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rnon belief that the Integrated Services architecture (IntServ) is not scalable to large networks as, e.g. the global Inter- 
is due to the arnbitious goal of providing per-flow QoS and the resulting cornplexity of fine-grained traffic manage- 

solution to this problern is the aggregation of IntServ trafic flows in the core of the network. While one rnight 
aggregation leads to allocating more resources for the aggregated flow than for the surn of the separated flows if 

Service flows this is not necessarily the 
the aggregated traffic and analyze their 

consurnption and ease of flow managernent. Applications of these theorctical insights could be to use the 
over DiffServ (Differentiated Services), 

Keywo ds: Integrated Services, Aggregation, Guaranteed Service, Network Calculus. t 
1 Int 1 oduction 

1.1 As umptions and Terminology I 
region". Flows that shall be 
flows, since rnulticast flows 
did, e.g. because the partial 

is the Same tandem of nodes through the aggregation region, the results derived below would still apply. Note that 
flows are considered to be more "evil" with respect to scalability since they are expected to be much more 

the line of argument of our paper is how we use the terms aggregation and grouping of flows. 
problern of merging different flows over an aggregation region inside the network. By 

problem of the whole network being the aggregation region, i.e. flows are aggre- 
is a special case of aggregation. 

1.2 0 tline 4 
xt section we give a brief review of the sernantics and basic rnathernatical background of the IETF's Guaranteed Ser- 

Then we derive sorne fundamental forrnulas for the problern of grouping flows as defined above. Here we first quan- 
I 
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tify the effect of grouping flows onto resource allocation. Next we suggest a way to characterize the grouped flow wh 
for more efficient resource utilization, followed by sorne nurnerical exarnples to illustrate these results. The result 
grouping are then applied to the more general problem of aggregating flows. To do so we introduce a conceptual mc 
aggregation problem and show what has to be done to make it conform to the prerequisites of flow grouping. After gi 
sorne nurnerical examples on the trade-offs for the resource allocation inside and outside of the aggregation region, 
discuss some of the issues when applying the results on concrete candidates for the aggregation region, like an IntServ 
or ATM cloud. Before concluding the Paper, we also give an overview of related work. 

2 The IETF Guaranteed Service Class 
Guaranteed Service (CS) as specified in [SPG97] provides an assured level of bandwidth, a firm end-to-end delay bot 
queuing loss for data flows that conform to a given traffic specification (TSpec). The TSpec, which is essentially a do 
bucket, i.e. two token buckets in series, is characterized by the following Parameters: 

the token bucket rate r, 
the token bucket depth b ,  
the peak rate p, 
the rnaximum packet size M ,  and 
the minimum policed unit m.* 

Due to its mathematically provable bounds on end-to-end queuing delay we consider GS to be of high importance fot 
ical applications as, e.g., in the dornain of telemedicine. 

The mathematics of CS are originally based on the work of Cruz [Cru95] (refined by others, see e.g. [Bou98]) on i 

service curves. In case of the IntServ specifications the arrival curve corresponding to the TSpec(r,D,p,M) is 
n ( r )  = rnin(M +I)! .  h  + r r )  

whereas the service curve for GS is 

assuming that the stability condition ~ > r  holds. Here, the C and D terms represent the rate-dependent respectively 
pendent deviations of a packet-based scheduler frorn the perfect fluid model as introduced by ([PG93], [PG94]). 

While the TSpec is a double token bucket it is sometirnes more intuitive to regard the mathernatical derivations fc 
token bucket tb=(r,b) (this is equivalent to assuming an infinite peak rate). In this simplified case we obtain for the ( 

delay bound 
h  C 

[/,,,,,X = jj + E + D  

While for the rnore complex TSpec as arrival curve it applies that 

p > R  > r  d„„, = ( ~ - M ) ( P - R ) + M + C + ~  
R ( p -  r )  R  

R > p > r CI,,„, = + D 

From the perspective of the receiver desiring a maximuin queuing delay cl„„ the rate R (in bytesls) that has to be rese 
routers on the path from the sender follows directly from (3) and (4): 

for the simple token bucket tb(r,b) 

for the cornplete TSpec(r;b,p,M) 

