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ABSTRACT
A number of epace-time block codes have been proposed far
the quasi-static, flat-fading channe] with coherent receiver.
All of these block codts are linear codes, i.e., the encod-
ed codeword is a linear function of the input scelar sym-
bole Here we propose new won-linear space-time block
codes, ic., the codewords are non-linear functions of the
input scalar symtols, We demongtraie a non-lincar code
that outperforms the corresponding linear cade by 0.6 1o
1.2 48, We draw parnliels between optimal non-linear cade
design mod the well-kmown rimpler confecture for multi-
dimensional AWGN codes. Finslly we show that for cer-
tain non-wiiformly digtributed inpul symbaols, the optimal
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It is unknown at the mansmiter aid fully known 1t the re-
ceiver The channel ouur corresponding to an rnput Mock
spanning T time samplea is

Y = HX+V )

where the received signal 18'Y (M, x T), the fading chan-
nel is H (M, x M,), the encoded codeword 18 X (M, x T,
ard receiver noise is V (M, x T). Whea H is atsumed 1o
be i.i.d. Gaussian in the sequel, its entries are i.id. cireu-
Iar complex Guussian random variables with variance 0.5
in each dimension, i.e. Hyy ~ R (0,1). The entries of V
are pid. with Vi ~ R.(0, Np). Toe wal average powes

wignal sei cannot be designed with linear modulation and
non-linear modulation 18 exsentinl for optimality. This has
applicationy in the design of space-time ocllia codes and
cancatenated space-time coding schemes.

1. INTRODUCTION

A number of space-time block ¢odes have been pro.
posed for the quasi-static, flat-fading channel with coherer
receiver [1, 2,3, 4, 5, 6]. All of these block codes are Jin-
ear codes, i.c., the encoded codeword is a linear function of
the input scalar symbols. Here we propese new non-iirear
space-time block codes, i.2, the codewords are bon-linear
functions of the inpuf scalar symbols. We demonstrate a
non-linear code vhat outperfonma the corresponding linear
code by 0.6 to 1.2 dB. We draw parallcls between optimal
noo-lincar code design and the well-known simplex conjec-
ture for multi-dimensional AWGN codes. Finally we show
that for certain non-uniformty distributed input symbols, the
optimat signal set cannot be designed with linsar modu-
lation and pon-linear modulation is ia] for eptimali
ty. This has applications in the design of space-time twellis
codes and concatcnated space-Time coding schemes,

2. CHANNEL AND DATA MODEL

Consider » sysiemn with M, recgive antennas and M, trans.
mit antennas. The channel is fal-fading and quasi-static.

t d on M, is E, per sample time. Define
s=E. '

We will consider design of man-finear space-time block
codes described s follows

- K
X = Yam (2)

where (%)X, isasct of K real symbols thatare non-linear
functions of K, /2 plex input bols from a8 QAM
constellation. The conplex modulation marrices A, are
nomulized as To, ||A)% = T to obtein wtal averege
transmit pewer of E, per unit time. The complea input sym-
bols are assumed to be uncodad and the encoder aperates
aver them in & blockwise memaryless fashion. The recciver
performs ML decoding on each M, x T output hlock Y-
For K input scalams 8y,.. , sy, that corespond to the
real mmd imaginary pams of X;/2 complex input symbois,
let £x = fr(s,.-. 1 5x,.} be onc of K mappings lo outpul
scalars thet are encoded usmg X modulation matrices. Cme
way to perform non-linear mappungs is 1o take all possibl
products of unique groups of input symbols [7] as follows

[, 28, ... Txi, 2Zmr ., =x )
X
= [51. a4 o0 8K, A8 --e, n*='1-"‘t]

where K = 2%/ = 1 ia the total number of products. The
linear codey considered previously [8] consist of the first X';
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elements oo both sides of the equation, i.e., the identity map
z, =8 with K = K7

Nole that when the input symbols ¢, belong to & unit-
norm BPSK constellation (+1,—1), all productg and there-
fore the nonlinear output symbols z; also belong to BP-
SK. in additian, esch nonlinear symbol p 8 i
digtribution oves the BPSK constellalion if the input is v-
niformly distribuesd. This can be extended te an M-PAM
input constellation by carefully mapping the products back
to tleaments in the M-PAM such that each £, ia distribur-
«d uniformly over the M-PAM [$]. The number of posi-
tive 2, i3 therefore equsl to the number of negative x , for
1 € k € K, and Theprems 1 and 2 in [8] hold for the non-
lincar case 48 well. That is, the optimal modulation matrices
are stil] the pairwise skrw-Hermitian matrices as follows

ALAT+AAL = 0 Iorl<k#AISK ()

3. LINEAR YERSUS NON-LINEAR CODES

In this section we will ahow that non-linear ¢odes can im-
prove performance uver linear codes. Consider two codes
based on the Alamouti matrices [3, 4], the firsl of which us-
3 two matrices o encode 2 BPSK symbols and the second
uses three matrices to encods 2 BPSK symbols and their
product. The input aymbola and error sequences for the
firat code, 1.2., the linear ¢ode, are shown in Table 1. Al-
1 are equally likely with peobability pi = 1/4. The input

