results of the recent upload bandwidth estimations. In the

following, we will describe the collection process for each

of these metrics in detail.

The shake detection algorithm is implemented using data

from the linear accelerometer of the device. The values from

the sensor are recorded along with a timestamp, and are

periodically sent to a shake detector. The shake detection

estimates whether there is shaking based on a predefined

threshold in the allowed deviations of the values. If shaking is

detected, its amplitude, duration, and velocity are calculated.

Information about the current user behavior, which poten-

tially impacts the quality of the recording, is based on the

activity detection implemented using Google Play Services.2

Possible detected attributes can be found in Table I.

With regard to the network connection, the first parameter

that the MBS Monitoring Framework records is the type

of network that the device uses. Devices connected to

WiFi or LTE networks are preferred over those using a

slower connection, given that such networks provide superior

streaming quality (see Table I).

Last, the available bandwidth is estimated using active

probing. The architecture allows implementing various

algorithms and reusing most common functionality used for

bandwidth estimation. This provided infrastructure includes

a control communication channel, which uses standard Java

TCP sockets, and a packet channel for UDP datagrams, which

is explained in detail in Section III-C.

2https://developers.google.com/android/guides/overview

C. Bandwidth Estimation

For bandwidth estimation, the WBest algorithm proposed

by Li et al. [5] was implemented, as it provides fast and

low-overhead estimates in a mobile context. In the process

of bandwidth detection, WBest first sends pairs of packets to

determine the effective capacity Ce, followed by several trains

of packets sent at the rate of the estimated effective capacity.

Afterwards, the achievable throughput R is calculated based

on the number of bytes divided by the packet dispersion, while

the achievable bandwidth A is derived by: A = Ce(2−Ce/R).
For a detailed description of the algorithm, we refer to the

authors’ original publication [5].

D. Recording Score

Indicator Weight Attributes Value

Activity 0.5 Still, Walking, Tilting,
In vehicle, other

5, 4, 3, 2, 1

Shaking 0.5 Yes/No 1, 5
Distance 1 x = Meters f(x) = −0.05x+3.7

Network 1
x = Bandwidth

f(x, y) = x/y ∗ 5
y = Video Bitrate

Network 1 WiFi, LTE, HSPAP,
3G, UMTS

5, 5, 3, 2, 1

Table I: Recording score parameters

In addition to storing the data acquired from the devices,

upon receiving an update message, the server triggers the

processing of the recording score based on the received

data. It takes into account parameters included in the most

recent update, as well as the initial join message for the

particular device to calculate a recording score for each

active device. The parameters can be factored with different

coefficients. The estimator accepts a location (POI) and a

required bitrate as initialization parameters, used to assign

scores for all devices currently connected to the orchestration

system. For the calculation of device location score, the

distance between the device (based on the GPS-location

contained in the join/update message) and the defined POI

is derived (great circle distance). In case this distance is

between 5 and 50m, the linear formula for a concert venue

is used, as specified in Table I [14]. For larger and smaller

distances, 1 and 5 are assigned as scores, respectively.

For the device activity score, we consider the results from

the shake estimation and activity detection mechanisms. If

shake is detected, the minimal score of 1 is factored in;

otherwise, the maximal grade of 5 is used. The activity

detection algorithm assigns a maximal score to Still devices,

and a minimal score when the detected activity is Running,

On bicycle or In Vehicle. For Walking and On foot a value

of 3 or 4 is assigned. The average of both indicators is the

overall device activity score.

Next, the device network score measures the current

network capabilities by assessing two possible scenarios.

It uses the bitrate of the video recording and assigns a

maximal score to devices that have an available bandwidth



equal or higher to the required one. For lower measurements,

the score is linearly scaled between 1 and 5. In case a

recent bandwidth estimate cannot be derived (e.g., due to

high channel fluctuation), is not yet available or is too old

(more than 60 seconds), the score is based on the network

context. If the devices are connected by Wi-Fi or LTE, a

score of 5 is assigned, while lower scores are assigned to

slower network technologies.

The sum of the weighted parameters is divided by the

sum of weights, resulting in a score in the range 1-5. An

overview of the indicators and weighting factored is given

in Table I.

E. Integration of the Monitoring Framework

The client-side functionality is packaged as an Android

service that can be started via an Intent. The information

about the connected devices is exposed by the server via

methods as well as through a REST API. In this way, the

framework can be easily used by other composition systems.

I V. T H E V I D E O R E C O R D I N G A P P L I C AT I O N :

L I V I U

LiViU [16] is an adaptive mobile video upload protocol

that can be used in conjunction with TCP or UDP. It is

quality-adaptive as it supports transcoding multiple video

representation in parallel on Android mobile devices. Also,

it enables adaptations in the scheduling mechanisms in order

to allow a video composition system to request video chunks.

Both concepts are depicted in Figure 1.