While the buffer to guarantee a lossless service for the single token bucket is sirnply b ,  the buffer formula for the TSpt 
token bucket is more cornplicated: 

*. FOT our discussions we can omit this Parameter of the TSpec further on. 

allows 
Ir flow 
I of the 
g again 
briefly 
iffServ, 

and no 
e token 

ne-crit- 

val and 

(1 ) 

(2) 

e-inde- 

simple 
-to-end 

(3) 

(4) 

d at the 

( 5 )  

(6) 

double 



To illu. trate the meaning of the C and D terms we refer to their values in case of a PGPS (Packetised General Processor Sharing) 
schedu 1 er [PG93], because they also apply to inany other scheduling algorithms [Zha95] 

, where M is the maximum packet size of the flow, M' is the MTU and C is the speed of the link. 

there are potentially many other contributions to these error terms as, e.g., link layer overheads for segmentation 
case of ATM or token rotation times for FDDI or token ring. 
problems with GS: 

GS flows we address both problems, because less state has to be managed by routers and the resulting 

1 .  

2. 

1 

3 Th Mathematics of Flow Grouping t 

::t may not be scalable enough to be used in the backbone of the Internet siiice no aggregation mechanisms were provided 
due to the stipulation of per-flow QoS and flow isolation). Thus, the number of queues is proportional to tlie number of 
lows. 

- t  wastes a lot of resources, especially for "low bandwidth, short delayV-type of flows. As an example consider a data 
low with TSpec=(1000, 2000, 2000, 1500), let us assume 5 hops (all with MTU=9/88 bytes and link speed c=155 Mb/s) 

t11I doing PGPS. Then we have C=7500 bytes, D=2.371 rns. Let us further assume the receiver desires a maximum 
queueing delay of d„,=50 ms. Then we obtain from the formulas given above that R=191489 bytes=95*p and B=1578 
ytes. 

In this ction we derive some fundamental formulas about flow grouping. We show how grouping of flows can save resources 
when C mpared to isolated flows. t 
3.1 G uping Gains from Sharing Error Terms I. 

to characterize the traffic of the grouped flow. In RFC 2212, the sum over 

(8) 
, = I  ,=I  ,=I ,=I 

In RFC 2216 [SW97], which gives the general requirements for specifying service classes, the summation of TSpecs is 
describ as follows: 

his function computes an invocation request which represents the sum of N input invocation requests. Typically 
t is function is used to compute the size of a service request adequate for a shared reservation for N different 
f ows. It is desirable but not required that this function compute the "least possible sum". i 

So, as a starting point we use the "summed TSpec" as arrival curve for the grouped flow. We Want to compare the rates for 
grouped flows with the sum of the rates of the isolated flows. 
Let us st rt by looking at the simplified model of using single token buckets for the characterization of the isolated flows: 

Let S be a set of n receivers with tbi=(ri,bi) and d,,„,x,i , then the rate for the isolated system of these n flows is I 
differente between the isolated and the grouped system with respect to the allocated accumulated service 
as "Grouping Efficiency" (GE), i.e.: 

( 1  1) 

while fo.  

R"(s) 

the grouped system of these n flows, with the sum of single token buckets defined analog to (8), it is 
n 

Chi+ C 

= ,"I 
ITIIII(~I ,,,,,.,. ;) - D (10) 



For a set S of n reservations (tb;=(r;,b;) or TSpec(r;,bj,pi,Mi) and d„„,,;), find a partition P=  (P, ,...,Pk} 
I 

such that C GE(P,) and k are minirnized. 
I =  I 

It can be easily seen from (10) that i t  is advantageous if those flows to be grouped together have equal or at least simi 
requirements. Thus, we can order the flows by their delay requirements and restrict the search to the space of ordered F 
for the optimal flow to group assignment since i t  can be proven that the optimum must be an ordered partition : 
Theorem: Let S={l,.. .,n} be a set of reservations (tbi=(ri, D;) und d„„, ;), i= I, ..., n. Then the rate-optimal partition is orc 

ter &,,; . Here, the rate of a partition P=  (P ,,...,Pk} is defined as R(P)  = C R(P , ) .  

