Jens Schmur; Aggregation of Guaranteed Service Flows: 1cchnical Re
KOM-1998-06, TU Darmstadt, November 1998.[SchA98) Jens Schmri
Antich; Extended Traffic Control Interface for RSVP; Technical R
1998-04, TU Darmstadt, Juli 1998

Darmstadt University of Technology

Extended Traffic Control Interface for RSVP

Jens Schmitt, Javier Antich

July 1998

Technical Report TR-KOM-1998-04

Industrial Process and System Communications (KOM)

Department of Electrical Engineering & Information Technology
MerckstraBBe 25 » D-64283 Darmstadt « Germany

Phone: +49 6151 166150

Fax: +49 6151 166152

Email: info @ KOM.tu-darmstadt.de

URL: http://www.kom.e-technik.tu-darmstadt.de/

Extended Traffic Control Interface for RSVP

Jens Schmitt!
1
Industrial Process and System Communications
Dept. of Electrical Engineering & Information Technology
Darmstadt University of Technology
Merckstr. 25 » D-64283 Darmstadt » Germany

{Jens.Schmitt} @kom.tu-darmstadt.de

Abstract

Internet and ATM both aim at providing integrated services. Therefore they independently (more or less) devel-
oped QoS architectures. A realistic assumption certainly is that both will take their place and that they will coex-

ist for quite some time. A likely place for ATM is in the backbone, while IP will probably keep its domi

nance on

the desktop. It is thus valid to assume an overlay model for the interaction between the two QoS architegtures.

Crucial components of the QoS architecture of the Internet are its signalling protocol RSVP and the IP multicast
architecture. There are several hard problems when trying to overlay this combination over an ATM subpetwork.

In particular, the problem of matching RSVP’s heterogeneous receiver concept onto the homogeneous

point-to-

multipoint VCs of ATM is such a problem. One solution to this problem is to provide VC management gtrategies

to bridge that gap. However in order to be able to implement such VC management strategies RSVP
Control Interface and its message processing rules need to be extended to provide the necessary flexibili
extensions will be presented in this report.

Keywords: QoS, Integrated Services, RSVP, IP Multicast, ATM.

1 Imtroduction

s Traffic
y. These

When considering the implementation of some of the VC management strategies introduced in in the
companion report [Sch98] in support of heterogeneity over an ATM subnetwork, RSVP’s Traffic Con-
trol Interface (TCI) and the relevant part of the protocol message processing rules as spegified in
([BZB*97],[BZ97]) must be made more flexible than they are (this does not violate these standards,
because these parts are only informational). Currently, RSVP merges all downstream requests and then

hands the merged reservations to the traffic control module via the TCI. This leads to two pro
operating over ATM, or in general, a NBMA subnetwork with capabilities for multipoint com
tion:

» potential for not recognizing new receivers,
* solely support for the homogeneous QoS model.

blems if
munica-

These problems are already realized in [BZB*97], where it is conceded that the proposed TC] is only

suitable if data replication takes place in the IP layer or the network (i.e. a broadcast network), b

ut not in

the link-layer as would be the case for ATM. Here, different downstream requests should not necessar-

ily be merged before being passed to the traffic control procedures.

A new general interface is needed that supports both, broadcast networks and NBMA ne¢tworks,
where the replication can also take place in intermediate nodes (e.g. ATM switches) of the NBMA sub-
net. Only such modifications will allow for heterogeneity support over an ATM network, i.e. different

VCs for different QoS receivers. However, even without taking into account heterogeneity

support,

there is a need for a modification of the TCI and the message processing rules due to the different nature

of NBMA networks.
If a reservation request is received from a new next hop in the ATM network that is lower

than an

existing reservation for the session, then according to the currently proposed processing rules ng actions

This work is supported in part by a grant of Volkswagen-Stiftung, D-30519 Hannover, Germany.

P ——

will be taken, since it is assumed that all the next hops within the same outgoing interface will receive
he same data packets. That is of course not the case for an NBMA network like ATM, and some actions
must be taken to add this new receiver to the existing point-to-multipoint VC. The same situation arises
when a receiver tears down its reservation. If the LUB (least upper bound) of the other reservations does
not change, nothing will be done with the current processing rules. However, the receiver must be
deleted from the point-to-multipoint VC.

The problem with the current message processing rules and TCI is that, since they are based upon
broadcast mediums, they do not allow any heterogeneity within a single flow and an outgoing interface.
This is due to the fact that broadcast networks do not allow for heterogeneity of the transmission any-
way. That is the reason why the LUB of the reservations requested for that interface is computed, thus
making downstream merging. :

A VC management strategy that supports heterogeneity does not need this downstream merging, or
at least, no downstream merging of all the next hops in the interface. A more flexible scheme is neces-
sary, that permits different “Merging Groups™” within a certain interface. This general model includes
he current model, if all next hops are considered as one merging group. A Merging Group (MG) is
defined as the group of next hops with the same outgoing interface, whose reservation requests for a
certain flow should be merged downstream, in order to establish a reservation.