Figure 1: Overview on the concepts and mechanisms of LiViU.

A. Adaptive Video Upload

LiViU allows the creation of multiple video representations

in real-time. By generating different bitrate versions of a

video, it can ensure that the available bandwidth is utilized.

To do that, LiViU extends the media recording Application

Programming Interface (API) on Android phones to set up

different encoding threads. A realization is achieved, as the

hardware encoding of current smartphone generations can be

leveraged for transcoding videos. Each video frame recorded

is handed over to the video encoding thread. The graphics

rendering API of Android is used to run the transcoding on

a GPU of a mobile device. Therefore, each raw video frame

retrieved by the camera is converted into two-dimensional

texture, which is represented as a three-dimensional texture

if a set of frames is available. To access the GPU, the

OpenGLES library for mobile devices is used3, which allows

for a quick manipulation of the resolution and frame rate.

Each encoding thread operates on a copy of the texture

and manipulates it according to the desired frame rate and

resolution properties. The final step hands the texture buffer

to the respective video encoding object which leverages the

built-in hardware to encode the representation at the desired

bitrate. The resulting H.264/AVC raw video representations

are consecutively written to the device’s main memory.

A real-time capable video parsing service analyzes the

consecutively written video files and offers them to the

transmission functionality of LiViU. The complexity of

understanding when a switch can be conducted without any

artifacts on the receiver side is hidden within the parsing

service. Video chunks of the selected representation are

handed over to the LiViU transmission using a local socket

on a mobile device.

B. Adaptive Scheduling

LiViU can adapt between the different scheduling scheme:

push-based delivery of media messages and pull-based

retrieval of the same (see Figure 1). In this work, LiViU uses

solely a push-based delivery to allow a low-delay streaming at

minimal overhead. Yet, a switch between the two modes can

be triggered by the server, which stops the default push-based

delivery. The pull-based delivery of chunks is controlled by

the application on the receiver side, which can determine

when to request which media chunk.

C. Composition

Composition can be performed as an independent com-

ponent of the application. Generated streams are saved by

LiViU with a given deviceID and sessionID as files

on the server and can thus be used for further processing.

Currently, a Python-based system (using the moviePy library4)

is employed for an offline composition of video streams, as

detailed in the Section V.

V. E VA L U AT I O N

The prototype system is evaluated with the goal to compare

the performance of video composition with or without the

proposed monitoring service.

We recorded a dataset at five locations with multiple

devices. For each of the recording locations two composed

videos–one using the monitored data as a basis for compo-

sition and one with arbitrary switching between available

streams. In a second step, we employed user studies to derive

the user satisfaction for the composed video sequences.

3https://source.android.com/devices/graphics/arch-egl-opengl.html
4http://zulko.github.io/moviepy/



Location Device (Network) Movement Shaking Panning
(o: none; +: some; ++: intensive)

Location 1

1 (LTE 7.2Mbps) o o o
2 (3G 7.2Mbps) + ++ o
3 (WiFi 50Mbps) + + o
4 (WiFi 50Mbps) o o +
5 (LTE 50Mbps) + o o

Location 2

1 (LTE 7.2Mbps) + + o
2 (3G 7.2Mbps) o o +
3 (WiFi 50Mbps) + o o
4 (WiFi 50Mbps) o o o
5 (LTE 50Mbps) + ++ o

Location 3

1 (LTE 7.2Mbps) + o o
2 (3G 7.2Mbps) o o o
3 (WiFi 50Mbps) + ++ o
4 (WiFi 50Mbps) + + o
5 (LTE 50Mbps) o o +

Location 4

1 (LTE 7.2Mbps) + ++ o
2 (3G 7.2Mbps) + + o
3 (WiFi 50Mbps) o o +
4 (WiFi 50Mbps) + o o
5 (LTE 50Mbps) o o o

Location 5

1 (LTE 7.2Mbps) o o +
2 (3G 7.2Mbps) + o o
3 (WiFi 50Mbps) o o o
4 (WiFi 50Mbps) + ++ o
5 (LTE 50Mbps) + + o

Table II: Device context based on location

A. Evaluation Setup

As a basis for the evaluation, video sequences are simul-

taneously recorded with five Nexus 5 smartphones in five

different locations, each carried by one individual user. The

POI is configured in the beginning of each session.

Each device is operated by one recording user for a duration

of at least three minutes. During recording, monitoring data

is collected by the proposed framework and transmitted to

the server to be stored in a PostgreSQL database, along with

the streamed video sequences. Both services are hosted on

an Ubuntu 16.04 server connected to the university network

with a bandwidth of 1Gbps. The network connections of

the recording devices are configured so that a wide range

of connection attributes is achieved. This includes two

devices using a WiFi network hosted by a mobile access

point connected via LTE to the Internet with a maximum

upload bandwidth of 50Mbps. Two additional devices use

LTE directly with up to 7.2Mbps and 50Mbps bandwidth

respectively, as well as one device using a 3G connection

with up to 7.2Mbps. Each device maintains the network

settings while the user instructions are rotated for each round

corresponding to one location. An overview of the setup is

given in Table II.

