
Darmstadt University of Technology

Department of Electrical Engineering & Information Technology
Merckstraße 25 • D-64283 Darmstadt • Germany

Phone: +49 6151 166150
Fax: +49 6151 166152
Email: info@KOM.tu-darmstadt.de
URL: http://www.kom.e-technik.tu-darmstadt.de/

Industrial Process and System Communications (KOM)

A Flexible, QoS-Aware
IP/ATM Adaptation Module

Jens Schmitt

December 1999

Technical Report TR-KOM-1999-06

1

reas-
ing
not yet
g the

their
y net-
iate

ed IP/
ular,
itecture

apta-
nding
neces-
asy to
the

sks of
tation

onve-
anism
A Flexible, QoS-Aware IP/ATM
Adaptation Module

Jens Schmitt

Industrial Process and System Communications
Department of Electrical Engineering and Information Technology

Darmstadt University of Technology
Merckstr. 25 • D-64283 Darmstadt • Germany

{Jens.Schmitt, Martin.Karsten, Lars.Wolf, Ralf.Steinmetz}@kom.tu-darmstadt.de

Abstract

Overlaying IP-based networks onto ATM subnetworks is a network configuration pattern found inc
ingly often. While IP networks traditionally only offer plain "best-effort" service they are now evolv
to offer more sophisticated services. Nevertheless, the exact mechanisms for providing QoS are
settled and essentially non-existing in today’s production-level networks, with the Internet bein
most popular and important example. On the other hand, ATM networks have been designed from
inception to offer a wide range of QoS mechanisms. Thus, given the configuration of an IP overla
work over an ATM subnetwork, it is very attractive to leverage ATM’s QoS mechanisms to allev
IP’s QoS problem, at least partially. The invocation of those mechanisms will be done on so-call
ATM edge devices which are exactly at the frontier between the IP and ATM network. In partic
these edge devices could map reservation requests within the context of the RSVP/IntServ arch
onto especially setup VCs.

In this report we describe the design and implementation of a flexible, QoS-aware IP/ATM ad
tion module. This adaptation module allows an IP/ATM edge device to route IP datagrams depe
on their contents onto especially setup VCs in a performant manner. To achieve performance it is
sary to implement this module in kernel space, at least partially. On the other hand, it should be e
use, for e.g. an RSVP/IntServ over ATM, or a DiffServ over ATM mapping module. Therefore,
adaptation module was split into two parts, a kernel-level part that handles all the time-critical ta
data forwarding and a user-level part which gives access to the functionality provided by the adap
module.

The result is a very flexible and general IP/ATM adaptation module that can be integrated c
niently with earlier results of the project on approaches of how to map the RSVP/IntServ mech
onto those of an ATM subnetwork.
This work is supported in part by a grant of Volkswagen-Stiftung, D-30519 Hannover, Germany.

2

Table of Contents

1 Introduction . 5

1.1 Motivation .5

1.2 Outline .5

2 Architecture of the IP/ATM Adaptation Module 7

2.1 Overview .7

2.2 Design Goals .7

2.2.1 Problem-Specific Goals .7
2.2.2 General Goals .8
2.2.3 Secondary Goals .9

2.3 Components and their Relations .10

2.4 Interface to the IP/ATM Adaptation Module .13

2.5 Functional Restrictions of the Current Implementation .13

2.6 System Requirements .14

3 The VCM Kernel Instance . 15

3.1 Overview .15

3.2 Review of UNIX Device Drivers and the STREAMS Mechanism.15

3.2.1 UNIX Device Drivers .15
3.2.2 STREAMS Framework and Mechanisms. .16

3.3 Architecture of the Fore ATM Network Driver .19

3.4 Design Goals and Decisions .20

3.5 Architecture of the VCM Kernel Instance. .21

3.6 Modules of the VCM Kernel Instance. .23

3.6.1 Solaris Device Driver Specifics Module: vcm_ddi.c23
3.6.2 VCM STREAMS Multiplexing Device Driver: vcm_dev.c.23
3.6.3 VCM STREAMS Module: vcm_mod.c .26
3.6.4 Filter Configuration and Management Module: vcm_filter.c28
3.6.5 Filter Rule Matching Module: vcm_rule.c .30

