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Absh-act-Network calculus has proven as a valuable and 
versatile methodology for worst-case analysis of communication 
networks. One issue in which it is still lacking is the treatment of 
aggregate multiplexing, in particular if the FlFO property cannot 
be assumed wlien Hows are merged. In this paper, we address 
tlie problem of bounding the delay of individual traffic Hows in 
feed-forward networks under arbitrary multiplexing. Somewhat 
surprisingly, we tind that direct application ui' netwurk calculus 
results in loose bounds cven in seemingly simple scenarios. The 
reasons for this "failure" of network calculus are discussed in 
detail and a method to arrive at  tight delay bounds for arbitrary 
(aggregate) multiplexing is presented. This mcthod is based on 
the solution of an optimization problem. For the special case of 
sink-tree networks tliis optimization problem is solved explicitly, 
thus arriving at  a closed-form exprcssion for the delay bound. 
Numerical experimcnts illustrate that in sink-tree networks the 
improvement over bounds bascd on direct application of network 
calculus can be considerable. 

Index Terms-Performance Evaluation, Performance Bounds, 
Network Calculus, Fced-forward Networks, Arbitrary Multiplex- 
ing. 

Network calculus is a min-plus system theory for deter- 
ministic queuing Systems which builds on the calculus for 
network delay in [I], [2]. The important concept of service 
curve was introduced in [3]-[7]. The service curve based 
approach facilitates the efficient analysis of tandem queues 
where a linear scaling of performance bounds in the number 
of  traversed queues is achieved as elaborated in [8] and also 
referred to as pay bursts only once phenomenon in [9]. A 
detailed treatment of min-plus algebra and of network calculus 
can be found in [I 01 and [9], [I I], respectively. 

Network calculus has found numerous applications, most 
prominently in the Internet's Quality of Service (QoS) pro- 
posals lntServ and DiffServ, but also in other scenarios as, 
for example, wireless sensor networks [12], [13], switched 
Ethernets [14], Systems-on-Chip (SoC) [15], or even to speed- 
up simulations [16]. Hence, besides queueing theory it has 
established as a valuable methodology. 

However, as  a relatively young theory, compared to e.g. tra- 
ditional queueing theory, there is also a number of challenges 
network calculus still has to master. To name a few: recently 
there has been much interest and Progress with respect to 
stochastic extensions (see [8], [17], [18] for recent advances); 
tool Support for network calculus has been addressed by 
[19], [20] and brings about new interesting perspectives. A 
very tough challenge is also found in the treatment of non- 
tandem topologies with aggregate multiplexing of multiple 

llows. Whilc Lhis has bccn addressed i'rom thc bcginning 121, 
there are still many Open issues. For aggregate multiplexing in 
general network topologies there is a very fundamental issue 
ahout the circumstances under which a finite delay hound 
exists at all [21], [22]. In [23] a sufficient condition for stability 
in general network topologies and an explicit delay bound are 
given. Extensions of this approach are provided by [24] and 
[25]. Yet, for larger networks this puts a heavy constraint on 
the utilization of the network since the maximum allowable 
utilization is inversely proportional to the network diameter. 
The problems in the analysis of general topologies arise due 
to cyclic dependencies between flows and the consequent 
difficulties in bounding their network-intemal burstiness. Im- 
plementing special (fair) aggregation schemes wherever flows 
are merging can alleviate the utilization problem but requires 
special actions on the data path [26], [27]. A class of topolo- 
gies which avoids those problems are feed-forward networks, 
which are known to be stable for all utilizations 5 1 [2]. In 
this paper, we focus on this class of networks. While many 
networks are obviously not feed-forward, many important 
instances like switched networks, wireless sensor networks, or 
MPLS networks with multipoint-to-point labe1 switched paths 
are, or can be made feed-forward by using, e.g., the turn- 
prohibition algorithm [28]. 

In feed-forward networks, there has been some work on 
aggregate multiplexing recently: [29] treats the case of feed- 
forward networks under FlFO multiplexing for token-bucket 
constrained flows and rate-latency servers. The left-over ser- 
vice curve for a flow of interest is derived. It is again of the 
rate-latency type with minimally possible latency. [30] shows 
that this does not result in a tight delay bound, and derives 
tight delay bounds under knowledge about the arrival curve of 
ihe Ilow oi' interest for the special case oi' sink-irees and, again, 
undcr tokcn buckct constraincd llows and rate-latcncy scrvcrs. 
Another work [31] also investigates sink-tree networks, but 
now undcr dual tokcn-huckct constraincd flows and constant 
rate servers, for which delay bounds are derived by summing 
per-node bounds, expectedly not arriving at tight bounds but 
reported as  being at least close under practical conditions. 

Besides being very specific with respect to traffic and 
server models, all of the above work assumes FlFO aggregate 
multiplexing. However in practice, as argued in [32], many 
devices cannot be accurately described by FIFO because 
packets arriving at the output queue from different input 
ports may experience different delays when traversing a node. 
This is due to the fact that many networking devices like 
routers are implemented using input-output buffered crossbars 
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andlor multistage interconnections between input and output 
ports. Hence, packet reordering on the aggregate level is a 
frequent event (not so on the flow level) and should not 
be neglected in modelling. Therefore, in this work we drop 
the FIFO multiplexing assumption and make essentially no 
assumptions on the way aggregates are multiplexed at Servers, 
i.e. we assume arbitrary multiplexing a.k.a general or blind 
multiplexing [I], [9]. On the level oi' a single flow, however, 
we still assume FIFO. This assumption is sometimes called 
FiFO-pcr-microflow [33] or locally FCFS multiplcxing [I ] .  

There is actually little work on arbitrary multiplexing: Some 
results are reported in [9] (see Section II), and there is some 
work on the burstiness increase due to arbitrary multiplexing 
at a single node [34]. In previous work [I91 related to network 
calculus tool Support, we have proposed and implemented a 
number of network calculus analysis methods for arbitrary 
multiplexing feed-forward networks. Some of these are pre- 
sented in Section 111, but as will be demonstrated, they were 
not the "final word on this topic". While not addressing 
aggregate multiplexing, we also mention [33] here, because 
it demonstrates that releasing FIFO assumptions can lead to 
interesting and somewhat unexpected phenomena, similar to 
what we will be dealing with later On. 