For a single flow and outgoing interface, there may be several MGs. The two extreme cases are:

a) Only one MG: This is the case when no heterogeneity is allowed within the interface. Examples
of this situation are:

* the homogeneous model when implementing RSVP over ATM,
« the underlying network technology is broadcast (e.g. Ethernet).

b) As many MGs as next hops: this would be the case if each of the next hops requires a dedicated
reservation. Example applications of this are:

*NBMA networks which do not allow point-to-multipoint connections, and therefore, a point-to-point
connection is needed for each of the receivers,
» the full heterogeneity model when implementing RSVP over ATM.

The most interesting options of this model from our point of view are the intermediate points between

hese two cases, where we allow a certain degree of downstream merging, so that it is possible to take
advantage of the VC management strategies for heterogeneity support (Figure 1).

Figure 1: Merging Groups.

The TCI and the message processing rules should be independent of the number of MGs for a specific

low and the decision of including one next hop into a group or another should be taken by the traffic
rontrol module and not as part of the RSVP message processing. Details on how RSVP’s TCI and its
message processing rules need to be modified to allow for VC management strategies in support of het-
brogeneity will be discussed in section 2.

2 Extended TCI for Heterogeneous RSVP Flows over ATM Networks

This section will give the details on how RSVP’s message processing rules and its Traffic Contrg
face (TCI) need to be modified in order to allow for flexible VC management strategies for hete
ity support.

2.1 RSVP’s Traffic Control Interface

When analyzing how the combined architecture of RSVP/IntServ with IP Multicast and ATM
integrated from an implementation’s point of view, it is necessary to identify the parts of the
specification that interact with the traffic control procedures offered by ATM. These are the RSV
sage processing rules and RSVP’s Traffic Control Interface (TCI) calls. RFC2209 [BZ97] descr
rules for the operation of Version 1 of RSVP (RFC2205 [BZB*97]). It outlines a set of alg
which are induced by the rules of RFC 2205 and which should be used when implementing RSV
2209 assumes the generic TCI calls defined in RFC2205 and some implementation-specific dat
tures. The description style in the following sections is aligned to that of the relevant RFCs to ea
ing and comparison.

2.1.1 Traffic Control Interface Calls

RFC2205 presents a generic interface between RSVP and traffic control modules. Using thes

] Inter-
rogene-

can be
RSVP
P mes-
bes the
orithms
P. RFC
a struc-
se read-

e func-

tions, RSVP can trigger the creation, change and deletion of reservations, as well as add or delete filters

to existing reservations. The set of defined functions is:

TC_AddFlowspec{ Interface, TC_Flowspec, TC_Tspec, TC_Adspec, Police_Fl
-> RHandle [, Fwd_Flowspec]

ags)

* This function is used to establish a new reservation. Its main parameters are the Interface where the
reservation must be set up, and the TC_Flowspec parameter, which specifies the desired effective

QoS for admisston control purposes; its value is computed as the maximum over the flows
different next hops. The return value, RHandle, is an opaque number used by the caller fo1
quent references to this reservation.

TC_ModFlowspec(Interface, RHandle, TC_Flowspec, TC_Tspec, TC_Adspec,
Police_flags) [-> Fwd_Flowspec 1}

pecs of
subse-

* This function is used to modify an existing reservation. The TC_Flowspec parameter is processed

by the admission control procedure, and if the new reservation is rejected, the current flowspe
in force. The corresponding filters, if there are any, are not affected by this function.

TC_DelFlowspec(Interface, RHandle)
* This call will delete an existing reservation, including the flowspec and all associated filter sp
TC_AddFilter(Interface, RHandle, Session , FilterSpec) -> FHandle

» Using this function, a new filter (source address and port) can be associated with the reservat
responding to RHandle. The packet classifier module will use the existing filters of each rese
to classify the packets into different flows, which will receive the appropriate QoS in the

c is left

€CS.

on cor-
'vation,
packet

scheduler module. The return value, FHandle is a handle for subsequent calls to TC_DelFilter().

TC_DelFilter(Interface, FHandle)

* This function would be called when a filter shall be removed from a reservation. The filter
FHandle, returned from the TC_AddFilter() call, will be used for this purpose.

TC_Advertise (Interface, Adspec, Non_ RSVP _Hop_flag) -> New_Adspec

handle

» This call is used for the OPWA (One Pass With Advertisement) mechanism to compute the ouitgoing

advertisement New_Adspec for a specified interface.