4 The VCM User Instance . 32

4.1 Overview .32

4.2 Design Goals and Decisions .32

4.3 Architecture of the VCM User Instance .33

4.3.1 Global View .33
4.3.2 Static Model .34

4.4 User Interface Layer Classes .36

3

4.4.1 The Filter Class .36
4.4.2 The FilterRule Class .37
4.4.3 The VC Class .38
4.4.4 The PointToPointVC Class. .39
4.4.5 The MultipointVC Class .40
4.4.6 The QoS Class. .40
4.4.7 The AddrResolver Class .41
4.4.8 The SimpleAddressResolver Class .41

4.5 Kernel Interface Layer Classes .41

4.5.1 The KernelIF Class .41
4.5.2 The UNIcontrol Class .42
4.5.3 The VCMcontrol Class .43

4.6 Auxiliary Classes. .43

4.6.1 The List Class .44
4.6.2 The SortedList Class .45
4.6.3 The VCDVCTuple Class .47
4.6.4 The AddrPartyIDTuple Class .47

4.7 Example of Use .47

5 Summary . 49

 References. 50

4

est IP-
y used
arge
ns, i.e.

bling
ch is
eeded.

t

l for
sub-

e dis-
ations

con-
em of

net-
e code

of the

e for-
ristics
t for
llow

rvices

d. We
ionale.
terface

h work

th, its
ture.
ecture,
cture.
1 Introduction

1.1 Motivation

IP-based production networks essentially still offer only best-effort service, and so does the larg
based network - the Internet. However, the Internet is becoming or even already is a commerciall
ubiquitous communication infrastructure. A fact which will eventually require the Internet (or also l
IP-based intranets) to be able to accurately predict its performance for business-critical applicatio
deliver stringent Quality of Service (QoS) guarantees for those applications.

On the other hand, the Asynchronous Transfer Mode (ATM) technology offers a lot of QoS-ena
facilities. However, due to its homogeneity stipulation, it faces its degradation to a link layer whi
being used by TCP/IP in the core of the network where its accurate QoS mechanisms are most n
The result is:

IP lacks QoS, but has a wide distribution - ATM has QoS, but is not available end-to-end.
Hence it seems very reasonable that IP takes ATM’s assist in order to provide QoS, so tha
its huge user base can profit from ATM’s facilities without the need of introducing ATM
end-to-end.

In previous reports ([SWS97a], [SKWS98]) of the IQATM project we used the term overlay mode
that kind of operation for the special case when mapping the RSVP/IntServ architecture onto ATM
networks.

In general, the problem of providing QoS in packet-switched networks can be separated into th
tinct but related problems on the control and the data path. Previous prototypical implement
within the project ([SWS97b], see also Appendix) mainly focused on solution approaches for the
trol path issues of the problem, while they used a very simple and inefficient solution for the probl
providing QoS on the data path. That was due to the non-availability of source code of the ATM
work driver, which needs to be modified for that purpose. Now we have access to such sourc
(thanks to the Fore partner’s programme) and thus it was decided to overcome the deficiencies
previous implementations on the data path.

Therefore we developed in a first step an IP/ATM adaptation module that allows to instruct th
warding path inside an IP/ATM edge device to "route" IP data flows according to some characte
onto especially setup ATM VCs. While the adaptation module’s provided functionality is sufficien
efficiently operating RSVP/IntServ on the data path, it is intentionally designed more flexible to a
for other QoS-conveying information in IP datagrams (as e.g. contained in the Differentiated Se
(DiffServ) byte) to be a source of special handling in the ATM network as well.

1.2 Outline

In the next chapter, the overall architecture of the IP/ATM adaptation module is being presente
provide the design goals which lead the development of this adaptation module and give their rat
Then a macroscopic view on the components of the adaptation module is given and the general in
to the adaptation module is described. The adaptation module consists of two instances whic
together:

• a kernel instance, and a
• user instance.

In chapter 3, we describe the design and implementation of the kernel instance by looking at bo
global architecture and the functionality provided locally by the modules which form that architec

In chapter 4, details on the user instance are presented. Again we start by looking at its archit
before we go into the details of the implementation of the components which make up that archite

5

w to

refer-
In addition, we illustrate the application of the IP/ATM adaptation module by a short example of ho
use it via the library interface provided by the user instance of the adaptation module.

In the last chapter, we provide a short summary of the report and give the relevant literature
ences.