I =  I 

Proof: Assume P =  {P ,,....Pk} is rate-optimal, but unordered, i.e. we have at least two reservations h, 1 G {I, ..., n} with 
h~ P, ,  1~ P, where u>v. Then for Q=wP,,uP,) u (P,\lh}) U (P,u(h}) we obtain 

b „ + C  
R(Q) = R ( P ) -  . *I, + C  

n~rn([l„„,,,i~ P,,)-D ~nin(<l,,,„,,.i~ P,)-D 

> R(P)  

where the inequality holds due to the proposition that u>v. This however is a contradiction to the assumption that I 
optimal and thus the theorem holds. 0 

From now on let us suppose that there are enough flows to assume that those flows grouped together have "equal" del; 
such delay-homogeneous flows we obtain the following for the simplified model: 

That means we obtain gains independent of the reserved rate for delay-homogeneous flows, i.e. these gains are relativel: 
if the single flows have low bandwidth requirements. It can also be seen that GE increases with n, C and D and decrec 
dl,„. To illustrate how large the grouping gains can be, let us look at an example: 

We assume again 5 hops in the aggregation region, all using PGPS as a service discipline, with an MTU=9188 L 
c=155 Mb/s. We have 10 flows with M=SOO B, and d„=SO rns for all of them. Then we obtain: GE(S)=3.7 MD/s, irrt 
of the actual token buckets of the flows. 

This effect of saving resources due to grouping of flows is a result of "sharing the error terms" for the group of floc 
for the isolated flows these error terms must be accounted for separately. Therefore we call this concept "Pay scheduli 
only once" in analogy to the "Pay bursts once" principle. 
For the actual IntServ model with double token bucket TSpecs we obtain a more complex formula for the grouping effic 
n arbitrary flows (arbitrary with respect to partial delay, and TSpec parameters), where we use the summed TSpecs c 
curve for the grouped flow: 

The first term represenls R'(s) and the second R'(s), both for the "usual" case that the reserved rate R is smaller than 
rate of the corresponding flow. While it is still true that equal delay requirements of the grouped flows are favorable fo 
resources by grouping, they are no longer a sufficient condition to actually achieve a gain. However, for delay-homc 
flows with the Same TSpec (TSpec-homogeneous flows) it can be shown that always GE>O under weak conditions: 

Theorem: For a set S of n > l  delay- and TSpec-homogeneous flows GE>O if C>Mr/(p-r). [a very weak condition ta 
account that for many schedulers M is the rate-dependent error term and that there may be other rate-dependent deviati 

Proof: We have to distiguish two cases for isolated flows: R2p (1)  or R<p (2). Analogously, there are two cases for the 
flow: R2np (3) and R a p  (4). The only possible combinations are (1)+(3), (1)+(4) and (2)+(3). (2)+(4) is impossible ; 
verified easily. 

"(1)+(3)": GE(S) = R'(s) - R ~ ( s )  = nMfC -X  = (n - 1)- > o , for n> J (as assumed). 
d",<,J - D  [ / , , , < I ,  -D [/,?,,,I 

"(1)+(4)": GE(T) = R'(s) -R'(s) n p -  R"(s) > O  , simply as a result of the conditions (1) and (4). 
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I I ~  - M  
I>h-M+~+~ „/J-+M+C ~ ip~-~+r lM+r i~  [ I " ~ - ~ + M + c  

GE($) = R'(s)- R"(s) = 11 
p - r  !I/> -111' - 11 - r 11 - r 

I. $1 ..L "I I. I" ..I. I" ( /&D+- / - +  (/-D+""-'" 
...-. L... 11 - r IIJI - nr  p - r  IIP -11r 

which implies that GE(S) > o o  c>,MI- AII > I . 0 
p -  r 

because it  overestimates the arrival curve for the 
flows. How to circumvent this effect will be discussed in the next section. 

of flows should be grouped together respectively 
the fact whether CE>O or <O. 

3.2 l ight  Arrival Curves for Grouped GS Flows 

e shown in the previous section how grouping of flows can reduce resource requirements. However, the flows had to be 
reduction. Taking into account 
be very restricting prerequisites 

of flows. Therefore, we now lry to relax the first prerequisite of TSpec-homogeneity by using a tighter arrival 

Siiiiiilic<l TSpcr: 

I Figrrre I: Summed vs. Cascaded TSpecs. 

discussion is illustrated by the simple example in Figure I(see previous page). Here we have two flows with differing 

Here d e  have assumed without loss of generality that .rl < . . . < X , .  

