
[SZTSt03] Jens Schmitt, Michael Zink, Steffen Theiss, Ralf Steinmetz; A Reflective Server Design to
Speedup TCP-friendly Media Transmissions at Start-Up; Tagungsband Kommunikation in
Verteilten Systemen 2003 (KiVS103), Leipzig, Springer Informatik Aktuell, Februar 2003, S.
69-80.

A Reflective Server Design to Speedup
TCP-friendly Media Transmissions at Start-Up

Jens Schmitt, Michael Zink, Steflen Theiss, RalfSteinmetz

KOM, Damstadt University of Technology, Germany
{Jens.Schmitt, MichaeLZink, Steffen.Theiss, Ralf.Steinmetz)@KOM.tu-damstadt.de

Abstract: The Internet has built its success story to a large degree on the Transmission Con-
trol Protocol (TCP). Since TCP still represents the by far most important transport protocol in
the current Internet haffic niix, new applications like media streaming need to take into account
the social mles implied by TCP's congestion conhoi algorithrns, i.e., they need to behave TCP-
friendly. One problem of this insight is that these new applications are not always well served by
inlieriting TCP's transmission scheme. In particular, TCP's initial start-up behaviour is a prob-
lem for streaming applications. In this Paper, we try to address this problem by proposing a
repective server design which allows to do inter-session congestion conhoi, i.e., to sliare net-
work perfomiance experiences behveen sessions to make informed congestion control decisions.
Since our focus is media streaming, we show the design in the framework of a media server,
which means in particular not employing TCP itself but a TCP-friendly transmissions scheme.

1 Introduction

1.1 Background: TCP Congestion Control and Media Streaming
Despite its age and known shortcomings, TCP and its reactive congestion control
method still dominate today's Intemet traffic mix [I], whereas proactive, open-loop
congestion controi approaches like, e.g., RSVP/IntServ seem still far away. It Comes
thus as a kind of Internet law of nature that data transmissions have to be compatible to
TCP with respect to their handling of congestion Situations, i.e., they have to be TCP-
friendly.

TCP's congestion control involves two basic algorithms: slow start and congestion
avoidance [2]. During slow start (SS) a sender exponentially increases its sending win-
dow during each round trip time (RTT) starting with a window size of 1 to trial the
available bandwidth in the network. It thus makes no assumptions and tries to find out
fast what could be its fair share of the available bandwidth. Once it encounters an error,
either due to a retransmission time-out or due to 3 consecutive duplicate acknowledg-
ments (fast retransmit), it halves its slow start threshold (sstresh) and does another SS.
This repeats until slow start reaches sstresh without any losses, then the congestion
avoidance (CA) phase is started. In CA the sender still probes the network for more
capacity but now at a linear increase per RTT.

For new multimedia applications like media streaming TCP has several drawbacks:
retransmissions are unnecessary since old (retransmitted) data is usually worthless
for streaming applications,
the bandwidth resulting from TCP's window-based congestion control algorithms
tends to oscillate too much for streaming applications,
the initial slow start behaviour is the exact opposite of what streaming applications
would desire, namely an initially high rate that allows to fill the playback buffer such

that later rate vanations can be accornmodated by the smoothing effects of the
buffer.

This is why many of these applications employ UDP (User Datagram Protocol) as a
transport protocol. However, UDP does not have a congestion control, based on the
assumption that there is little UDP traffic. Yet, this may be not true any more if such
UDP-based streaming applications become successful. That is why a number of TCP-
friendly congestion control schemes have been devised for UDP transmissions such as
media streaming. The definition of TCP-friendliness is informally phrased "acliieve
faimess with concurrent TCP transmissions, i.e., achieve the Same long-term average
tliroughput as a TCP transmission". Of course, it should be mentioned that by TCP-
fairness the following is meant: if N TCP sessions share a bottleneck link each should
get 1/N-th of tlie link's capacity (assuming they do not Want less, a more formal defini-
tion of TCP's max-min faimess captures this case).