The goal of our work is to calculate tight delay bounds in 
feed-forward networks of arbitrary multiplexers. With respect 
to traffic and server models we address a more general case 
than previous work on FIFO multiplexing, in particular we 
assume piecewise linear concave arrival curves and convex 
service curves, which encompass the majority of practical 
traffic and server models. 

In essence, the main contributions of this paper are 
exposition of a fundamental problem of network calculus 
to achieve tight delay bounds in any non-FIFO aggregate 
multiplexing (+Section 111); 
a novel method to achieve tight delay bounds in feed- 
forward networks under arbitrary multiplexing (+Section 
IV); 
closed-form expressions for tight delay bounds in sink- 
tree networks (-Section V). 

As network calculus is built around the notion of cum~ilative 
functions for input and output Rows of data, thc set of 
real-valued, non-negative, and wide-sense increasing functions 
passing through the origin plays a major role: 

In particular, the input function F ( t )  and the output function 
F1(t ) ,  which cumulatively count the number of bits that are 
input to, respectively output from, a system S, are in F. 
Throughout the paper, we assume in- and output functions to 
be continuous in time and space. Note that this is not a general 
limitation as there exist transformations between discrete and 
continuous time models [9]. 

Dejnition I: (Min-plus Convolution and Deconvolution) 
The min-plus convolution respectively deconvolution of two 
functions f and g are defined to be 

It can be shown that the triple (F, A,  B), where A denotes 
the minimum operator (which ought to be taken pointwise for 
functions), constitutes a dioid [9]. Also, the min-plus convo- 
lution is a linear operator on the dioid (R U {+CO), A,  +), 
whereas the min-plus deconvolution is not. These algebraic 
characteristics result in a number of rules [hat apply to those 
Operators, many of which can be found in [9], [I I]. 

Let us now turn to the performance characteristics of Rows 
which can be bounded by network calculus means: 

Definition 2: (Backlog and Delay) Assume a Row with 
input function F that traverses a system S resulting in the 
output function F'. The backlog of the flow at time t  is defined 
as 

~ ( t )  = F ( t )  - F1(t )  

Assuming FIFO delivery, the virrual delay for a bit input at 
time t  is defined as 

d( t )  = inf {T 2 0  : F ( t )  5 F1(t  + T ) }  

Next, the arrival and departure processes specified by input 
and output functions are bounded based on the central network 
calculus concepts of arrival and service curves: 

Definition 3: (Arrival Curve) Given a Row with input func- 
tion F a function cr E F is an arrival curve for F iff 

Vt ,  s 2 0,  s  < t  : F ( t )  - F ( t  - s )  5 a ( s )  H F = F 8 (Y 

A typical example of an arrival curve is given by an affine 
arrival curve yr,b (t) = b + r t ,  t > 0  and yr,b ( t )  = 0,  t 5 0  
which corresponds to token-bucket traffic regulation. 

Dejni~ion 4: (Service Curve) If the service provided by a 
system S for a given input function F results in an output 
fiinction F' we say that S offers a service curve ß iff 

A typical example of a service curve is given by a so- 
called rate-latency function T ( t )  = R [t - T]', where the 
[.]+operator is defined as [X]'' = X V 0, and V denotes the 
maximum opcrator. A numbcr of systcms Sulfill, howcvcr, a 
strictcr dcfinition of service curvc [9 ] ,  which is particularly 
useful as it permits certain derivations that are not feasible 
under the more general minimum service curve model. 

Definition 5: (Strict Service Curve) Let ß E F. System 
S offers a strict service curve ß to a flow if, dunng any 
backlogged period of duration U the output of the flow is at 
least equal to ß(u) .  
Note that any strict service curve is also a service curve, but 
not the other way around. Many schedulers offer strict service 
curves, for example most of the generalized processor sharing- 
emiilating schedulers offer a strict service curve of the rate- 
latency type. Strict service curves will play a crucial role in 
this paper, since they, in contrast to service curves, allow to 
bound the maximum b-klogged period of a system. More 
specilically, that bound d is given as the non-zero intersection 
point between arrival and service curve, i.e. cr ((9 = ,ß (4. 

Using those concepts it is possible to derive right perfor- 
mance bounds on backlog, (virtual) delay and output: 

Theorem I: (Performance Bounds) Consider a system S 
that offers a service curve ß. Assume a flow F traversing the 
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system has an arrival curve a. Then we obtain the following 
performaiice bounds: 
Backlog: V t  : x ( t )  5 ( a  0 ß) ( 0 )  =: v(a,  ß) 
Delay: Vt : d ( t )  5 inf { t  2 0  : (a  0 B)  ( - t )  5 0 )  =: h (a, ß) 
Output (arrival curve cr' for F'): a' =a 0 ß 
Note that, if FIFO cannot be assumed, the bound on the 
maximum backlogged period under the assumption of a strict 
service curve can be used as an alternative delay bound instead 
of the horizontal deviation h (a,  P). 

One of the strengest results of network calculus (albeit 
being a simple consequence of the associativity of B) is the 
concatenation theorem that enables us to investigate tandems 
of systems as if they were single systems: 

Theorem 2: (Concatenation Theorem for Tandem Systems) 
Consider a flow that traverses a tandem of systems S i  and S2 .  
Assume that Si  offers a service curve ßi, i = 1 , 2  to the flow. 
Then the concatenation of the two systems offers a service 
curve ß1 8 ß2 to the flow. 
Using the concatenation theorem, it is ensured that an end- 
to-end analysis of a tandem of Servers still achieves tight 
performance bounds, which in general is not the case for an 
iterative per-node application of Theorem 1. 

So far we have only covered the single flow case, the next 
result factors in the existence of other interfering flows. In 
particular, it states the minimum service curve available to a 
ilow at a single node undcr cross-trafiic Iiom olher llows at 
that node. 