Let us 

I~~cI 

where 

now take a more formal look at the problem. In general the tight arrival curve tc~c(t) for n TSpecs has the following form 

This 
TSpec 

1) = ll,(l) = 

)= I  

tisht arrival curve for the grouping of n GS flows is equivalent to the concatenation of ( n + l )  token buckets (the cascaded 
I, i.e. (with CZI as concatenation Operator for token buckets) 

n 

M+ C/)ll I < X ,  

,= 1 

h , -M,+M+ Cp, r+ r ,~  ,V, < r <.rz 

j = 2 

. . . 
t - I  ii 1-1 

C ( h 1 - ~ , ) + M +  C & r +  Crlr ,yk - , C I 5 . v ~  

l = I  1=t 1.1 

... 
, 

C (hl- M,) +M + C rlf 1 > .V, 

. Ir 1 I= I 

h - M .  rj, the burst duration for flow j, is defined as: J, = - and M=max(M,, ..., M,,). 
/J - r. 
I I 



If we apply the known results from network calculus [Bou98] on this tight arrival ciirve, assuming the GS service C 
obtain the delay bound 

du,. < h ( ~ r ,  C )  = . T I I ~ J , ~ ~ , ( ~ J I / { T : T > O A  a ( s )  < c(s + T ) ) } )  

1-  I 1 -  I 

1 . 1  - - 
R  

n 1-1 P 

where k E (1, ..., n} is such that: Cpj+ C I . , > R >  C p,+ C r , .  

j = 1  1 = 1  j = 1 + 1  l = l  

If R >  C p ,  (i.e. there is no such k), then dsM+'+~. 

j = l  

In contrast, the delay bound for the summed TSpecs of n flows is: 

ve, we 

( 1  7) 

It can be easily shown that, for a given rate R, d„„ is always greater than or equal to than d„„ , since the summed TSpe "con- 
tains" the cascaded TSpec. We do so by presenting a more general result: i 
Theorem: Let a,, a2 be arrival curves with a12a2 and let c be a wide-sense increasing service curve. Then it applies 
delay bounds d,, d2 corresponding to the arrival curves that d12d2. 
Proof: 

( I l  = h ( ~ i ~ .  C )  = . s ~ ~ p , ~ ~ ~ ( i n f { T : T > O ~ a ~ ( s ) < c ( s + T ) ) ) )  

> s u p , , „ ( i n / ' { T : T > O ~ « ~ ( . v )  < c ( s + T ) ) } )  

= h(a2 ,  C) = dZ 

The inequality holds due to the prerequisite of a l k 2  and the wide-sense increasing service curve c. 0 

Let us now look at the formulas for the service rate when given a certain delay. For the summed TSpecs we obtain: 
M=max(MI, ..., M,) again) 

whereas for the cascaded TSpec we obtain for some k E (1  ,..., n}:  

Ir the 

(21) 
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, - - I  L -  I 
b, - M Z(*-M,)+M+ ZP.+ 1.1 ( - ) + C  I:. 1 x 1  I n t - l  t 

I =  I 

b, - M, 
CI>,+ z r i > R >  C  P,+ Ci.1 

C'>?,,, , + - - D , = L  i = I  j = k + l  / = I  /'L - 1 ,  

R ' I', 
, = I  

Sake of completeness, we also give the buffer requirements for both arrival curves in Appendix A. 
h these forinulas it is now possible to compare the different resource allocation schemes for the isolated flows and for the 
)f flows characterized by either the sumrned or cascaded TSpec. Since the formulas are however not very intuitive, we 
I illustrate the effects of flow grouping on delay. rate and buffer requirernents by presenting some numerical examples. 