4

qpcall: TC_Preempt () -> RHandle, Reason_code

 In order to grant a new reservation request, the admission and/or policy control modules may pre-
empt one or more existing reservations. This will trigger a TC_Preempt() upcall to RSVP for each
preempted reservation, passing the RHandle of the reservation and the subcode indicating the rea-
son.

2.1.2 Data Structures

The data structures defined in RFC2209 which are significant to our investigation are:
RSB - Reservation State Block

« Each RSB holds a reservation request that arrived in a particular RESV message, corresponding to
the triple:

session, next hop, Filtexr spec_list)

« Depending on the style of reservation, Filter_spec_list will contain:
* WF: Nothing.

* FF: Only one filter.

*SE: A list of filters.

« The main contents of the RSB are:

* session specification,

* next hop IP address,

» filter_spec_list,

* outgoing (logical) interface OI, where the reservation is/has to be established,
s style,

* flowspec.

TCSB - Traffic Control State Block

¢+ Each TCSB holds the reservation specification that has been handed to traffic control for a specific
outgoing interface. In general, TCSB information is derived from RSBs for the same outgoing inter-
face. Each TCSB defines a single reservation for a particular triple:

session, OI, Filter_ spec_list)
¢ The main fields of a TCSB are:

* session,

* OI - Outgoing Interface.,

s filter_spec_list,

» TC_Flowspec: LUB” over the flowspecs from matching RSBs,
» RHandle, F_Handle_list.

Both, RSB and TCSB consist of additional fields described in RFC2209, but these are not important to
the discussion of the next sections and were omitted for clarity. It should be noted that these data struc-
tures are implementation-specific and may contain different data members in particular implementa-
ions'. ‘Other data structures like PSB (Path State Block) and BSB (Blockade State Block) are also
described in RFC2209. For more details on these data structures and the ones explained above see sec-
ion 1 of RFC2209.

*. LUB: Least Upper Bound of a set of flowspecs is the minimum flowspec that is larger than all the flowspecs of the

set.

1. However most implementations are derived from ISI’s code, which in turn accords to the above specifications, so
that most implementations will “look™ similar to this.

2.1.3 UPDATE TRAFFIC CONTROL Processing Rules

When a new reservation request arrives at a RSVP capable node, or a RESV-TEAR message is received,
or a change occurs to any of the reservations established by this node, the last step before invaking the
traffic control module through the TCI functions, is always the UPDATE TRAFFIC CONTROL

sequence. The rules for this part of the RSVP processing are explained in RFC2209 section 2. Ir

the fol-

lowing, a summary of this processing is presented, in order to simplify the understanding of |the pro-

posed modifications introduced later on. Some steps of this processing will be skipped in this ST
For more details see RFC2209.

mmary.

The UPDATE TRAFFIC CONTROL sequence is invoked by many of the message arrival sgquences

to set or adjust the local traffic control state in accordance with the current reservation and path
parameter of this sequence is the “active’’ RSB.

state. A

If the result of the sequence is a modification of traffic control state, it notifies any matching local
applications with a RESV_EVENT upcall. If the state change is such that it should trigger immediate
RESV refresh messages, it also turns on the Resv_Refresh_Needed flag. These are the steps taken in

the UPDATE TRAFFIC CONTROL sequence:

a) Compute the traffic control parameters using the following steps:

2. Consider the set of RSBs matching (session, OI) from the “active’® RSB. The Filter_spec_I
also be matched if the style of the “active’” RSB is FF. With these RSBs, compute:
» the effective flowspec, TC_Flowspec, as the LUB of the flowspecs in the RSBs,

* the effective traffic control filter_spec list TC_Filter_Spec, as the union of the Filter_specs_li
these RSBs. '

st must

sts from

4. Locate the set of PSBs (senders) whose SENDER_TEMPLATES (i.e. address of senders) match

Filter_spec_list in the “active” RSB and whose Outlnterface_list includes OI.

6. Compute Path_Te as the sum of the SENDER_TSPEC objects (traffic parameters) in this set o

b) Search for a TCSB matching (session, OI) and, if style is FF, also matches Filter_spec
none is found, then create a new TCSB.

¢) If the TCSB is NEW:

1. Store the values just computed: TC_Flowspec, TC_Filter_spec, Path_Te and other flags in {
TCSB.

2. Turn the Resv_Refresh_Needed flag on and issue the traffic control call:

TC_AddFlowspec (OI, TC_Flowspec, Path_Te, police_flags)
RHandle, Fwd_Flowspec

3. If the call fails, build and send a RESV-ERR message and delete the TCSB.

4. Otherwise, record the RHandle and Fwd_Flowspec in the TCSB. For each filter_
TC_Filter_spec call:

TC_AddFilter(OI, RHandle, Session, F) -> FHandle
and record the returned FHandle in the TCSB.

d) If the TCSB is NOT NEW, but no RSBs where found in step a)2. , it means that the resq

f PSBs.

list. If

his new

spec 1n

rrvation

=

==

must be deleted:

. Turn on the Resv_Refresh_Needed flag.