Theorem 3: (Left-over Service Curve under Arbitrary Mul- 
tiplexing) Consider a node multiplexing two flows 1 and 2 
in arbitrary order. Assume that ihe node guarantees a strict 
minimum service curve ß to the aggregate of the two flows. 
Assume that flow 2 has 0 2  as an arrival curve. Then 

is a service curve for flow 1 if ßL E F, often also called the 
lefr-over service curve for the j o w  of interest. Note that we 
require the service curve to be strict. In [9], an example is 
given showing that the theorem otherwise would not hold. 

In this section, several methods of computing delay bounds 
in feed-forward networks of arbitrary multiplexers are pre- 
sented. All of them are based on the direct application of 
well-known network calculus results. 

A. Network Calculus Based Bounding Methods 

The methods we present in the following compute delay 
hounds for a certain flow of interest. In order to do so all of 
them require to compute the network-internal flow constraints 
of each flow that is interfering with the flow of interest. 
This can be easily done in a feed-forward network by the 
application of the output bound from Theorem 1 and noting 
that the multiplexing of flows is performed by their addition. 

For ease of exposition we now present the different al- 
ternatives in probably the most simple conceivable example 
scenario as illustrated in Figure 1. Despite its simplicity this 
scenario will already exhibit that any of the presented network 
calculus based methods runs into problems with respect to 
achieving tight delay bounds. 

1 )  Total Flow Analysis (TFA): The first bounding method is 
probably the most direct application of basic network calculus 
results and is already mentioned in [2] to show that feed- 
forward networks are stable. The idea of this method is to 
compute per-node delay bounds lor the total tralfic ol'l'ered 
to the respective node, which is why it has been called total 
flow analysis (TFA), and thcn sum thosc up for thc cnd-to-cnd 
delay bound of the flow of interest. Under the assumption of 
arbitrary multiplexing this means the per-node delay bounds 
have to be computed as the maximum busy periods at the 
nodes because the total flow must be considered to be non- 
FIFO. 

For the example scenario in Figure I ,  the TFA delay bound 
for flow 1 can be computed as follows 

2)  Separated Flow Analysis (SFA): An obvious weakness 
of the TFA is that it makes no use of the concatenation 
theorem, which is known to provide a clear advantage over 
additive per-node bounds. To this end, instead of treating 
the total flow, the next method first separates the service 
provided to the llow oT interest at each node, which is why 
i t  is called separated flow analysis (SFA). bel'ore applying 
the concatenation theorem to the tandem of left-over service 
curves. The separation is based on Theorem 3 for the left-over 
service at a single node under arbitrary multiplexing. Note 
that in contrast to the TFA, the horizontal deviation can be 
used for the calculation of the end-to-end delay bound because 
each flow is assumed to be served in FIFO order (FIFO-per- 
microflow). 

For the example scenario in Figure I, the SFA delay bound 
for flow 1 can be computed as follows 

dsFA = h ( a l ,  [ ß i  - a2]* 8 [ßi - ( 0 2  0 BI)]+) (1) 

3) TFA vs. SFA: In comparison between TFA and SFA, SFA 
is a clear winner due to the application of the concatenation 
theorem. Let us illustrate this fact by setting ai = -yri,bi and 
ßi = ß R i , ~ .  for i = 1 , 2  in the example scenario of Figure 1. 
We obtain the following delay bounds 

8 F A  = + + 1>1+1>2+(r1+rz)T1 + ~ I + ~ ~ + ( ~ I + T Z ) ( T I + T Z )  
R1 -r l  -r2 R2 -7.1 -7.2 

S f A  . 
It can be easily checked that d T f A  2 d  is always true 

and thus the use of SFA is strictly superior to TFA. However, 
taking a closer look at Equation (1) it becomes clear that d S f A  
cannot be a tight delay bound since the service at node 1 would 
be required to be lazy and infinitely fast after the latency at 
the same time, which can obviously not be the case for any 
sample path of the system. This observation is also exhibited 

Figure 1 .  Simple iwo nodes, iwo fiows scenario. 
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in the Fact that the burst term bz appears twice in d S F A ,  i.e. 
multiplexing with the interfering flow is paid twice. However, 
the fiow of interest cannot be overtaken by the interfenng 
flow's burst twice. 

4 )  Pay Multiplexing Only Once SFA (PMOO-SFA): A prob- 
lem with the SFA is the order in which it applies the arbitrary 
multiplexing theorem and the min-plus convolution. In fact, 
there is some choice: in the example scenario from Figure 
1, we could also first take the convolution of the two nodal 
service curves and afterwards apply the arbitrary multiplexing 
to the resulting single node system. In general, the idea is to 
concatenate single Systems first, in order to be able to pay 
for the multiplexing with interfering Jlows only once, which 
is why this method is called pay multiplexing only once SFA 
(PMOO-SFA). 

Spccifically in  the cxamplc scenario from Figurc 1, a dclay 
bound can be calculated as' 

Instantiating ai = -yr,,hi and ßi = ßRi,Ti for i = 1,2 in the 
example scenario, we obtain 

So, as can be observed, based on a clever application 
order of convolution and the arbitrary multiplexing result, the 
multiplcxing with flow 2 is paid only once (b2 appears only 

P M 0 0  
once). Actually, d has an intuitive form, with the sum of 
the nodal latencies and each burst term as well as the burstiness 
increases at each of the nodes paid at the minimum residual 
rate of the nodes. So, PMOO-SFA seems to constitute a nice 
application of the basic network calculus results. In fact, we 
provided a generalization of this method in [19], where the 
main issue is dealing with overlapping interference scenarios 
as depicted for the canonical example in Figure 2 (on page 4). 

B. Nenvork Calculus Crisis: Convolution Considered Harmful 

So far, everything seems to turn out well. However, taking 
a closer look at the delay bounds for the example scenario for 
SFA and PMOO-SFA reveals a startling phenomenon: SFA 
can outperform PMOO-SFA! In particular, let b2 = O,Ti = 0 
then we obtain 

which means that the differente 

i.e. the improvement of SFA over PMOO-SFA, in this special 
case, can be made arbitrarily large by e.g. increasing the rate 
at the second Server R2. While it is only a special case and 
in many cases the PMOO-SFA is superior to the SFA (set for 
example Tz = 0 and ihe PMOO-SFA always outperforms the 
SFA), it nevertheless shows that the PMOO-SFA cannot give 
a tight delay bound in all scenarios. So the question is what 
goes wrong here, why can we not find a tight bound for this 

'Note thai since ßi @3 ß2 is not necessarily strict. this calculation may not 
safcly hc done at ihis stagc; howcvcr it  will he justified hy nur latcr findings. 

simple scenario by the application of basic network calculus 
results? 