1.2 Motivation: Why and How to Avoid TCP Slow Start

If TCP-friendliness is accepted as a MUST in the Intemet, it needs to be observed that,
while TCP-friendly transmission schemes can avoid the problems of retransmissions
and unsteady bandwidth availability to some degree (we will discuss some proposals
below), all TCP-friendly protocols inherit TCP's gross start-up behaviour resulting
from slow start. Note that TCP's start-up behaviour Iias for some time been realized as
a problem for transfers of short duration as typically Seen for HTTP requests [3]. Yet,
also for long-term streaming applications in contrast to long-term file transfers the ini-
tial transmission performance is of high importance, since they need to present trans-
mitted data (more or less) immediately to the user and it might be especially
dissatisfying if the start of a media transmission is badly disturbed or heavily delayed
due to a slow filling of the playback buffer (which might make the consumer switch
away again). Besides, promising optimizations of media distribution Systems like
patching may involve short transfers, too [4].

On a higher level of abstraction one could argue that TCP is transiently unfair to
new sessions which are still in their probing phase. Ideally, one would wish for a new
session to start sending with its fair share and immediately go into a CA-like phase.
The question now is how could we make a step towards this ideal behaviour. Since our
target application is media streaming, we may assume that we have high-perfomance
Servers streaming the media towards a large number of clients. We are thus in a situa-
tion where TCP's Zero knowledge assumption about the network state at the start of a
new transmission towards a client is unnecessarily limiting since such a server could
take advantage of the probing of past and concurrent transmissions to the Same or
"similar" clients. The server could thus improve its congestion control decisions by
reflecting on past decisions 1 experience and could start the transmission at a higher
rate avoiding the SS phase altogether. Of course, care must be taken to back-off from
this rate immediately if the estimation of available bandwidth tums out to be errone-
OUS.

In essence, the goal of our investigations is the development of a reflective server
design build around TCP-friendly h-ansmission schemes but using statistics froin past
network experience to achieve a favourable start-up behaviour for media streaming

applications. The basic motivation stems from empirical data gathered by [5] which
reports on temporal as well spatial stability in throughputs for Web transfers: they
already concluded " ... this allows for caching and sharing to achieve efficiency ..."

2 Related Work & Own Contribution

We present the related work in three areas: TCP-friendfy transrnission protocols on
which we build, but which we do not aim to improve themselves or propose yet
another one; TCP optimizations for short transfers like HTTP requests as a motivation
and basic groundwork for our investigation; Inter-session congestion control as
directly related work.

2.1 TCP-Friendly Transmission Protocols

The design of TCP-friendly transmission protocols has recently experienced a lot of
attention. A nice overview can be found in [6] . Their basic rationale is to avoid retrans-
missions and to improve TCP's oscillating bandwidth behaviour by smoothing the
available bandwidth to a session. There is mainly two flavours:

window-based schemes like [7, 81 that generalize resp. slightly change TCP's basic
AIMD (additive increase, multiplicative decrease) behaviour to allow for a smoother
transmission behaviour,
rate-based schemes like [9, 10, 1 I] which adapt their sending rate according to a cer-
tain rule between experienced loss and estimated available bandwidth. For exainple,
the TCP-friendly Rate Control (TFRC) protocol proposed in [9] is based on the
empincal equation in [12] which relates loss to the fair bandwidth share of a session.

While window-based schemes inherit TCP's favourable self-clocking characteristic
and can generally be assumed to react faster to dynamic changes in available band-
width, rate-based schemes usually achieve a smoother transmission scheme which
makes them more favourable for streaming applications. Furthermore, the rate-based
TFRC has been shown to react relatively fast to changes and has been extended to the
multicast case [13]. For these reasons we chose TFRC as the TCP-friendly transmis-
sion scheme which shall be integrated into our reflective server design. Yet, note that
most of our work is independent of the actual transmission scheme and may even be
applied to TCP itself (which from our background is not so interesting due to TCP's
bad characteristics for strearning media).