. Call traffic control to delete the reservation:

TC_DelFlowspec (OI, RHandle)

. Delete the TCSB and return.

e) The TCSB is NOT NEW, but the TC_Flowspec, Path_Te and/or police flags just computed differ
from corresponding values in the TCSB, then:

. If the TC_Flowspec and/or Path_Te values differ, turn on the Resv_Refresh_Needed flag.

. Call the traffic control to modify the reservation:

TC_ModFlowspec (OI, RHandle, TC_Flowspec, Path_Te,
police_flags) -> Fwd_Flowspec

. If the call fails, build and send a RESV-ERR message
. Otherwise, update the TCSB with the new values and save Fwd_Flowspec in the 7CSB.

f) If the TCSB is NOT NEW, but the TC_Filter_Spec just computed differs from the filter list in the
TCSB, then:

. Make an appropriate set of TC_Delfilter() and TC_AddFilter() calls to transform the

Filter_spec_list in the TCSB into the new TC_Filter_spec

. Turn on the Resv_Refresh_Needed flag.

g) .

h) If the Resv_Refresh_Needed flag is on, the RESV REFRESH sequence will be invoked later on,
and the appropriate RESV messages will be sent upstream.

2.2 Extensions to RSVP’s TCI for NBMA Networks

&.2.1 The Traffic Control Interface and NBMA Networks

As explained in RFC 2205 sec.3.11.2, the details of establishing a reservation strongly depend upon the
particular link layer technology in use on an interface. For multicast transmissions, there are three pos-
sible locations where data replication can take place:

a) IP layer: If packets are replicated at this level they will be sent onto different outgoing interfaces.
The reservations coming from these interfaces must be merged to be forwarded upstream.

b) Network: Here replication takes place in the physical medium, e.g., an Ethernet LAN. In this
case, the reservation requests within one outgoing interface (from different next hops) must be
merged in order to establish the reservation for that outgoing interface and to forward the
reservation upstream. Since the LUB reservation will be established on the outgoing interface
some of the next hops will receive a better QoS than they requested.

¢) Link-layer driver: This is the case of NBMA networks like ATM, where the data replication may
occur in the link layer driver or interface card. Here, RSVP may need to apply different traffic
control procedures for each VC independently, without merging requests from different next

RFC 2205 also points out that it would be desirable to organize an RSVP implementation into two parts:
a core that performs link-layer-independent processing, and a link-layer-dependent adaptation layer.
The RSVP message processing rules as specified in RFC 2209, or more specifically their UPDATE
TRAFFIC CONTROL part, are based on the TCI as specified in RFC 2205 sec.3.11.2, which explicitly
assumes that the replication can only take place in the IP layer or the network. This means that not only
the TCI, but also the message processing rules have to be modified in order to allow for a flexibl¢ imple-

mentation of RSVP over ATM.

A new general interface is needed that supports both, broadcast networks and NBMA ngtworks,
where the replication can also take place in intermediate nodes (e.g. ATM switches) of the NBMA sub-
net. Only these modifications will allow for heterogeneity support over the ATM network, i.e. different
VCs for different QoS receivers. However, even without taking into account heterogeneity support,
there is a need for a modification of the TCI and the message processing rules due to the differenj: nature

of NBMA networks. These basic changes will be explained first in the next sections before adva

cing to

the broader modifications in order to allow for VC management strategies to support heterogenejity over

the ATM network.

2.2.2 Changes in TCI and Processing Rules to Support NBMA Networks

In the current UPDATE TRAFFIC CONTROL sequence, after locating the different res¢rvation
requests(RSBs) for a specific session and outgoing interface (and a source template if the style is FF),
the LUB of the different flowspecs of these RSBs is computed. Then, a TCSB corresponding to that ses-

sion and Ol is searched for. In the next steps, it is differentiated between three alternatives:

1. That no TCSB matching session and OI (and source for FF) is found. In this case, a new TCSB is

created and the TC_AddFlowspec() function is called.

2. A matching TCSB is found, but there where no RSBs matching. Therefore, the previous
puted LUB of the flowspecs is null and the list of filters for that reservation is also null. Und
circumstances, the TC_DelFlowspec() function is called.

y com-
er these

3. A matching TCSB is found, and the new flowspec is different from the flowspec contained in the
TCSB. This means that the reservation must be changed, and the TC_ModFlowspec() is called.