With the SFA, it is clear as discussed above that it does 
not give a tight bound because it does not correspond to 
a realizable sample path of the system. Yet, the PMOO- 
SFA seems like a perfect application of network calculus. 
In fact, we encounter in this seemingly simple and innocent 
looking scenario a case where the application of the min-plus 
convolution is detrimental with respect to finding tight bounds. 
This can be explained physically when carefully examining 
the PMOO-SFA delay bound in Equation (2): the burstiness 
increase of flow 2 due to the latency of node 2, r2T2. is 
paid at the minimum of the residual rates of node 1 and 
2. However, that burstiness increase can only be experienced 
at node 2 and never at node 1, so the PMOO-SFA delay 
bound cannot capture this physical reality. The convolution 
effectively "swallows" the topological information that the 
burstiness increase due to node 2 can only be paid at node 2 (or 
subsequent nodes in larger scenarios), but not at node 1. The 
min-plus convolution necessarily is blind for such topological 
dciails bccausc it is by dciinition commutativc and ihus ihc 
order of nodes cannot matter to it when concatenating them. 

In this simple example, a very fundamental problem with 
the direct application of basic network calculus results is 
exhibited, because the algebraic structure of network calculus 
being a dioid breaks down here since commutativity is lost. 
Any aggregate multiplexing that is non-FIFO, even if more 
knowledge than the arbitrary multiplexing assumption is given, 
mns into this problem and can thus not be dealt with in the 
conventional framework of network calculus. The physical 
reason for this is the following: Without FIFO, there is the 
possibility at any given node that data from interfering flows 
which the flow of interest has not yet encountered on previous 
nodes will overtake the flow of interest, and will thus result in 
a burstiness increase of the interfering traffic. This burstiness 
increase must be accounted for at servers downstream starting 
from the point where it overtook the flow of interest but not 
on servers upstream from this point. 

IV. OPTIMIZATION-BASED BOUNDING METHOD 

In this section, we present an alternative method to compute 
delay bounds in feed-forward networks of arbitrary multiplex- 
ing nodes. This method consists of formulating an optimiza- 
tion problem based on the knowledge about arrival constraints 
of interfering traffic fiows and service guarantees provided 
by each node. Since the formulation of the general feed- 
forward network case is notationally heavy, we present the 
meihod for the canonical example of overlapping interference 
displayed in Figure 2. In fact, this example captures all of 
the main difficulties for the application of the optimization- 
based bounding method (its generalization can be found in 
[35]). The optimization problem is Set up under general arrival 

Figure 2. Overlapping interference scenario. 
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and strict service curves and solved for the case of token- in order to rewrite the previous inequations as 
bucket constrained flows and rate-latency Servers. Next we 

( 1 )  dernonstrate that the solution to the optirnization problern F,(') ( t , )  - F;') ( t o )  = a2 ( t l  - t o )  - s2 
arrives at a righr bound by providing a sarnple path in which ( 1 )  
the delay bound is actually erperienced. At the end of this F;2) ( t 2 )  - F;') ( t l )  a2 ( t2  - t o )  - a2 (li - t o )  + S2 

( 2 )  section, -we prove a resuli on' how to cornpute a left-over F : ~ )  ( t 2 )  - F:') ( t l )  = a3 (t2 - t l )  - s3 
service curve under piece-wise linear concave arrival and (3 )  ( 2 )  

convex service curves, a very relevant case in practice. F3 (t3) - (t2) I a3 (t3 - t i )  - a3 (t2 - t i )  + $3 

A. The Case of Overlapping Intetference 

Let us assume the canonical exarnple scenario of overlap- 
ping interference frorn Figure 2 with the respective denota- 
tions. Furthermore, assurne that the nodes provide strict service 
CUNeS ßk,  k = 1,2 ,3 .  

Assurne 0  < to I t l  5 t2  t3 such that tk-l is the Start 
of the last backlogged period at node k before tk. Frorn the 
strict service curve property at each of the nodes it is ensured 
that for k = 1 , 2 , 3  

where denotes the total flow entering node k + 1. Due 
to the wide-sense increasing nature of the input and output 
functions and since F,!" ( t k )  2 ( t k - l )  = ( t k - l )  

( k f  for the selected tk such that Fi ( t k )  - ( tk - , )  2. 0  
this can be rewritten as 

F!~' ( t 3 )  - ( t 2 )  + 

- (t2) - ( t l ) ) ] +  
( 1 )  F, ( t l )  - F?) (to) + > ,,ßi ( t i  - to) - (F;") (t1) -F,('' ( to) )]  

These can be added up so that 

( t 3 )  - F:') ( to)  

> [ß3 (t3 - t2) - (t3) -F:') ( t2) ) l t  

+ [ ß 2  (t2 - t l )  - (t2) - 0 1 ) )  

- ( t2)  - ( t l ) ) ]  + 
+ 

+ [ ß l  ( t l  - t0) - ( F i l )  ( t l )  - ( to ) ) ]  

From the arrival constraints we know that 

( 1 )  
F2 ( t l )  - F;') (to) I F;') ( t l )  - F;') (to) 5 cr2 ( t l  - t o )  

( 2 )  ( 0 )  F2 (t2)  - F2 (to) I F;') (t2) - (to) l 02 (t2 - t O )  
( t2)  - Fi1) ( t i )  < FJ1)  ( t2)  - Fil )  ( t l )  I a3 ( t2  - t l )  

Fi3' ( t 3 )  - FJ1) ( t l )  I F i l )  ( t 3 )  - Fl1) ( t l )  5 a 3  (t3 - t l )  

Now Comes an important step: we introduce slack variables 

where 0 5 s t )  5 N I  ( t l  - t O )  and 0  1 s f )  I N J  (t2 - t l ) .  
The slack variables sjk) have the followine inter~retation: " 

they account for how rnuch of the accurnulated burstiness 
of the respective flow i is transferred frorn node k to Lhe 
next node. As such they will be the decision variables for 
the optimization problern to be solved, because the whole 
bounding problern is about where each flow's burstiness is to 
be paid. Taking it all together and using the logical condition 
Cl = (0 I to 5 t l  I t2 I t 3 )  we arrive at 