umerical Examples of the Grouping Gains 

nt to contrast the different resource allocations with regard to rate and buffer for the isolated flows (RIso, B„) against 
uped flow with either sumrned TSpec (RSUM, BSUM) or cascaded TSpec (RCAS, BCAS). We assume an aggregation region 
ips with MTU=9/88 Dytes, and c=155Mb/s ("ATM hops"). Furthermore, it is assumed that 10 flows are to be grouped 
r, with all of them having a delay bound d,,,„=50ms. The TSpecs of the flows are as given in the following table: 

first assume that we Want to group 10 flows with TSpec# I. Then we obtain 

639868 13410 

SUM 195769 9788 

195769 9788 

:an See that the gains from sharing the error terms can be substantial. Since we have a case of delay- and TSpec-homoge- 
flows, the surnrned and the cascaded TSpec achieve the Same values because for that case they are actually the Same 
curves. Now we relax the assurnption of TSpec-homogeneous flows and group all the different flows frorn the table 
We obtain 

61531 1 60209 

SUM 642307 64230 

419884 41988 

:lusion, what we gain from grouping flows is the sharing of error terrns, so we know that for delay- and TSpec-hornoge- 
flows grouping always leads to a gain. For TSpec-heterogeneous flows however there is also a negative contribution of 
-~g due to overestimating the arrival curve when adhering to the surnrned TSpec characterization for the grouped flow, an 
hat depends upon how heterogeneous the isolated flows really are (heterogeneity here is rnainly captured by two charac- 
s of bursts, length (b-M)/(p-r) and intensity p/r). This effect caii "rnask the positive effect of sharing the error terms as 
in the last exarnple. To avoid this negative effect, the exact arrival curve of the grouped flows, the cascaded TSpec, can 
1 for the calculations of rate and buffer and thus we have again only the positive effect. The downside of this is that the 
specification is often used for purposes like reshaping or policing, and with many heterogeneous flows being grouped 
:r this can lead to a very complicated arrival curve which, while it theoretically does not violate the worst-case delay 
is complicated to handle and rnight in reality add some delay after all. So, we address this issue in the next section. 

olicing1Shaping the Grouped Flow 

he Service rate is calculated frorn (23), it is possible to achieve the desired delay bound with a much simpler arrival curve. 
,e showii (See below) that the following arrival curve is sufficient for achieving the Same delay bound for the given R as 
i t  arrival curve: 



k - I  i, I - I  

or, as token bucket concatenation: 

" ' L  k n I - I  I - I  

That means a(t) can also be described as T S l ~ e c  E pl + C rl. C ( b l -  M, )  + M, Cpl + C rl, C ( h l -  M,) + M 

I I= I  I = I  k / = I  I = I  I 
Theorem: The above arrival curve a has the Same delay bound dll„ as the tight arrival curve tac for the given R as ca 
from the formula in ( 2 3 ) .  
Proof: We know from ( 2 3 )  that if a delay bound d„ is desired then it applies that for some fixed k E { I ,  ..., n}: 

i, k-I k 

xpJ+ C R 2 C + C rl , therefore we obtain 
J=k I= I  j=k+l ,= I  

4.q C 
d ,,,, „, , = h(ii, C )  = - - X &  + - + D  

R R 

L- l I - I  

C ( h l - M , ) + M +  C p , +  1, 

I= I / = I  I C - 
R 

- X , + - + D  
R 

Hence, we can reduce policinglshapiiig complexity dramatically without compromising resource allocation efficiency. 
is, not to take the complete piecewise linear arrival curve of the cascaded TSpec, but only those two adjacent segments 
angular point (xk)  the delay bound is actually taken on. This can be done after the Service rate is calculated from the 
TSpec and it is thus known that those two segments are "responsible" for the delay bound. 

While the delay bound remains the Same as for the cascaded TSpec, the buffer requirements depend on whether 
V > x k + l .  For the first case they are the Same, while in the second case the buffer requirements of a(t) are higher. If 
requirements shall also be kept equal for the latter case this "costs" another token bucket for the linear Segment of 
TSpec for which applies that xk+/, < V< xk+,,+,, where h E {I ,..., n-k} ,  or more formally: 

or, as token bucket concatenation: 
n I - I  

j=k / = I  ~ = k + l  / = I  
i l(I) = 

k + h  

j = k + h + l  I = I  

culated 
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4 A plication of Grouping to Aggregation P 

While 
inents 

After aving established sorne results on the problern of grouping flows, we now apply these results to the more general prob- 
lem o aggregating flows. We first prcsent a conceptual rnodel of how aggregatioii could be achieved and give sorne numerical 
exam les on how that scheme would perform. Afterwards we take a short look at the application of the model to emerging net- 
work echnology supporting QoS. i 

being a little bit more work on policinglshaping, this triple token bucket offers the sarne delay bound & buffer reqiiire- 
at a given service rate as the exact arrival curve, the cascaded TSpec, which is composed of n+I token buckets. 