Now, with the ATM interface and taking into account multicast, a new case appears:

* A reservation request is received from a new next hop in the ATM network (see Figure 2). The LUB
of the reservation requests coming from the ATM network is computed, and, let us suppose, it does
not change. That means that the new request is lower or equal than the already existing reservation.

With the currently proposed processing rules no actions will be taken, since they expect tha

t all the

next hops within the same outgoing interface will receive the same packets. That is of course{not the
case for an NBMA network like ATM, and some actions must be taken to add this new receivér to the
existing point-to-multipoint VC. The same situation arises when a receiver tears down its resgrvation

down. If the LUB of the other reservations does not change, nothing will be done with the
processing rules. However, the receiver must be deleted from the point-to-multipoint VC. Th
a new function

TC_Update_Destinations ()}
must be implemented, in order to add/delete nodes to/from the point-to-multipoint VC.

current
erefore,

'his little modification is sufficient for the support of a homogeneous QoS over the ATM network, i.e. if
here is only one point-to-multipoint VC for a RSVP flow. However, for the support of multiple VCs per

SVP flow deeper modifications are necessary..

Lo o L |

Existing reservation 10 Mbit/s

Ingress. This new next hop

requests 8 Mbit/s

Figure 2: The problem of a new next hop.

.3 Extensions to RSVP’s TCI for Heterogeneity Support over NBMA Networks

he problem with the current message processing rules and TCI is that, since they are based upon
roadcast mediums, they do not allow any heterogeneity within a single flow and an outgoing interface.
his is due to the fact that broadcast networks do not allow for heterogeneity. That is the reason why the
UB of the reservations requested for that interface is computed, thus making downstream merging.

A VC management strategy that permits heterogeneity support does not need resp. cannot work with
his downstream merging, or at least, no downstream merging of all the next hops in the interface. A

ore flexible scheme is necessary, that permits different “merging groups” within a certain interface.
This general model includes the current model, if we use only one merging group. First of all, it is nec-
gssary to define what we mean exactly by the term “merging group”:

We define a Merging group (MG) as a group of next hops within an outgoing interface,
whose reservation requests for a certain flow should be merged downstream, in order to
establish a reservation.

For a single flow and outgoing interface, there may be several MGs. The two extreme cases are:
a) Only one MG: This is the case when no heterogeneity is allowed within the interface. Examples
of this situation are:

* The homogeneous model when implementing RSVP over ATM.
* The underlying network technology is broadcast (e.g. Ethernet).

b) As many MGs as next hops: this would be the case when each of the next hops requires a
dedicated reservation. For example:

* NBMA networks which do not allow point-to-multipoint connections, therefore, a point-to-point connec-
tton is needed for each of the receivers.

The most interesting options of this model from our point of view could be the intermediate points
between these two cases, where we allow a certain degree of downstream merging, and at the same time
It is possible to take the advantages of heterogeneity support. The TCI and the message processing rules

9

should be independent of the number of MGs for a specific flow and the decision of including pne next
hop into a group or another should be taken outside the UPDATE TRAFFIC CONTROL sequence.

Merging Group 1

Figure 3: Merging Groups.
When a reservation change occurs and the UPDATE TRAFFIC CONTROL sequence is invoked, a new

function should be called (Update_MergingGroups()) in order to determine in which MG this

change

took place. A change could be a new reservation request, a deleted reservation or a modified reserva-

tion. The Update_MergingGroups() function will be part of a particular implementation for th
control module, and should organize the different existing or new reservations into merging

e traffic
groups.

There are a lot of possible ways of doing that, and it is a choice of the implementors, based on which

network technology is available, and which degree of heterogeneity support, if possible, they de

sire.

Once the different reservations requested are distributed into MGs, the next steps are almost the same
as the current processing rules. For each MG, its flow specifications should be merged and the ynion of

the filters should be computed, in order to determine which of the functions for flow managemen

t (Add-

Flow(), ModFlow(), DelFlow()) and for filter management (AddFilter(), DelFilter()) should b¢ called.

Moreover, as already explained, a new function is needed, in order to update the destinations of’

the res-

ervation within a MG, even if the effective flowspec of the group has not ¢hanged

(Update_Destinations()).

Thus, the behavior of the UPDATE TRAFFIC CONTROL sequence in concert with the coi
MGs is independent of the particular link layer technology, which was the requirement. Howe
only the new functions of the TCI (Update_MergingGroups() and Update_Destinations()),
the already existing, are strongly dependent on the network technology. Therefore, different imj
tations are necessary for each kind of network (i.e. Broadcast, ATM, FrameRelay, ...). Whether
tinction is made before or after the function call is an implementation detail.