' + [ß2 (t2 - t l )  - ( 0 3  (t2 - t l )  - P) 
- ( D 2  ( t2 - to) - a2 (t l  - to) + s t ) ) ] +  

+ [ßl ( t l  - to) - (a2 ( t l  - t0) - P)]  +J  

Thus we have to solve a constrained optimization problern 
in order to find the left-over service curve of flow 1 with which 
we can then compute the delay bound according to Theorem I 
in the conventional rnanner. The optimization problern cannot 
be solved in the general setting ass~irned so far. When setting 
ßi = ßRi,Ti and c ~ i  = yri,bi, i = 1,2 ,3 ,  we proceed under the 
logical condition 

(for details on this condition see the appendix) as follows: 

r3~3+s(') 
t3 - t2 - T3 - R3-,.: 

C l ,  C2 I + 
L J 

~Q+TZTI -.P] 
+ ) t i  - to - T I  - R ~ - ~ ~  

= ((R1 - 7 2 )  A (R2 - 7-2 - 7-3) A (R3 - r 3 ) ) ~  

inf { [t3 - to - (Tl + Tz  + T3)  - '"2: :I) 
C2 
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Hence, to find a closed form for the left-over service curve 
is equivalent to solving the following optimization problem: 

subject to C 2 .  This constitutes a simple linear program that can 
be solved easily when the parameters are given. The general 
solution of this problem depends on the relations between the 

1 residual rates at the nodes. With A := 1 - - Ri-rz Rz -PZ-P~ '  
1 B : = L - -  the solution vector 

R2-rz-r3 R3 - r3*andC:=& 
for the slack variables (sf), sf)) is obtained as 

From this the left-over (1.0.) service curve for flow 1 can be 
given. We state it for the last case (A > 0, B < 0, -CB  > A): 

with 

This case corresponds to a situation where R1 - T Z  < Ra - 
r2 - r3 (A > 0) and R2 - r2 - 2 R3 - 7-3 ( B  5 0 )  
and 7-3 > (R~Rb!R3 ( -CB > A). It is interesting because 
it constitues a case where the burst of flow 2 is not paid at 
node I, although node I's residual service is slower than that 
for node 2. Instead it is paid at node 2, because its effect of 
increasing the burstiness of flow 3, which is then paid at node 
3, is stronger than if it had been paid ai node 1. This shows 
that for some scenarios the delay bound can depend on fairly 
contrived conditions on the parameters of the scenario. 

Setting F3 = 0 and ß3 = +W in the overlapping inter- 
ference scenario results in the simple example scenario from 
Section 1U. Hcrc, thc left-ovcr servicc curvc for flow 1 and 
the corresponding delay bound are 

The burstiness increase due to node 2 (r2T2) is now 
correctly accounted for at node 2 instead of node I as for 
the PMOO-SFA. At the Same time the burst terms are only 
accounted for once, thus the P M 0 0  gain is still retained. 

B. Tightness of Delay Bound 

Using the optirnization-based method to find the left-over 
service curve for a flow of interest actually achieves a tight 
delay bound. Let us illustrate this for the interesting case 
treated in the previous subsection (A > 0, B < 0, - C B  > A). 
The other cases can be treated similarly, but are simpler. 
Assume the left-over service curve in Equation (3) is tight, 
i.e. it is the largest service curve (for all interval lengths) that 
can be given to the flow of interest. Then the delay bound can 
be easily Seen to be tight from the tightness of the delay bound 
in a simple single node system as mentioned in Section 11 for 
Theorem I .  Hence, it has to be shown that the left-over service 
curve in Equation (3) is tight. First we show the tightness of 
the latency, i.e. there is actually a sample path such that the 
system offers no service to the flow of interest for the duration 
of the latency: 

We track a specific bit of flow I (the flow of interest), called 
the bit-under-obsewation (b-U-o), which arrives at node 1 at 
time to, and create a worst-case sample path for the time until 
lhis bit leavcs nodc 3. This constitues ihc latcncy h r  the llow 
of interest. 

All interfenng flows are assumed to be constantly claiming 
their sustained rates ri, however when they burst will be 
detailed below. Similarlv, when the servers take their latencies 
is given below. Note [hat not all the servers are lazy, i.e. some 
provide more than their sewice curves ensure (see 2) below). 
In fact, otherwise the worst-case sample path with respect to 
the latency would not be attained. 

I) At time to: node 1 takes its latency T l ;  flow 2 hursts. 
2) At time t l  = to + T l :  node 1 starts serving infinitely 

fast, thus the backlog of fiow 2, b2 + r2T1, and the b- 
U-o are passed on to node 2; node 2 immediately takes 
its latency; flow 3 bursts. 

3) At time t2 = t l  +T2: node 2 starts serving flow 2 at the 
minimal rate R2 with strict riority over flow 3; flow 2 
has a backlog at node 2 of x2 '  ( t2 )  = b2+r2 (Tl + T2). 

4) At time t3 = t2 + 1;2(:12): llow 3 siarts io be served 
by node 2 with strict prionty over flow 1; flow 3 has a 

backlog at node 2 of rf) ( t3 )  = b3 + r3T2 + r3x2)(12). R z - T ~  I 

at the sarne time bits from flow 2 amve at rate r2 and 
are still served with pnority over flow 3, hence reducing 
the service rate for flow 3 to R2 - T Z .  

x(2'(t3) : the b-U-o leaves node 5) At time t4 = t3 + R2Tr2-r3 
2 and is passed on to node 3; node 3 takes its la- 
tency; flow 3 has a backlog at node 3 of x,i3' ( t 4 )  = 

X(2)(13)  (R2 - 7-2 - R3) R23rz-P3. Note that B 5 0 implies 
R2 - 1-2 2 R3 and thus a backlog for flow 3 builds 
up at node 3. 

6) At time t5 = t4 + T3: fiow 3 is continued to be served 
by node 3 with strict prionty over flow 1;  flow 3 has a 
backlog of X?) (t5) = r3T3 + 23) ( t4 ) .  