4.1 onceptual Model 4 

apply the results for grouping to that general model of aggregation we face three problems: 

A fixed delay over the AR is required, i.e. a portion of the end-to-end queuing delay bound of each flow must be devoted 
to the AR. 
There are possibly distorted (with respect to their TSpec), i.e. non-conforining, incoming flows at the ingress to the AR. 
These could occupy the shared buffer of their group and destroy the guarantees on rate, delay and lossless service for 
other flows of that group. 
A possible distortion of the grouped flow niight lead to overflows in the routers beliind the egress of the AR. 

the first problem is the partitioning of the delay into two parts, delay inside and outside the AR. The question 
to assign these two parts of the overall delay. Wliile i t  is not possible to determine exactly the partial delay d,, of 
available for the subpath over the AR, we have the following relationship: 

+ D„,,, < '$ < ch - MNP - R )  ; lM + 

R ( p  - r )  R +ß"'" (29) 

to the second problem is to reshape the individual flows to their original TSpec at the ingress to the AR. While this 
the average delay of the packets of a GS flow, it has been shown that the delay bound is not violated by reshaping 
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problern can be solved by reshaping the aggregate against the cascaded TSpec of the grouped flows. Alternatively, the 
at the egress could be executed on the individual flows. This would however be inore costly since for a group of n 
token buckets have to be passed, whereas for the first alternative it is only n+l token buckets. Note that the reshaping 
done using the simplified arrival curves introduced in Section 3.4. These are only for use inside the AR. 

C„„, and D„„, are the accumulated error terms of the subpath over the AR. The lower bound corresponds to the pessirnis- 
ass~mption that packets "pay their burst" outside the AR, while the upper bound represents the case where a burst is paid 

the AR. Due to the worst-case nature of the guarantees given by GS we must however assurne the lower bound as the 
,le partial delay. The partial delay may thus becoine very small if the error terms are cornparably small to the first term 

hurst term") of the upper bound. This would lead to a relatively high allocation of resources in the AR. A protocol mecha- 
t~ circumvent this is to advertise a high D error terrns for tlie AR. From the perspective outside the AR, the AR could thus 

regarded as a fixed delay element on the path from the sender to the receiver. The drawback of this approach is that the rout- 
ou,.side the AR would need to reserve more resources than in the case of non-aggregated fl'ows. There is obviously a trade- 
between saving resources inside the AR by advertising a higher D and allocating more resources outside the AR. This trade- 
should probably be weighted by how scarce the resources inside and outside the AR really are. 

ernatively to increasing D, the slack term could be used by the AR to increase its "delay budget". This would however 
the receiver to be aware of his resource requests being possibly aggregated. 

Under these prerequisites it is now possible to utilize the forrnulas derived for the grouping of flows for resource allocation 
inside the AR. To illustrate Iiow the aggregation model compares to tlie model of resource allocation for individual tlows we 
give s me numerical examples in the next section. I 
4.2 dumeriea~ Examples 

let us assume the Same setting as in Section 3.3, i.e. we use the sarne 10 flows as specified there and 5 "ATM hops" 
For outside the AR we assurne 2 hops in front and 2 hops behind the AR, all of them with MTU=1500bytes and 

Ethernet hops"). Furthermore, we assume that all flows have the sarne requirements for the end-to-end delay 

page), the accurnulated rate, i.e. the rate over all hops and all flows is depicted, in relation to the delay 
delay outside the AR=100-delay inside AR), i.e. depending on the delay partition. The straight line 

rate for the segregated system. So we can see that aggregation can be beneficial in terms of resource 



usage if the delay partitioning is done carefully. The exact values for the accumulated rate and buffer consumption of tb  
gated and the aggregated system can be found in Appendix B. From those it can be Seen that a delay bound of 40 ms ir  
AR is optimal with respect to the accumulated rate, it gives a reduction of -13.74% with respect to the accurnulated ra 
for the accumulated buffer it is less than half (-46.67%) what is required for the segregated system (with respect to the : 
lated buffer this delay partition is not optimal, however the biiffer variations between different delay partitions are not 1 

nificant). Even if the simple approach of using the lower bound of the delay inside the AR (in our Setting this is 22,94 
taken (from (29)), maybe because it might be considered too time-consuming to search for the optimal delay par 
because not all the relevant information is available, a significantly better accumulated rate and buffer can be achieved 
the segregated system (-9.81% for the accumulated rate and -53.78% for the accuinulated buffer). , 