Besides the changes in the processing rules and the TCI, the data structures utilized to maintd
of the reservations, also need some modifications. The Reservation State Block (RSB) and the
Control State Block (TCSB) should include some information to distinguish among the differen
ing groups. The RSB could include an extra field, which identifies the MG within the interface t
the reservation belongs. The TCSB could be modified in two different ways. It could include a M
cator, like an RSB, thus associating one TCSB with the reservation for a MG. Alternatively, w

ncept of
ver, not
but also
blemen-
his dis-

1n state
Traffic
t merg-
D which
|G indi-
e could

keep the association between a TCSB and the pair (flow, outgoing interface), by modifying it inrtemally

to include the information of the different MGs in that interface, their filter lists and flow specifi
Even though both choices are principally possible, the first one is easier to implement.

cations.

10

Let us now investigate the modifications of the data structures, the message processing rules and the
T|CI in more detail.

2.3.1 Modified Data Structures

Hirst of all, some extensions to the GENERIC DATA STRUCTURES as defined in Section 1 of [BZ97]
have to be introduced:

¢/ RSB - Reservation State Block: Two new fields, MG_id and old_MG_id, have to be included, as
explained in 2.3, identifying the merging group to which the RSB belongs, and the MG this RSB has
just left (see next sections for more details). Furthermore, one of the possible values of this MG iden-
tifier for reorganization is defined as NOT_ASSIGNED, since newly created RSB’s do not belong to
any MG until the TC_Update_MergingGroups() function has been called.

o TCSB - Traffic Control State Block: The same extension is required for the TCSB, in order to deter-
mine to which MG this traffic control state belongs, but in this case the old_MG_id field is not nec-

essary.

2.3.2 Modified Traffic Control Interface

In this section, the necessary modifications and extensions to the TCI, in order to allow for a VC man-
agement strategy to support heterogeneity over a NBMA network, are introduced

TC_Update_MergingGroups(Session, *activeRSB)

The objective of this function is to carry out a MG management strategy, by e.g. including the new or
modified RSB in the appropriate MG or creating a new MG. Existing MGs could even be changed
depending on the VC management strategy in use. If a RSB is moved from a MG to another, the fields
MG_id and old_MG_id must be filled correctly, so that the reservations can be correctly modified.
TC_AddFlowspec (Interface, MG_id, TC_Flowspec, TC_Tspec, TC_Adspec,
Police_Flags, activeRSB) -> RHandle [, Fwd_Flowspec]

This function interface is roughly the same as the one proposed in RFC2205, but the merging group
identifier (MG_id) has been added, to provide the traffic control module with the information to-
which MG this new reservation belongs. Moreover, the activeRSB has been included in order to give
access to the next hop information. For networks like e.g. Ethernet, the reservation does not require a
connection to a specific endpoint, therefore the information of the next hop has no relevance. How-
ever, a more general interface should pass this information, in case the network is a NBMA, which
necessitates the knowledge about the destination for a specific connection to be set up and thus to be
able to establish the requested reservation.

TC_ModFlowspec (Interface, MG_id, RHandle, TC_Flowspec, TC_Tspec, TC_Adspec,
Police_flags ,activeRSB) [-> Fwd_Flowspec]

¢ The parameters MG_id and the activeRSB have also been added to this function, for the same rea-
sons as in the TC_AddFlowspec() function. The functionality is the same as explained in RFC2205.
However, for NBMA networks, like ATM, this function also performs the set up and tear down of
connections, depending on whether a new next hop has requested QoS or an old one has deleted its
reservation. Or maybe even, because of changes in MG membership, after the
TC_Update_MergingGroups() function has been called.

'C_DelFlowspec(Interface, MG_id, RHandle)

* In this function the parameter MG_id has also been added, for the reasons given above. This func-

tion is called when there are no more next hops in a MG, and therefore the reservation for that group
can be deleted.

TC_AddFilter(Interface, MG_id , RHandle, Session , FilterSpec) -> FHandle

11

» The parameter MG_id has again been included. Filters might be specific not to a flow, but to a MG.

Due to the fact that each MG has a different set of receivers, for each MG, if SE style is used

, the fil-

ters’ union might be different. Thus, it is possible not to send a packet on a VC corresponding to a

MG, if the members of that group have not included that source in their filters’ list.
TC_DelFilter(Interface, MG_id, FHandle)

* The MG_id parameter has been included here for the same reasons as in the TC_AddFilter() func-

tion.

TC_Update_Destinations(Interface, MG_id, Nhops_1list)

* With this function the appropriate actions will be carried out (addition or deletion of nodes to/from a

multipoint connection) to match the destinations of the Nhops_list and the nodes of the con
This Nhops_list should be computed in the UPDATE TRAFFIC CONTROL module, the sa
that the filters list is computed, i.e. per MG.