2.2 Short T C P Transfer Optimizations

There has been some work on improving TCP performance for short transfers in par-
ticular for Web transfers. [I41 experimented with Iarger initial window sizes and found
larger initial window sizes particularly helpfül for short transfers. Persistent HTTP (P-
HTTP) [15] is a technique to reuse TCP connections within one HTTP session, thus
not loosing the congestion window value. The TCP Fast Start technique proposed by
[I61 enhances P-HTTP to use cached congestion window values for the same HTTP
session after an idle period of that session and proposes to send packets during such a
fast start phase at a lower priority. Similarly, [I71 proposes to differentiate between
short and long transfers by assigning d~fferent droppriorities to the latter and shows by

simulations to improve short transfers' performance. As a comment to the latter two
approaches, note that they require a form of differentiation within the network a la
DifBerv. While this is technically feasible one needs to be aware that it essentially
destroys IP's traditional best-effort model and in particular its economic model of
access charging.

2.3 Inter-Session Congestion Control

Directly related to our work is what we call inter-session congestion control. These
proposals go beyond proposals in the preceding section in the sense that they consider
network performance experience from other concurrent or past sessions for their con-
gestion control decisions. To gather data from other sessions one can imagine two dif-
ferent types of inter-session congestion those based on the collection of all sessions of
a single host which then typically needs to be a busy server or to accumulate the differ-
ent sessions' experience at a certain (shared) gateway. While the former type of inter-
session congestion control requires the installation of such a gateway and its integra-
tion in tlie routing of sessions as well as a distributed protocol for accessing its infor-
mation, the latter approach exploits purely local information. This is why we favour
inter-session congestion control at a single server since it requires much less changes
of existing infrastructure. On the other hand, this means that a server needs to make as
optimal use of its experiences as possible because the scope of the available data may
be limited. The Congestion Manager concept introduced by [I 81 focuses on sharing of
knowledge between concurrent sessions within a host, whereas we concentrate onpast
experiences. Also, [I 81 is more about mechanisms like an API to exchange congestion
control information which makes it complementary to our work, in the sense that it
may be a good framework for implementing the mechanisms we propose here. [19]
introduces what they call inter-host congestion control and give some nice introductory
motivation for the efficiency gains that may be achievable. Their sharing of congestion
control information is solely based on what they call nelwork locality, i.e., only desti-
nations that have a common 24-bit subnet mask share information. Their proposal is
restricted to TCP transmissions. Along the same lines yet more detailed is [20], which
proposes the use of a gateway. Again this work is only suited for Web-like traffic since
only TCP is considered and they only share information between destinations with
common 24-bit subnet masks (network locality). In conclusion, while the above pro-
posals are very interesting, they are specialized for TCP transmissions and may require
substantial infrastructure changes due to the gateway approach. Furthermore, they
employ a simple mle for sharing congestion control information, which, while it is
empirically shown to be a good rule [20], may be too reshictive for the case of a
server-based inter-session congestion control for media streaming, which involves
compared to a Web server a lesser number of sessions.

2.4 Own Contribution

After the review of related work our contribution can be summarized as follows: we try
to make use of information from past experience at a media server to improve the start-
up behaviour of TCP-friendly media strearning sessions at a minimum of necessary
changes to existing infrastructure. The latter constraint means we only allow for media

server-intemal changes in contrast to existing work discussed above. Furthermore, we
concentrate on TCP-friendly transmission protocols like TFRC instead of TCP itself,
since our case is media streaming. Another specific of a media server that must be
taken into account is that compared to a Web server it serves only a limited number of
sessions over a certain time intewal. That means we need to put special care in how
good sharing rules between information from sessions to different clients can be
achieved. Therefore, we go beyond the simple common 24-bit subnet mask heuristic
and try to exploit similarities between different clients as much as possible. In particu-
lar, the sharing rules should be defined along common bottlenecks for clients. While
network locality is a fairly safe heuristic for that (and much better than just host local-
ity), we try establish more advanced sharing mles in order to be able to use bandwidth
availability data from as many sessions as possible.

3 Reflective Server Design for Inter-Session Congestion Control

In this section, we give an overview of the high-level design of our reflective media
server. The underlying principles of our reflective media server proposal is to gather
past bandwidth availability data, process these data intelligently in order to make more
informed decisions when starting a new TCP-friendly streaming session. Note that, in
principle, a reflective server design could involve more changes of congestion control
decisions than just at start-up. However, here we only want to focus on the initial con-
gestion control behaviour.