Delay inside AR (ms) 

Figure 2: Segregated flows vs. Aggregated Flow. 

4.3 Application To Emerging Technology 

While we have assumed RSVPnntServ as the technology being used outside the AR, we could in principle utilize the re 
any of the following technologies inside the AR: 

ATM, 
Differentiated Services, 
RSVPAntServ (Hierarchical RSVPAntServ), or 
any connection-oriented technology that gives rate guarantees. 

There are many issues to be dealt with when using aggregated RSVP-based requests over one of these technologie 
dynamic aspects of the aggregation are however not the focus of this paper and we refer to other work in this area (for h 
cal RSVPAntServ See [GBH97], [BV98], [TKWZ98], for DiffServ See [BYF+98], for ATM See [SDMT97]). Howeve 
these issues, the "marking" of excess packets at the ingress into the AR, is related to the static aspects of aggregation W( 

at in this paper. This marking is required in order to not destroy the flow isolation stipulated by the GS specification. 5 
AR is a(n) 

DiffServ cloud then the DS byte could be used, e . 3  by marking conformant traffic with the EF PHB and excess tra 
the DE PHB, furthermore the simplified arrival curves of Section 3.4 could be used as a profile. 
ATM cloud then a separate VC for the conformant part of the aggregated flow should be used, while the best-e! 
(setup by e.g. Classical IP over ATM) could be used for excess traffic, 
Aggregated IntServ cloud there is a problem, since no marking mechanism is provided; while the individual flows 
policed strictly at their entrance to the AR and be forced to conform, this would disobey the GS specification's recon 
tion of sending excess traffic as best-effort. 

5 Related Work 

The use of piecewise linear functions as traffic envelopes has been suggested before, e.g. in [KWLZ96], to give a bette 
tion of network resources for bursty sources like compressed video than the use of simple token buckets. While in the 
empirical evidence showed the utility of piecewise linear arrival cur,ves with multiple Segments, we looked at the case ol 
of regulated flows were the gain can be shown analytically. 

There is also some work on the generic problem of inultiplexing regulated traffic onto shared resources (See e.g. [E 
[LZTK97], [GBTZ97]). However, all of these do not treat the case of delay-constrained flows and are thus not directly 
ble to GS flows. 

The problem of resource allocation for the grouping of GS flows has also been addressed by [RG97]. The discussioi 
however restricted to the case of the simple token bucket model and homogeneous flows. We go one step further with ( 

ysis for the model of TSpec-described flows and the inclusion of TSpec-heterogeneous flows. Furthermore, we do not r 
grouping but also discuss how aggregation can be achieved (in terms of our terminology). 
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6 C nclusion and Future Work I. 
g required. Though an example is not a proof, i t  is at least a hint that aggregation could offer more efficient net- 
usage, a further argument for aggregation besides its main attraction of reducing state in the coi-e of a large net- 

ork there is certainly the necessity of a more formal investigation under which circumstances aggregation offers 
source usage in comparison to the segregated System. We derived the necessary formulas, but a detailed analy- 

ixes, different scheduling disciplines remains to be done. In 

d such decisions, but how exactly is for further study. 
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Appendix A - Buffer for Summed and Cascaded TSpec 

For the buffer of the summed TSpec we obtain: 

For the buffer of the cascaded TSpecs we obtain (k E { I ,  ..., n}) :  

Appendix B - Accumulated Rate and Buffer 
We denote the accumulated rate and buffer as aR, and aB„ where X E (SEGGR, AGGR,y}, i.e. the seggregated and 
System, and y stands for the delay inside AR. MIN denotes the minimum available delay inside AR as obtained from (29), 
is for the given example 22.949 ms. 
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