2.3.3 Modified Message Processing Rules

nection.
me way

With the new TCI defined in the previous section, the RSVP Message Processing Rules (RFC 2209
[BZ97]) also require some changes. The purpose of these modifications is to provide a set of message

processing rules, as general as possible, allowing for the support of NBMA networks and hetero

geneity.

Some difficulties appear if we do not know anything about what the TC_Update_MergingGroups() is
doing, that is to say, to which extent the merging groups can be modified when this function is called.
One could think of algorithms which dynamically reorganize the MGs depending on the requested

resources, the current cost of the connections and the number of MGs.
In order to advance a first step with heterogeneity support, the modifications introduced in f

he mes-

sage processing rules, assume that the TC_Update_MergingGroups() function will only madify the

active RSB, either by assigning a new MG, or adding/deleting it to/from an existing group,

or even

changing from one MG to another. This limitation simplifies the changes in the message processing

rules considerably.

The following shows how the UPDATE TRAFFIC CONTROL processing rules (section 2 of

[BZ97]) look like:
1. For the active RSB call:
TC_Update_MergingGroups (Session, active RSB)
. Set currentMG = MG_id of the active RSB, and execute steps 8 to 15.
. If step 2 failed

3.1. Restore the MG_id in the active RSB with the old_MG_id, and return to th
sequence that invoked this one.

. If step 2 did not fail,

4.1. If old_MG_id and MG_id of the active RSB are different, and old_MG_id
NOT_ASSIGNED , set currentMG = old_MG_id and execute again steps 8 to 15.

5. If the active RSB contains a RESV_CONFIRM object, then:

5.1. If the Is_Biggest flag is on, move the RESV_CONFIRM object into the TCSB and|
the Resv_Refresh_Needed flag. (This will later on cause the RESV REFRESH sequ
be invoked, which will either forward or return the RESV_CONFIRM object, de
from the TCSB in either case.)

w N

ELN

5.2. Otherwise, create and send a RACK message to the address in the RESV_CO

e event

| is not

turn on
lence to
eting it

NFIRM

12

object. Include the RESV_CONFIRM object in the RACK message. The RACK message
should also include an ERROR_SPEC object whose Error_Node parameter is the IP address
of OI from the TCSB and that specifies "No Error".

6. If the Resv_Refresh_Needed flag is on and the RSB is not from the AP], make a RESV_EVENT
upcall to any matching application:

Call: <Upcall_Proc>(session-id, RESV_EVENT, style, Flowspec,
Filter_spec_list [,POLICY DATA])

where Flowspec and Filter_spec_list come from the TCSB and the style comes from the active RSB.
7. Return to the event sequence that invoked this one.
8. Compute the traffic control parameters using the following steps.

8.1. Initially the local flag Is_Biggest is off.

8.2. Consider the set of RSBs matching SESSION and OI from the active RSB. If the style of
the active RSB is distinct, then the Filter_spec_list must also be matched.

- If the active RSB has a FLOWSPEC larger than all the others, turn on the
Is_Biggest flag.

8.3. From this set of RSB’s consider only those with MG_id equals currentMG.

- Compute the effective traffic control flowspec, TC_Flowspec, as the LUB of the
FLOWSPEC values in these RSBs.

- Compute the effective traffic control filter spec (list) TC_Filter_Spec* as the
union of the Filter_spec_lists from these RSBs.

- Compute the Nhops_list as the union of the next hops of these RSBs.

8.4. Scan all RSBs matching session and Filter_spec_list for all OI. Set TC_B_Police_flag on
if TC_Flowspec is smaller than, or incomparable to, any FLOWSPEC in those RSBs.

8.5. Locate the set of PSBs whose SENDER_TEMPLATEs match Filter_spec_list in the
active RSB and whose Outlnterface list includes OI.

8.6. Set TC_E_Police_flag on if any of these PSBs have their E_Police flag on. Set
TC_M_Police_flag on if it is a shared style and there is more than one PSB in the set.

8.7. Compute Path_Te as the sum of the SENDER_TSPEC objects in this set of PSBs.

9. Search for a TCSB matching SESSION, OI and currentMG, for a distinct style (FF), it must also
match Filter_spec_list. If none is found, create a new TCSB.

10. If TCSB is new:

10.1. Store TC_Flowspec, TC_Filter_Spec*, Path_Te, currentMG, and the police flags into
the TCSB.

10.2. Turn the Resv_Refresh_Needed flag on.
10.3. Make the traffic control call:

TC_AddFlowspec(OI, currentMG, TC_Flowspec, Path_Te,
police_flags, active RSB) -> Rhandle, Fwd_Flowspec
10.4. If this call fails, build and send a RERR message specifying "Admission control failed”

and with the InPlace flag off. Delete the TCSB, delete any RESV_CONFIRM object from
the active RSB, and return.