3.1 Functional Components

Two different, concurrently performed areas of operation can be distinguished for the
reflective media server: the actual handling of media requests and the reflection on the
corresponding transmission observations. The latter process of reflection is further on
called data management because it involves the gathering and processing of statistical
data for past sessions. The results from the data management operations are then
exploited in serving the media requests, i.e., in the congestion-controlled transmission
of the media objects.
Data Management: The following subtasks for the data management component can
be identified:

data gathering, i.e., record the data from sessions on a periodical basis for later use
by other sessions,
data clustering, i.e., explore the data on past and concurrent sessions for similarities
in order to find maximum sharing rules between the recorded data,
dataprediction, i.e., forecast fair bandwidth share for a session based on the sharing
rules constructed in the preceding step.

Transmission: As discussed above we focus on the improvement of the start-up
behaviour for media streams, i.e., we introduce what we call informed start which con-
trasts to slow start by assuming knowledge when choosing an initial transmission
speed (in terms of a rate when a rate-based scheme is used or a window size if a win-
dow-based scheme is employed)

Since our case is media Servers we employ a TCP-friendly transmission scheme
instead of TCP due to its problems with media streaming described above. In Section

2, we have argued for our use of TFRC, although most of our proposal could be easily
transferred to other TCP-friendly transmissions schemes.
Design Decisions and Overall Scheme: The major design decisions we have made
are to:

usepassive measurements from past and existing connections in order not to require
substantial changes to existing infrastructure;
restrict our inter-session congestion control scheme 10 single servers, i.e., have no
exchange of information between servers, although this could be an interesting
extension, yet again we only wanted to introduce local, minimal-invasive changes;
sample the fair bandwidth share instead of more algorithm-specific measures like
congestion window sizes or loss rates, this is especially motivated by compatibility
of the data management component with differing transmission schemes as well as
favoring of rate-based transmission protocols for media transmissions;
put strong emphasis on the data clustering step in order to support environments
where we have potentially scarce data such that exploitation needs to be done effec-
tively, i.e., we need to maximize sharing of information between sessions to improve
upon prediction accuracy;
target at rate-based TCP-friendly transmissions.

The overall scheme of our refective media server design with its two concurrent sub-
components and their subtasks is depicted in Figure 1.

-1 71
Informed

Congestion
Avoidance

Figure I : Reflective Media Server Design.

4 Data Management

In this section, we take a more detailed (albeit informal) look at the data management
component and its subtasks within our reflective media server design.

4.1 Data Gathering

The major questions for data gathering are which data to gather and when. We decided
to gather the available bandwidtli values after they have reached a certain equilibrium
state (i.e., the rate does not vary too much any more). The available bandwidth of each
Session (identified by the client's destination address) is tracked on two time-scales,
one on the order of RTTs and one on the order of minutes. These serve different pur-
poses. The longer time-scale values are used for identifying similar available band-
width properties for different clients, i.e., they are input for the data clustering task. A

time-scale on the order of minutes seems sufficient for that purpose based on the tem-
poral stability obsewations reported in [5] . The shorter time-scale values are used
within the data prediction step and tlierefore need to be very recent. During the course
of time, the short time-scale data become the longer time-scale data and are therefore
aggregated as the mean available bandwidth in a given time intewal of a session, in
order to save Storage space. Of course, data also need to be removed when they
become too old, in particular we decided to track session characteristics only for 24
hours.

4.2 Data Clustering
The data clustering subtask is a preparation step for the actual data prediction in order
to inake as much use as possible from the given data. In particular, we perform a clus-
ter analysis along the available bandwidth samples of different sessions, which prom-
ises more comprehensive sharing rules than for a second-order criterion like network
locality, since it allows to capture more similarities between clients 1 sessions, e.g., like
the use of the same access technology which might always form a bottleneck or the sit-
uation when a transatlantic link is underdimensioned and a certain subset of clients is
only reachable via this link. So, clients do neither need to share exactly the same bot-
tleneck but only a structurally similar one, nor does the bottleneck need to be close to
them. Both of these insights can be used to increase sharing between sessions. Further-
more, we cluster along available bandwidth trajectories, and not just single values,
over relatively large time-scales (24 hours), which also allows to identifi temporal
similarities. Please note again here that all of this data is only used for clustering while
for the prediction we are well aware that such data can be considered stale for conges-
tion control purposes, yet the aim is to make the available data set for prediction as
large as possible in order to improve the prediction accuracy.