7) At time t6 = t5 + $2: the b-U-o leaves node 3. 
This sample path is also illustrated in Figure 3. The latency 
for the b-11-0 ean thiis be computed as 
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b3+v3T2+r3 (W) 
r 3 T 3 + ( R z - n - R 3 )  R ~ - P ~ - P ~  

service curve can only become smaller. For the service curve + 
R3 -73 arguments ßi, if any becomes larger, then the left-over service 

This expression can be checked to be equal to T'.". and thus 
the latency of the left-over service curve is shown to be tight 
because it is attained for the above described sample path. 

For a time interval longer than the latency, t > T'.'., 
the service curve can be seen to be tight by considering the 
following sample path: During a period of length t - T'.". 
each interfering flow creates traffic according to its sustained 
rate. This is followed by a period of length for which 
the sample path is the one described above to illustrate the 
tightness of the latency. Note that it  is important to take 
the outage time of the service for tlie flow of interest (the 
latency of the left-over service curve) at the end of the interval. 
Otherwise, if  for example the last server is not the bottleneck 
server, this server could play out buffered data faster than at the 
minimum residual rate over all nodes, resulting in a seemingly 
larger service curve. Yet, this would not constitute the worst- 
case sample path. 

C. Generalization to Piecewise Linear Curves 
Based on the method presented in the previous subsections, 

we can compute delay bounds for the case of token-bucket 
constrained interfenng flows and rate-latency Servers. Now we 
provide a result that allows to generalize that method to the 
frequent case of piecewise linear concave arrival and convex 
service curves. 

Proposition I: Given piecewise linear concave arrival 
curves ai = Y ~ ~ ~ , , , ~  for each interfering flow i = 
1,.  . . ,n and piecewise linear convex strict service curves 
ßj = V ~ L ~  ß~~~ for each node j = 1,. . . , m on the path 
of the flow of interest, the left-over service curve for the flow 
of interest is given by 

where ß$l , ( l j l  are end-to-end left-over service curves for 
a specific combination of a single token bucket per interfering 
flow and a single rate-latency curve per node. 

Proof: Note that we can also view left-over service 
curves as functions ($,B) of the arrival curves of the 

\ I 
interScring llows as wcll as the scrvicc curves OS ihc nodes on 
thc path of thc flow of intcrcst. It should bc clcar that Icft- 
over service curves are wide-sense decreasing in their arrival 
curve arguments and wide-sense increasing in their service 
curve arguments. That means, if any of the arrival curves 
ai is substitued by a (strictly) larger one, then the left-over 

Figure 3. Worst-case sample path illustration. 

cuive can only become larger, too. 
Now we prove by a combination of stmctural induction on 

the given scenario and contradiction: 
Induction stari: For ni = mj = 1; i = 1,. . . , n; j = 

1,. . . , m the Statement in the proposition is tautological. 
lnduction siep: Assume the proposition to be correct for 

given ni and mj. Now suppose, at first for ni + 1 Equation 
(4) is wrong, i.e. 3t 2 0 such that 

None of the two can be the case because they would violate 
the wide-sense decreasing nature of the left-over service curve 
for the arrival curve arguments. Thus the proposition is also 
true for ni + 1. The induction step over the service curve 
arguments follows along similar lines. 
So, under the assumption of piecewise linear curves we now 
have to solve a set of linear programs and then compute the 
pointwise maximum of the service curves in this set. This 
can become pretty compute-intensive if the amount of linear 
Segments used to model arrival and service curves grows. 
In particular. the number of left-over service curves to be 
coiputed and thus the number of linear programs to be solved 
is ny=, n;Ll nimj. 

V. EXPLICIT DELAY BOUNDS FOR SINK TREES 
Using the optimization-based bounding method presented in 

the previous section, we derive explicit delay bounds for sink- 
tree networks in this section. Sink trees are a frequent special 
case of feed-forward networks. For example, MPLS networks 
use sink-tree aggregation of labe1 switched paths from one 
edge of a network to the other. Another example are wireless 
sensor networks, which also often organize their topoiogy as 
a sink-tree towards a base station collecting the data. 

While applying the optimization based method to general 
feed-forward networks is well possible if the Parameter values 
of arrival and service curves are given, i t  is hard to conceive 
that a closed-form solution for delay bounds under general 
arrival and service curves can be given. For sink-tree networks 
this is different: The optimization problem of finding the left- 
over service curve i'or a flow OS interest has a form (hat allows 
to solve it under a general setting of piecewise linear concave 
arrival and convex service curves (without instantiation of 
their parameters). For a comprehensive discussion of how the 
optimization problem is solved see [35], here we just state 
the result for the left-over service curve in the following 
proposition. The closed-form expression of the delay bound 
for a flow of interest then follows simply from the application 
of Theorem 1 by calculating the horizontal deviation between 
the flow's arrival curve and its left-over service curve. 

Proposition 2: Assume a sink-tree scenario as illustrated in 
Figure 4, note that the arrival curves ai for the interfering 
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flow of 
interest 

Figure 4. Sink-tree Scenario. 

flows can be calculated using the output bound from Theorem 
I. The left-over service curve for the flow of interest under 
piecewise linear concave arrival curves tri = Ak:,l ~ ~ ~ ~ , b ~ ~  

and convex stnct service curves ßi = ßRli ,ai  is given 
by n ni mi 

b k .  