6

brief
uit
ime we
pment

nt com-
ip with
hortly
QoS

pter 4.
unc-
f this

c goals
apta-
ving to

f
could

to:

ld be

re or
ta that

nge-

ffort
2 Architecture of the IP/ATM Adaptation Module

2.1 Overview

In this section we describe the architecture of the IP/ATM adaptation module. We start by giving a
overview of the function of that module, which will further on also be called VCM (Virtual Circ
Management) module. We discuss its design goals and what it is aimed at, and at the same t
point out what it is not, respectively what have been secondary goals during the process of develo
and why some restrictions have been made. Following these discussions we present the differe
ponents of the VCM module and their relationships among themselves as well as their relationsh
existing code in the operating system and the ATM network device driver. Furthermore, we s
illustrate its interface that shall allow higher layer/level software to make use of ATM’s advanced
capabilities in an easy and elegant manner. A more detailed view on that interface is given in cha

The code for the IP/ATM adaptation module is still a prototype and does not offer yet all the f
tionality one could wish. What is still missing and which restrictions apply is treated at the end o
section along with the system requirements of the implementation of the VCM module.

2.2 Design Goals

We can distinguish between problem-specific goals and general design goals. Problem-specifi
are related to what we actually want to achieve with respect to the functionality of our IP/ATM ad
tion module. General goals are related to desirable characteristics any software system is thri
achieve, however we highlight those that are of particular importance for the VCM module.

2.2.1 Problem-Specific Goals

The first and foremost design goal is certainly to offer arich functionality , which is to have a means o
using ATM’s mechanisms and characteristics for any IP QoS related matters, examples of which
be:

• RSVP/IntServ,
• ST-II,
• DiffServ/IP precedence,
• policy-based configurational (static) QoS,
• secure communications (e.g. for VPNs),
• simple hybrid TCP/IP-ATM API.

From the pretty diverse sample potential uses of the VCM module it follows thatflexibility should be
one of the most important design goals for the adaptation module. Flexibility here is with regard

• mapping of flows onto VCs, i.e. many-to-many relationships between flows and ATM VCs shou
possible,

• description of what constitutes a flow (arbitrary rules on IP and higher level headers), i.e. mo
less arbitrary rules on IP and higher level headers should be possible to define a flow of da
shall be forwarded using one or more (in case of multicast) VCs.

Another more technically motivated design goal is to beindependent of IP convergence modulesused
for best-effort IP traffic delivery, i.e. the VCM module should be capable of interworking intercha
ably with any of the following (only the most prominent examples):

• ForeIP - the proprietary implementation from Fore of IP over ATM for uni- and multicast best-e
transmissions,

7

ver

rs)

use of

over

le be

sions
ally in

e is to
odule.

f the

alls
edge

havior
to the
nt and

rthy
eader

well.
od-

r part-
e Fore
ly the

/ATM

ion
• Classical IP over ATM (CLIP) - the IETF standard solution for unicast best-effort IP traffic o
ATM subnetworks,

• Multi-Protocol over ATM (MPOA) - the ATM Forum’s standard for delivering IP (beyond othe
over ATM networks (again only unicast best-effort IP traffic).

The idea behind the independence from the IP convergence module in use is to be able to make
their different strengths, e.g.

• when using ForeIP, then IP multicast is available and we are able to test all the fancy RSVP
ATM multicast issues we derived conceptually in [SKWS98],

• when using CLIP, then we will certainly find a large installed base and should thus in princip
able to use the VCM module as a base for larger tests,

• when using MPOA, then we can make use of NHRP-initiated shortcuts for unicast IP transmis
and thus maximally switched paths, an interesting feature we have investigated conceptu
[SWK+99] and would like to be able to test in practice.

2.2.2 General Goals

Of course, the list of general design goals is virtually endless, however what we want to do her
emphasize those that are of special significance to the development of the IP/ATM adaptation m
These are:

• Modularity of the code, especially in order to ease portability and migration to new releases o
operating system and/or ATM network driver code.

• Reusability of the code, since some parts could also be interesting to filtering software for firew
or similar environments that need to deal with customizable forwarding decisions within an
router, therefore genericity in this part could be beneficial.