Since for individual clients the covering of a 24 hour intewal by sampled available
bandwidth values is likely to be insuficient, we first aggregate the samples of all cli-
ents of a network cloud defined by the common 24-bit subnet mask heuristic (network
locality). The actual technique we then use for clustering the network clouds is so-
called agglomerative clustering based on maximizing the inter-cluster distance while
minimizing the intra-cluster distance where we use the euclidean distance norm for the
bandwidth trajectories [21]. The resulting clusters represent the sharing rules used for
data prediction. The alert reader may notice that the bandwidth trajectories for differ-
ent network clouds may be based on different time reference Systems, which is why we
first (linearly) interpolate the bandwidth trajectories on a common time reference sys-
tem. In addition, we eliminate network clouds for which too little data have been sam-
pled. Note that network clouds that have been excluded from the cluster analysis are
not excluded iürther on from the prediction step, but have to cope with less informa-
tion for the prediction since they form individual clusters.

4.3 Data Prediction

The data prediction step takes as an input the short time-scale samples from the data
gathering and uses the sharing rules resulting from the data clustering subtask to obtain
a set of samples as large as possible to ensure an accurate prediction. The quantity to

predict is the fair share of bandwidth available to a new media stream. Note that for
different congestion control schemes this value may have to be transformed in the
quantity that is relevant for the respective scheme, i.e., for a window-based scheme this
has to be transformed into an initial window size (which would require to also sample
the RTT, which for ease of discussion we have left out here since our focus is on rate-
based schemes).

The actual prediction technique we use is an optimal linear predictor [22], i.e., we
make relatively little assumptions on the underlying stochastic process. This optimal
linear predictor uses the existing realization of the stochastic process of the available
bandwidth to set its linear coefficients such that the prediction error is minimized. This
is only possible if the underlying process is ergodic, however, the results reported in
[5] are encouraging with respect to this assumption. The number of linear coefficients
that are employed depend on the number of samples that are available, the more sam-
ples are available the more linear coefficients are used resulting in a higher prediction
accuracy. So, this is exactly the point where tlie maximization of the sharing rules is
exploited.

Note that the choice of an optimal linear predictor is not necessarily the best and
final choice, but hopefully a good first step for a prediction technique since it does not
make too strong assumptions on the underlying stochastic process to be predicted. Fur-
thermore, it allows for a confidence value to be computed which allows potentially to
make use of the performance Parameter estimated in a statistically controlled fashion.

5 TFRC Transmission Using Informed Start

Concurrently to the data management operations, the actual transmission of media
streams takes place. As discussed above we chose TFRC as a (good) example of a
TCP-friendly transmission protocol for media streams. Now, we describe how a
TFRC-based media streaming can take advantage of the data gathered and evaluated
by the data management component to improve a media stream's start-up behaviour by
using what we call an informed start instead of the normal slow start algorithm. There-
fore, we first discuss in a little bit more detail how TFRC works especially at start-up.

At the start-up of a session, TFRC mimics TCP's SS behaviour: it doubles its send-
ing rate every RTT and even tries to emulate TCP's self-clocking characteristic by lim-
iting the sending rate to two times the received bandwidth as reported by the receiver
(which sends these reports every RTT). It does so until a loss event occurs. This
enables then a receiver-based rough estimation of the loss rate as the corresponding
loss rate for half of the current sending rate. This estimated loss rate is retumed to the
sender and used to compute the allowable sending rate using the TCP rate formula pro-
posed in [12]. Furthermore, the sender then tums into a less aggressive CA-like behav-
iour which is again determined by the TCP rate formula: if the formula results in a
higher value than the current sending rate then the sending rate is increased by one
packet per RTT. Assuming we have enough data to make a sensible fair share band-
width prediction we can avoid the SS-like behaviour and start witli the predicted band-
width, i.e., perform an informed start (1s) and turn to the CA-like phase of TFRC
directly. An IS requires, however, special care since the prediction might be wrong. In
particular, IS works the following way:

The transmission starts with the predicted rate. After 1.5 RTT the receiver calculates
the corresponding loss rate from the inverse TCP rate formula and sends it towards
the sender. It cannot invoke the TCP rate formula before because it requires an esti-
mate of the RTT which is only determined after 1 RTT at the sender and then sent to
the receiver (which takes anotlier 0.5 RTT).
Before the sender receives the first loss rate estimate the sender uses the minimum of
predicted rate and received rate as reported by the receiver. This restriction mini-
mizes the negative effect of a wrong prediction for the available fair share of the
bandwidth.
After it got the first loss rate estimation (after 2 RTT), the sender uses TFRC's nor-
mal CA-like behaviour further On.
In case of packet loss two cases must be distinguished:
1) packet loss before 2 RiT this indicates that the predicted available bandwidth was
too optimistic and the sender should backoff immediately in order not to interfere
with other TCP sessions. Of course, due to the packet loss we have a first estimate of
the loss rate, however it is very likely to be too pessimistic since due to the overesti-
mation of the allowed sending rate losses are probably excessive. Using that loss
rate would consequently lead to an underestimation of the actual allowed sending
rate. Fortunately, we also have the received rate as reported by the receiver as a fur-
ther guide. While the received rate itself is obviously too high because we have been
overly aggressive at the start-up, we can take a compromise between underestimat-
ing and overestimating the allowed sending rate by taking the mean of the fair band-
width share as computed by the TCP rate formula and the received bandwidth (the
mean is the best estimate if we have no further information on which of the two val-
ues could be closer to the actual allowed sending rate). When the fair rate eventually
becomes higher than the received rate we tum to normal CA-like TFRC behaviour.
2) packet loss aper 2 R7T here we just use normal TFRC behaviour, i.e., the loss
rate is reported to the sender and the sender invokes the TCP rate formula to adapt
its current sending rate.

A further question that Comes up after this discussion is what happens if we underesti-
mate the currently available bandwidth. Here, the problem is that since we do not use a
SS-like trialling of the available bandwidth at the start of a new session we may remain
in a state of underutilizing the fair share for that media stream. However, at least we
are not harming anybody besides that session and probably for the case of media
streaming we should actually reject the request for a new stream if the predicted avail-
able bandwidth is too low since we cannot expect our estimate to be too low and it is
better not to start a session which can anyway not deliver the quality a user would
expect. Altematively, we could decide to use SS for that session to at least attempt to
Set it up.

6 Simulations

The aim of the following simulation experiments with the ns-2 simulator is to show the
basic improvements that can be achieved with an IS over the normal SS-like behaviour
of TFRC. They are not about the analysis of the data management component of our
reflective media Server design, but make extreme assumptions on the outcome of the

data management operations: the fair share bandwidth predictions are assumed to be
either correct, far too high, or far too low. We are aware that the simulations can only
have a partial and simplifying character, yet, they give a basic showcase for a compari-
son between IS and SS-based media transmissions. The simple simulation setup we
used for these experiments is shown in Figure 2.

TCP-Rcccivers
TFRC Rcceivci

Figure 2: Simulation Setup.

The queue at the bottleneck link uses drop tail, all links are dimensioned at 10 Mb/
s (or 1.25 MB/s) with a propagation delay of 10 ms. The TCP senders use TCP Reno
(i.e., they employ fast retransmit) and all of them are all started at the beginning of the
simulation runs (t = Os). At approximately t = 4s they achieved an equilibrium state
where they shared the available bandwidth at the bottleneck link fairly. Thus at t = 4s
we started our different versions of TFRC:

TFRC with usual SS,
TFRC with IS and correct prediction (CORR), i.e., the fair share bandwidth predic-
tion is 1/21 of 1.25 MB/s (= 60 KB/s)
TFRC with IS and far too high prediction (HIGH), in particular, the fair share band-
width prediction is 3 times too high (= 180 KB/s)
TFRC with IS and far too low prediction (LOW), in particular, the fair share band-
width prediction is 3 times too low (= 20 KB/s)