~ f * 4 , 1 . { i i i  = C (T, + n ; i ( n „ - t ; = „ a )  
i=l 

The latency terms of the left-over service curve actually 
have an intuitive form: Each interfering flow's burst and 

Figure 5. All bounding methods compared at a uiilization o f  20%. 

its burstiness increases at subsequent nodes are paid at the Figure 6 .  PMOOSFA vs. tight bound at sevenl  utilizations. 
minimum residual rate server they actually traverse. This 
insight also means that if residuai rates are monotonicallv 
decreasing on the path of the flow of interest then PMOO- 
SFA actually becomes tight. Furthennore, note that the latency 90%, again for varying tree depths. The results are shown in 

terms, and therefore also the delay bound, scale quadratically Figure 6. As can be observed, the tight bound reacts pretty 

in the number of nodes the path of the flow of interest. mildly on higher utilizations, with an approximately linear 
increase of the delay bound when increasing the tree depth 

A. Nitmerical Experiments (the quadratic regime mentioned above only-shows for eien 

We choose a simple experimental setup with fully occupied larger tree depths), while the PMOO-SFA suffers badly from 

binary trees, where each node acts as a source of data. The higher utilizations and exhibits a steep super-linear increase in 

sources are token-bucket constrained with a sustained rate its bounds for increasing tree depths. 

of 10 Mbps and a bucket depth of 1 Mb. Each node offers 
a strict rate-latency service curve with a latency of 0.1 ms 
and the service rate dimensioned such that a certain target 
utilization is achieved. The server utilizations are varied over 
the experiments. All calculations have been performed using 
the DISCO Network Calculator [19]. 

In the first experiment we compare, under varying tree 
depths, all of the methods described in the paper: TFA, SFA, 
PMOO-SFA, and the optimization-based bounding method 
(denoted as TlGHT in the figures). The delay bounds for a 
leaf in the sink-tree under a utilization of 20% at each of 
the nodes are displayed in Figure 5. Clearly, we can observe a 
considerable improvement of the delay bounds with increasing 
tree depths. Interestingly, it can also be observed, that the 
PMOO-SFA, while being second best for tree depths up to 12, 
is outperformed by SFA and even TFA for larger tree depths. 
This Stresses again the insights gained in Section 111. 

In a second experiment, the effect of the uiilization on 
the delay bounds are investigated. Both, the tight bound and 
the PMOO-SFA are computed for utilizations of 20, 50, and 

In ihis paper, we have demonstrated that direct application 
of network calculus in aggregate multiplexing scenarios for 
which FiFO cannot be assumed is problematic with respect 
to the tightness of delay bounds. The nice algebraic char- 
acteristics of network calculus cannot be preserved under 
arbitrary multiplexing. Based on this insight, we have proposed 
an alternative method to arrive at tight bounds for arbitrary 
multiplexing in feed-forward networks. The method consists 
of formulating an optimization problem. For the case of 
piecewise linear concave arrival and convex service ciirves (a 
very frequent case), we obtain a set of linear programming 
problems, which can be solved by standard methods, and from 
which ihe solution for a tight delay bound can be composed. 
For the special case of sink-tree networks we have provided 
a closed-form expression of the delay bound based on this 
method. Numerical experiments have shown a clear edge for 
the novel bounding method over methods based on direct 
application of network calculus. 



Thisjirll text paper was peer reviewed at the direction of IEEE Comniunicafions Socieiy sirbject matter experrs for pirblicafion in the IEEE INFOCOM 2008 proceedings 

APPENDIX 191 J.-Y. Le Boudec and P. Thiran. Nenvork Calculus A Theory of Deter- 
ministic Qiieiting Systems for rhe Inrernet. No. 2050 in ~ec tu re  Notes 

In Section IV we derived the service clirve ß 1  under the in Computer Science. ßeriin. Germany: springer-Verlag. 2001. 
precondition that the slack variables s!') and si2) have uDDer I101 F. Baccelli. G. Cohen. G. J. Olsder. and J.-P. Quadrat. Synchmniration 
bounds given by C2. Here, we S ~ O W  thit this asgurnption dbes und Linearity: An Algebra for Discrete Eveni ~ysterns. ~robab i l i t~  and 

Mathematical Statistics. John Wiley & Sons Ltd.. 1992. not restrict the 'Pace of the rninirnization problern' [I I] C,-S, Chang, Perforl,iance Gl,clrflnrees in Comun~ca~ioll  Nehvorks. 
If s:) > b2 + r2T1 we can conclude from Telecommunication Networks and Computer Systems, Springer-Verlag. 

2000. 

s:) < C Y ~  (tl - to) = b2 + r2 (ti - to )  [I21 J. Schmitt and U. Roedig. "Sensor network calculus - a framework for 
worst case analysis." in Proc. Distribured Cornpuring an Sensor Systems . - 

(DCOSS). pp. 141-154, June 2005. lhat t 1  - t O  > in lhis write = b2+r2Tl 1131 A, Koubaa. M Alves, a d  E. Tovar, <'Modeling arid worst-case dimen- 
where 0 < T I t l  - t0 - Tl and derive -. , sioning of cluster-tree wireless Sensor networks," in Prwc. IEEE RTSS. 

U' (t3 - to) pp. 412421, 2006. 

1 + [I41 T. Skeie. S. Johannessen. and 0. Holmeide, 'Timeliness of real-time 
7 . 3 ~ 3 + S ( 2 )  h-t2-T3- R3-r," ip communication in switched industrial ethernet networks." IEEE 

Ci Transactioris on Iridusfriul Inforrnntics. vol. 2. pp. 25-39. Feb. 2006. 

1 
+ 1151 S. Chakraborty. S. Kuenzli. L. Thiele. A. Herkersdorf. and P. Sagmeister. 

+ ( R ~ - ~ ~ - ~ ~ )  [ t 2 - t l  - T ~ -  ~ ~ + ( ~ z + ~ ~ ) T z - ~ ~ ) + ~ z + ~ z T I + ~ z ~  "Performance evaluation of network processor architectures: Combining 
R z - T z - ~ ~  simulation with analvtical estimation." Comnuter Networks. vol. 42. 

J 
no. 5. pp. 641465, 5003. 

1161 H. Kim and J. Hou, "Network calculus based siinulation: theorems. 
imolementation. and evaluation." in Pmc. IEEE INFOCOM. Mar. 2004. 

I + (171 M.' Fidler. "An end-to-end probabilistic network calculus with moment 
generating functions:' in Pmc. of IEEE IWQoS. pp. 261-270. Jun 2006. 

L181 Y. Jiang. 'A basic stochastic nehvork calculus." in Proc. ACM SlG- 
COMM. pp. 123-134, Sept. 2006. 

- t l  - ~ ~ + ( T z + ~ ~ ) T ~ - B ~ ) + ~ z + ~ z T I  -r27 1191 J. Schmitt and F. Zdarsky. 'The DISCO Network Calculator - a tmlbox 
Rz-rz-7-3 I + for worst case analysis," in P m .  of VALUETOOLS. ACM. Nov. 2006. 