= /x0T 1-1) CIT) (1-1) (1)) |
C1-ny | (0B (0- (20) (2-2)
¢y | (02 (00 (22) (20)
(L-0) | (28 (2-2) (00 (0-9
on (22) (29 (02 (0O

IE\-..-;.»-I el

Table 1. Ermor nequences for input 9PSK, 2 moduiation
Tatrices

aymbols and error scquences for the second code, which iy
non-linear, are isted in Table 2,

T2 [ 110y (I1-) (1-1-D) {(11) |
40 | @00 @22 (202 (220
11y Lz om (2200 (20-p
a-1-n oy @20 ©om (0-2-2)
by | R20) @02 @23) (000)

Thbie 1. Error sequences for input BPSK symbols snd prod-
uct, 3 modulation matrices

After appropriate ecaling of the Alamouti matrices 16
nommalize transmit power, the shannel-averaged wnian bound

[10] for the linear code simplifics as

s —3M,
Pin = 2(”5) + 1+ §) -

and that for the non-lingar code simplifies to
254 ~IM-
Poontin = 3 (1 + TS)

Using Jensen's inequaliry on the convex function {1+ 5) ~2M»
for § > 0, it ean be ghown that the nan-linear code is better

than the lincar code as follows
2 Sy 1 anr,
P = 3(5(”5) +3048)
—aM,
> 3 (1 + ?ij) = Prontin )

The performance diffcrence is a function of the SNR and
number of moeive antennas. It anges from 0.6 dB to 1.2
dB for | te 3 receive sntennas, respectively, smd is platied
in Figure 1.
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Fig. 1. Nan-linear versos linear code

3.1, Relaton to the simplex canjecin

‘The interesting change in going from Tuble | to 2 is that the
four points that were vertices of a squart in (wo dimensions
move be the vertices of a tetrahedron in three dimension-
1. Addsign of the Lhird dulation mairix effectively addy
1 new signal dumensicn thel helps make the points equidus-
wnt. Equidistant points are the vertices nfa regular simplex,
which i8 conjectured to be the oplimal signal set for AWGN
channels In Gact the regular simplex is known o minimize
the union bound at all SNRa (11].
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What s apparent here is that when optimal moduletion
matrices that satisfy (3} are used o map input symbols 10
space-time codewords, the problem of code desige for the
fading chwrme] reduces to the problem of code design for
the AWGN channel. Since optimsl modulaticn marrices
are very limiled in existence, the question of how quasi-
orthogenal modulation matrices affect code design remaina
10 be arwered.

4. NON-UNJFORM INPUT DISTRIDUTIONS

In this section we will ahow that non-linear codes may be

y lor optichal perdl when the input symbel-
8 are not uniformly distribated. If Lhe input scalar stream
#, is encoded using black or wellis codes, a block of X'/2
such symbels may not consist of i.i.d. symbols and cermin
vulues of the block can be more likely than others, [ guch
cases linear ¢codes may not be optimal ma we will show by
an example.

Consider the simple case of {1 x 1) modulation matrices
that are all pormalized scalars. The two optimal modulation
scelars are 1/vZ and §/ /2 as per (3). The resulting code-
wortds are illustrated 1n Figure 2 and have 8 dmin of v2.

Im
=11 )
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Fig. 1. Codewnrds for uniform input symbols

Causider the following variastion on Table | obtined by
serting the probability of input sequence 0 = (-1,-1)
equal o zero. The sequences (—1,1), {1, — 1) ad (1,1) are
equally likely wilh probability L.

i [y (- oy
-1 (e (222) (20
(-3 [z (00 (0-2)
(n (200 (02) (0O

Table 3. Non-umuform input szquences for BPSK and K = 2

—

In this case, if the optimal modulation scalars for unifor-
m symbols are ueed, we obtain Lhe corstellstion in Figure 3,
which has the same dpmn a8 the previous comsiellation.

=1, 1 1.1
{ l. .l I

d=setiD)

Ra

. 1. =1}

Fig. 3. Standard codwanda for non-uniform input symbols

This is not Lthe begt posaib), stelletion, ho  and
1he i, can be further increaned i /3 by placing the sym-
bols in & simplex as shown in Figure 4. What i interesting

Im

Fig. 4. Optimal codewords for non-uniform input symbols

in Lhis case iy that the onty way w map these three symbols
10 the simplex it via a non-linear mapping as shown below

x = Sa -
eit 1 1.1 H
-1 -1 1 -1 ¥ | (&)
eIt o R R T b I W

where S is the matrix of 2]l possible inputs, a is e vector
of modulation pealars, and x is the outpur. The first two
columns of 8 contain the velues of two input scalars and
the third cohmmn consists of products of twe inpus sealars,
which is a nonlinear mapping of the input symbola. An casy
way lo prove that thig mapping canncs be achieved via Jincar
raodulation i o abserve that two points are multiples of
each other, i.e., (—1,1) = —(1,—1), but none of the pounes
in (e simplex are such muitiples.

Non-uniform input symbols are Tikely to arise in con-
calenated systems where the input strexm has been encoded
by an outer code  The pracucal applications of non-linear
codes for realistic code siatistica remain (o be seen, -
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