In Figure 3, the simulation outcomes for the different scenarios are given. Here, we
have depicted the sending behaviour of one of the TCP senders (TCP-Sender 1 - the
others showed the Same behaviour, though with some phase shifts) vs. the respective
TFRC sending behaviour in the relevant time-scale (from 3s to 15s). It is obvious that
with a correct prediction we can substantially improve on TFRC's usual start-up
behaviour resulting from SS: TFRC with SS took about 5s (from t = 4s to 9s) until it
tums to a stable CA-like behaviour, whereas TFRC with IS(C0RR) shows immediate
stability from its start. Interestingly, also for a far too high prediction of the fair band-
width share for the TFRC session, it takes only about 1s until a stable behaviour can be
observed. So, we have achieved the goal of a fast reaction of the informed start on an
overestimated bandwidth prediction. The case IS(L0W) shows that an underestimation
requires a longer start-up phase until the fair bandwidth share is reached than the other
cases (including the slow start case), yet it does so in a fairly smooth way which from
the perspective of streaming applications should be desirable.

Slow Start lnformed Start (CORR)
200

1 ao
3 160 ' 140
5
C 120

; 100

7 80 - F 60
C
V) 40

20

0

Time (s) Time (s)

Figure 3: Slow Start vs. lnformed Start TFRC with Differing Prediction Scenarios.

lnformed Start (HIGH) lnformed Start (LOW)

7 Conclusions & Outlook

200 200

180 180.

160 3 160.

140 ' 140,

C 120 5 @ 120 -

In this Paper, we have investigated how TCP-friendly transmission schemes for media
streaming could be enhanced to circumvent the inheritance of TCP's disadvantageous
start-up behaviour by the use of inter-session congestion control. For that purpose we
have introduced a reflective media server design and described its major functional
components: data management and transmission. In contrast to previous work, we
have focussed on the maximization of sharing rules between sessions by the use of
cluster analysis techniques taking into account the specific requirements for media
streaming Servers. We have shown how TFRC, a special instance of a TCP-friendly
transmission protocol can be extended to use an informed start based on the operations
performed by the data management component of the reflective media server. By sim-
ulations we have shown the benefits of an informed start over the normal slow start-
like behaviour of TFRC.

A major Open question is how well the data management component performs.
This is naturally one of our future goals to investigate. For this we need extensive
empirical data, similar to the study performed in [5]. Besides, we are currently inte-
grating TFRC into our publicly available media streaming system KOMSSYS and plan
to realize the presented reflective media server design in that framework. A related
issue we Want to investigate is whether the predictions on available bandwidth from
the data management component could also be used as a starting point for a tentative
admission control of new streams for a media server operating over a best-effort net-
work as the Internet.

TCP1-
TFRC -

; 100

p 80 -
F 60

G 40 V) 40

20 20.

0 0
5 8 10 12 14

Time (s) Tlme (s)

References
[I] S. McCrcary and K. Claffy. Trcnds in Widc Area IP Traffic Pancrns. In Proceedings of 13th ITC

Specialist Seminar on lrtiernet Trajic Measurement and Modeling, Septcmbcr 2000. http://
www.caida.org/outrcacWpapcrs/AIXOOO5.

[2] V. Jacobson. Congestion Avoidance and Conirol. ACM Computer Communication Review; Pivceedings
of the Sigcomin '88 Symposirrm in Stanford, CA, August, 1988, 18,4:3 1&329, 1988.

[3] R. Braden. RFC 1644 - TiTCP - TCP Extensions for Transactions Functional Spccification. Standards
Track RFC, July 1994.

[4] K. A. Hua, Y. Cai, and S. Sheu. Patching: A Multicast Tcchniquc for TNC Video-on-Dcmand Scrviccs.
In Pmceedings of !Ire ACM Multimedia Conference 1998, Bristol, England, pages 191-200, Septembcr
1998.

[5] H. Balakrishnan, M. Stcmm, S. Seshan, and R. H. Katz. Analyzing Stability in Widc-Arca Nehvork
Pcrforrnance. In Pivc. of the ACM SIGMETRICS. Seattle, WA, pages 2-12, 1997.

[6] J. Widmer, R. Dcnda, and M. Mauve. A Suwcy on TCP-Friendly Congestion Control. Special lssue of
the IEEE Network Magazine "Control of Best EjjOrt Tkafic': 15(3):28-37, May 2001.