We define the streaming quality in LiViU to a bitrate

of 3Mbps with 30 Frames per second (FPS), a video

resolution of 1280×720 pixels, encoded with H.264. During

recording, LiViU adapts the bitrate of the recording dynam-

ically between 3Mbps and 1.5Mbps based on bandwidth

measurements provided by the monitoring framework.

After recording, the transferred video sequences are used

to generate compositions of different streams according to the

collected scores. Here, each generated sequence has a duration

of 30 seconds, where switches between views are allowed

at most every 5 seconds. For each 5-second video segment,

the device with the highest achieved score is selected as the

video source. For comparison, we compose one corresponding

video sequence of the same total duration which randomly

selects one of the available views in 5-second intervals. Given

the slightly different start time of the recording sessions, we

normalize the time based on the arrival time of a streaming

session on the server. The 10 generated sequences (5 score

based, 5 random) are then evaluated in a crowd-sourcing study

using the Crowdee service. Here, both classes of generated

sequences are displayed to users on mobile devices, gathering

a subjective opinion score using a continuous slider to select

ratings between 1 and 5, thus evaluating the overall quality

of each sequence pair independently. The workers did not

know which sequence is based on scores. After each pair of

video sequences is shown to the workers, a forced choice

experiment is applied, asking which sequence they preferred.

In a last question, the workers are asked to identify objects

in the videos to verify a satisfactory level of attention during

the test.

B. Results

The user study is conducted with 20 individuals, with an av-

erage age of 27 years (12 male, 8 female). In Figure 2, Mean

Video ID % Score % Random JND unit

Location 1 88.9 11.1 1.7
Location 2 90 10 1.77
Location 3 66.7 33.3 0.65
Location 4 66.7 33.3 0.65
Location 5 78.9 21.1 1.18

Table III: Just Noticeable Difference experiment results.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

MOS

Location 1 - Random
Location 1 - Score

Location 2 - Random
Location 2 - Score

Location 3 - Random
Location 3 - Score

Location 4 - Random
Location 4 - Score

Location 5 - Random
Location 5 - Score

Figure 2: MOS by location

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

MOS

All Locations - Random
All Locations - Score

Figure 3: Overall MOS



1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Score

Activity score
Distance score
Network score

Weighted score

Figure 4: Comparison of generated scores for video selection

Opinion Scores (MOSs) are shown for each of the 5 recording

locations. The entire spectrum of MOSs can be observed,

indicating heterogeneous quality and user preferences in both

random and score-based compositions. For each location,

the MOS value for score-based compositions outperforms

the random compositions. However, the overall difference

in mean values strongly depends on the recording location.

For location 3 and 4 the confidence intervals indicate a wide

spectrum of results, and no statistically significant preference

for score-based vs. randomly selected compositions can be

seen. Yet, there is a significantly better score for location 1,

4 and 5. A similar trend can be observed for the summarized

results including the results for all recording locations, as

shown in Figure 3. Here, the score-based compositions show

a higher mean, with both indicators showing a high standard

deviation of roughly 0.5 on the MOS scale, indicating the high

subjective variance in preferences of users, with a significant

preference towards score-based compositions. The results for

the Just Noticeable Difference (JND)-based forced choice

experiments, as proposed by Watson et al. [13], in Table III

show that 3 out of 5 score-based compositions are significantly

better (> 75%; JND > 1). This result verifies the trend seen

on the MOS based results.

Next, in Figure 4 we show the distribution of the metrics

used as the basis for the score-based video composition. It

can be observed that the overall weighted score is mostly

distributed around a mean of 3.5, whereas larger differences

in the single indicators exist. The network score is never

lower than 3 showing that results from the performed active

measurements exceed the required bitrate for video upload.

The distance score shows very low values overall, indicating

in some cases imprecise location estimates or a high distance

of the devices from the POI. Last, the activity score shows

a wider spectrum of values, which is to be expected given

the range of disruptive actions performed by the recording

users, as shown in Table I.

V I . C O N C L U S I O N S A N D F U T U R E W O R K

In this work, we propose a system for live upload and

composition of UGV based on measuring device context

information. We introduced a practical system implementa-

tion that was evaluated and tested in a crowd-sourced user

study. In particular, activity recognition and active bandwidth

estimation were included as a novel concept to support mobile

live video upload from multiple sources.

Using the created datasets, we show that a higher mean

QoE can be achieved when selecting video streams based

on network-, activity-, and location-based indicators, without

analyzing the video content directly. This allows the selection

of only those devices that are used for the final view in a

composed video stream, minimizing the overall data that

needs to be uploaded by all participating devices.
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