1201 A. Bouillard and E. Thierry, "An algorithmic toolbox for network 
calculus:'Tech. R ~ D .  RR-6094. Uni16 de recherche INRlA Rennes. 2007. 

1211 C.-S. Chang, " ~ t a b i ~ i t ~ .  queue length and delay of deterministic and 
Since tl - to - Tl > 0 we can conclude that stochastic queueing networks," IEEE Trunsactions on Automritic Con- 
ß 1  (t3 - to)? ((Ri - r2) A (R2 - 7-2 - 7-3) A (R3 - 7 - 3 ) ) ~  tml. VOI. 39. pp. 913-931, May 1994. 

r3~3+6i?) b 3 + ( r z + r 3 ) ~ 2 - ~ ~ ' + b z + r ~ ~ 1  I + (221 M. Andrews. "lnstahility of fifo in scssion-oricnted networks:' in Pmc. 
3- t0-Tl-T2-T3- - 

Rs-7.3 R2-r2-r3  
SODA. pp. 4 4 W 7 ,  Mx.  2000. 

1231 A. Charny and J.-Y. L. Boudec. "Delay bounds in a network with 
The lower bound that we derived here for s t )  > b2 + r2T1 

coincides with the previously derived bound instantiated at 
s F )  = b2 + r2T1. Hence, we cannot find a srnaller service 
curve for s?) > b2 + r2T1. In the sarne way it can be shown, 
that,no smaller seyice curve can be derived for s3)  > b3 + 

I I I R. L. Cmz. 'A calculus for network delay, Part I: Network elements in 
isolation." IEEE Transactioris 0 1 1  Inforrruition Theory. vol. 37. pp. 114- 
131. Jan. 1991. 

[2] R. L. Cruz, 'A  calculus for network delay. Pan 11: Network analysis," 
IEEE Transacrions on Inforrriafion Theory. vol. 37. pp. 132-141. Jan. 
1991. 

131 R. L. C m ,  "Quality of service guarantees in vinual circuit switched 
networks:' IEEE Jorrrnal on Selecred Arecis in Cornrnunicurions. vol. 13. 
pp. 1048-1056. Aug. 1995. 

141 H. Sariowan. R. L. Cruz. and G. C. Polyzos. "Scheduling for quality of 
service guarantees via service curves." in Pmc. IEEE ICCCN. pp. 512- 
520. Sept. 1995. 

[5] C.-S. Chnng. "On deterministic trnffic regulation and service guarantees: 
A systematic approach by filtenng." IEEE Transuctiorts on Inforrtiation 
Tlieory. vol. 44. pp. 1097-1 110. May 1998. 

161 J.-Y. Le Boudec. "Application of network calculus to guaranteed service 
networks," IEEE Transactiorts on Information Theory, vol. 44. pp. 1087- 
1096, May 1998. 

171 R. Agrawal. R. L. Cruz. C. Okino. and R. Rajan. "Performance bounds 
for flow control protocols," IEEUACM Trmisaciions on Nehvorking. 
vol. 7. pp. 3 10-323. June 1999. 

181 F. Ciucu. A. Burchard, and J. Liebehern 'A network service curve 
appmach for the stochastic analysis of networks," in P m .  ACM SIG- 
METRICS, pp. 279-290. June 2005. 

aggregate-scheduling:' in Pmc. Qoj7S. 1-13. Sept. 2000. 
1241 Y. Jiang, "Delay bounds for a network of guaranteed rate Servers with 

fifo aggregation." Cornputer Networks. vol. 40. no. 6. pp. 683494,2002. 
1251 Z.-L. Zhang. Z. Duan. and Y. T. Hou. "Fundamental trade-offs in 

aggregate packet scheduling." in Proc. ICNP. pp. 129-137. Nov. 2001. 
[26] J. A. Cobb. "Preserving quality of sewice guarantees in spite of flow 

aggregation:' IEEWACM Transactions on Nehvorking. vol. 10, pp. 43- 
53. Feb. 2002. 

1271 Y. Jiang. "Per-domain packet scale rate guarantee for expedited forward- 
ing." IEEWACM Transcicfions on Nehvorking, vol. 14. pp. 630-643. June 
2006. 

1281 D. Starobinski. M. Karpovsky. and L. A. Zakrevski. 'Application of net- 
work calculus to general topologies using turn-prohibition," IEEWACM 
Trartscictions on Networking, vol. I I .  no. 3. pp. 41 1421 .  2003. 

1291 M. Fidler and V. Sander, 'A Parameter based admission control for 
differentiated services networks," Conipufer Networks. vol. 44. no. 4. 
pp. 463479. 2004. 

1301 L. Lenzini. L. Manorini. E. Mingozzi. and G. Stea. "Tight end-tc- 
end per-flow delay bounds in fifo multiplexing sink-tree networks." 
Performance Evoluatiori. vol. 63. no. 9. pp. 956-987. 2006. 

[31] G. Urvoy-Keller. G. HCbuteme. 2nd Y. Dallery. "Traffic eiigineenng 
in a multipoint-to-point network." IEEE Jotrrntrl ori Selected Areus in 
Comrnunicurioris. vol. 20. pp. 834-849. May 2002. 

1321 J.-Y. Le ßoudcc nnd A. Chxny. "Packet scalc rate gunrantee for non-fifo 
nodes:' in Pmc. IEEE INFOCOM, pp. 23-26. June 2002. 

[33] J.-Y. Le ßoudec and G. Rizzo. "Pay bursts only once does not hold 
for non-iilo guaranteed rate nodes:' Perfor~rrance Evaluariun. vol. 62. 
no. 1-4. pp. 366-381, 2005. 

[34] J. Echagiie and V. Cholvi, "Worst case burstiness increase due to 
arbitrary aggregate multiplexing." in Proc. of VALUETOOLS. ACM. 
Nov. 2006. 

1351 J. Schmitt. F. Zdarsky. and M. Fidler. "Delay bounds under arbitrary 
multiplexing," Technical Repon 360107. University of Kaiserslautern. 
Germany. Jiily 2007. 