[7] D. Bansal and H. Balakrishnan. TCP-fricndly Congestion Control for Real-timc Streaming
Applications. In Pivceedings of the 20th Annuul Joint Conference of the IEEE Computer and
Communicaiions Societies (INFOCOM'OI). IEEE Computcr Socicty Prcss, Anchorage, April 2001.

[8] S. Jin, L. Guo, 1. Mana, and A. Bestavros. TCP-friendly SlMD Congcstion Control and Its Convcrgcnce
Bchavior. In Proceedings of lCNP'2001: The 9th IEEE International Conj2rence on Nehvork Protocols,
Riverside, CA, 200 1.

[9] R. Rcjaic, M. Handlcy, and D. Estrin. RAP: An End-10-End Ratc-based Congcstion Control Mechanisrn
for Rcaltime Streams in the Internct. In Proceedings of the Eighteenth Annual Joint Conference of the
IEEE Computer and Communicaiions Societies 1999, New York, N): USA, pagcs 395-399, March 1999.

[I01 S. Floyd, M. Handlcy, J. Padhyc, and J. Widmcr. Equation-Bascd Congcstion Control for Unicast
Applications. In Proceedings of the ACM SIGCOMM '00 Confirence on Applications, Technologies.
Architectures, and Protocols for Computer Communicaiion 2000, Stockholm, pagcs 43-56, August
2000.

[I I] 1. Rhcc, V. Ozdcmir, and Y. Yi. TEAR: TCP cmulation at rcccivcrs - flow conirol for multimcdia
streaining. Tcchnical rcport, North Carolina Statc Univcrsity, April 2000.

[I21 J. Padhyc, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP Throughput: A Simplc Modcl and its
Empirical Validation. In ACMSIGCOMM '98 Confemnce on Applications, Technologies. Arcltiteciures,
und Protocols for Computer Communication, pagcs 303-3 14, Vancouvcr, CA, 1998.

[I31 J. Widmer and M. Handlcy. Extcnding Equation-Based Congcstion Control to Multicast Applications .
In Pivceedings of the ACM SIGCOMM '01 Conference on Applications, Technologies, Architecfures.
and Prolocols for Computer Comrnunication 2001, San Diego, CA, pagcs 275-285, August 2001.

[I41 M. Allman, C. Haycs, and S. Ostermann. An evaluation of TCP with larger initial windows. ACM
Computer Communication Review, 28,3:41-52, 1998.

[I51 R. Ficlding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. BeinersLce. RFC 2616 -
Hypcrtcxt Transfer Protocol - HlTPl1.1. Standards Track RFC, 1999.

[I61 V. Padmanabhan and R. Kap. TCP fast siart: a tcchnique for spccding up wcb iransfers. In Proc. IEEE
Globeconr '98 Interner Mini-Conference, Sydney, Awtralia, 1998.

[I71 L. Guo and I. Mana. Thc War Bchvccn Mice and Elephants. In Proceedings of lCNP'2001: Tlre 9th
IEEE Infernational Confeirnce on Network Protocols, Riverside, CA, 200 1.

[I81 H. Balakrishnan, H. Rahul, and S. Seshan. An lntegratcd Congestion Managcrncnt Architccturc for
Intcrnct Hosts. In Pivceedings of the ACM SIGCOMM '99 Confirence on Applicatioits. Technologies,
Architectures, and Piotocols for Computer Communication 1999, New York. W USA, pagcs 175-187,
August 1999.

[I91 S. Savage, N. Cardwcll, and T. Andcrson. Thc Case for lnformcd Transport Protocols. In Proceedings of
the Seventh Workshop on Hot Topics in Operating Systems, Rio Rico, AZ, March 1999.

[20] Y. Zhang, L. Qiu, and S. Kcshav. Spccding Up Short Data Transfcrs: Theory, Architeciure Support, and
Simulation Rcsults. In Proceedings of NOSSDAV2000, June 2000.

[21] A. Gordon. ClassiJication. Chapman-Hall, 1999.
[22] A. Papoulis. Probabilily, Random Variables. und Stochasric Pivcesses. McGraw-Hill, 1991.