13

10.5. Otherwise (call succeeded), record Rhandle and Fwd_Flowspec in the TCSB. H
filter_spec F in TC_Filter_Spec*, call:

TCAddFilter (OI, currentMG, Rhandle, Session, F)-> Fhandle
and record the returned Fhandle in the TCSB.

11. Otherwise, if TCSB is not new but no effective traffic control flowspec TC_Flowsp
computed in step 8, then:

11.1. Turn on the Resv_Refresh_Needed flag.

11.2. Call traffic control to delete the reservation:

TC_DelFlowspec(0I, currentMG, Rhandle)
11.3. Delete the TCSB and return.

12. Otherwise, if TCSB is not new but the TC_Flowspec, Path_Te, and/or police flags just cd
differ from corresponding values in the TCSB, then:

or each

eC was

mputed

12.1. If the TC_Flowspec and/or Path_Te values differ, turn the Resv_Refresh_Needed flag

on.
12.2. Call traffic control to modify the reservation:

TC_ModFlowspec(OI, currentMG, Rhandle, TC_Flowspec,
Path_Te, police_flags , active RSB) -> Fwd_Flowspec

12.3. If this call fails, build and send a RERR message specifying "Admission Contro
and with the InPlace bit on. Delete any RESV_CONFIRM object from the active R
return.

failed"
SB and

12.4. Otherwise (the call succeeded), update the TCSB with the new values and save

Fwd_Flowspec in the TCSB.
13. Otherwise,
13.1. Call:

TC_Update_Destinations (0I, currentMG, Nhops_list)

13.2. If this call fails, build and send a RERR message specifying "Admission control
and with the InPlace bit on. Delete any RESV_CONFIRM object from the active R
return.

14. If the TCSB is not new but the TC_Filter_Spec* just computed differs from the FILTER |
in the TCSB, then:

14.1. Make an appropriate set of TC_DelFilter and TC_AddFilter calls to transf
Filter_spec_list in the TCSB into the new TC_Filter_Spec*.

14.2. Turn on the Resv_Refresh_Needed flag.
15. Return.

As explained, these modified processing rules assume that only one RSB, the active RSB, is ¢
during the TC_Update_MergingGroups() function call. This requirement limits the algorith
could be used within that function.

An algorithm which involves lots of changes in MGs’ membership, would, as a result, also
many modifications in the VC connections (new VC’s, changes in point-to-multipoint VC, ...
such a scheme, it is essential to take care of what should be done in case of a failure of any
changes, and how previous state can be restored. In order to solve the complexity introduced

failed"
SB and

ISPEC*

brm the

hanged
ms that

produce
). With
bf these
by this,

14

ore comprehensive changes in the processing rules would be necessary. For example, the notion of a

single active RSB is not useful any more. This concept refers to the RSB that had seen some kind of
odifications (it was new, deleted or changed). However, with a complicated
C_Update_MergingGroups() an arbitrary number of RSBs can be modified, and all of them should
e processed, the same way the single active RSB is currently processed.

11 the difficulties that arise, when designing a TCI and processing rules valid for any model of hetero-

eneity support, may suggest that the UPDATE TRAFFIC CONTROL sequence might be different

epending on the underlying network technology and the heterogeneity model utilized. Thus it would

¢ more appropriate to include it into the traffic control module, thus integrating the downstream merg-
ing and reservation establishment tasks. With this scheme, the interface between RSVP and the traffic
¢ontrol module could be simply a single function update_TC() with the current parameters. This func-
tion would carry out a different processing for each traffic control module depending on the kind of net-
work and/or heterogeneity support strategy.

3 Summary and Conclusion

This report is a very detailed description of how the RSVP Traffic Control Interface and the RSVP mes-
sage passing rules need to be modified or rather extended in order to provide the flexibility that would
be necessary to support VC management strategies in support of heterogeneity over the ATM subnet-
york as described in [Sch98]. In this companion report we differentiated these strategies according to
the fact whether the edge device is situated on the premises of the ATM network provider or not. That
led us to different algorithms for each case. We showed how these algorithms could achieve a signifi-
¢ant gain in either reduced costs or saved bandwidth when compared to simple schemes as proposed in
the literature. That was the starting point for investigating the necessary changes in the RSVP over ATM
jmplementation.

References

BZ97] R. Braden and L. Zhang. RSVP Version 1 Message Processing Rules, September
1997. RFC 2209.

BZB*97) R. Braden, L. Zhang, S. Berson, S.Herzog, and S.Jamin. Resource Reservation
Protocol (RSVP) - Version 1 Functional Specification, September 1997. RFC 2205.

[Sch98] J. Schmitt and Javier Antich. Issues in Overlaying RSVP and IP Multicast on ATM

Networks. Technical Report TR-KOM-1998-03, University of Technology
Darmstadt, August 1998.