• Minimization of kernel-level part, whilemaximizing the user-level part without sacrificingeffi-
ciencyon the data forwarding path, i.e. only the most necessary changes to the forwarding be
should be realized inside the kernel, while all the control functionality should be handed over
user-space part of the implementation. Rationale behind this goal is the ease of developme
coding in user-space when compared to kernel space.

• Extensibility of the code, is certainly a must, as for example the rules constituting a QoS-wo
flow will certainly experience changes and extensions. Similarly, with the advent of IPv6 the h
formats will change and that must be accommodated by future versions of the VCM module as

• Minimal invasivenesswith respect to existing code, i.e. Fore’s ATM driver code should not be m
ified unnecessarily if possible, the same applies for the Solaris operating system source code*. This
is a pragmatic design goal which allows us in the first place to make the code available to ou
ners at Deutsche Telekom AG since modifications inside the Solaris source code and/or th
ATM network driver code would either necessitate the existence of a source code license or on
binaries could be delivered thus preventing further extensions and modifications of the IP
adaptation module.

• Simple, butflexible interface to the services provided by the VCM module. We want anobject-ori-
ented interface since this represents the problem domain well.

*. Note however that it was certainly necessary to know that code, in particular in order to be able to fit the adaptat
module so neatly into the existing software

8

odule,
s in

as

me
f the

ich VC
rating
ne all
nel is
small
his is
cation
ich
lexity
t con-
nce

gree,
, SGI,
n
ow-
on the
not

dule
d by

tation
tion

om-
made
VCM

vel
ad of
ation
ould be
re.

ment of
ealized
s strict

let us
code
2.2.3 Secondary Goals

After having stated the general and problem-specific design goals for the IP/ATM adaptation m
we now want to make clear what we did not aim at primarily and why. While the following point
general certainly are important goals to strive for we will explain why we did not focus on them
much as on the aforementioned goals. Those "neglected" design goals are:

• 100% optimized performanceis not aimed at, although architecturally it should be possible if so
work in tuning the software is invested. As mentioned above the performance-critical parts o
code, which are represented by the decisions on the data path which packets to "route" on wh
shall be part of the kernel like the rest of the communication subsystem under the Solaris ope
system. Thus there is no fundamental performance problem. However, we do not intend to tu
the data structures to their optimum performance. For example, if the filter set inside the ker
represented by a simple linear list, there are only small performance penalties for a relatively
filter set, whereas of course for larger sets with complicated (with respect to matching) filters t
certainly a different story. In this area very recent research work is available on packet classifi
(e.g. [WVTP97], [SVSW98] which also contain many pointers to other work in this field) wh
could be easily incorporated in principle, yet in practice adding some implementation comp
(and for maximum performance it would have to be done in hardware anyway), which was no
sidered necessary for our prototypical solution, which will under all likelihood never experie
such a large filter set.

• Portability - while being an honorable goal, this is in our case only possible to a very limited de
i.e. the code should be readily portable to System V based Unix platforms (e.g. Solaris, HP-UX
Digital UNIX, ...) and ATM network drivers that offer an API to the UNI signalling facilities withi
the driver code and a DLPI (Data Link Provider Interface) interface to upper layer protocols. H
ever, operating system platforms that do not implement their communication subsystem based
STREAMS mechanism of System V, or ATM network drivers that do not conform to DLPI or do
offer an API to the UNI services will certainly represent a major problem when the VCM mo
code is to be ported on them. While portability to such platforms in principle could be achieve
isolating the platform-dependent code rigorously, this would lead to substantial implemen
efforts which are not justified for a prototypical system as is projected for the IP/ATM adapta
module.

• Completeness- while the VCM module shall be flexible and extensible it is not aimed at being c
plete. For example not all possible filter rules one could imagine should be implemented and
readily accessible to the user, but rather a user should with a minimum of modifications to the
module be able to extend the code for new filter rules to be applicable.

• Failure Handling - since the IP/ATM adaptation module is not aimed at being production-le
code, sometimes simple failure handling (defaulting to exiting in extreme failure situations inste
handing over to the user with detailed reports of what went wrong) for ease of implement
should be given preference over absolute protection against faults. Nevertheless, all faults sh
detected, albeit their handling does not always have to be as sophisticated as one could desi

To emphasize once more: while the above goals have not been the leading forces for the develop
the IP/ATM adaptation module, they have nevertheless not been totally neglected but have been r
in a "best-effort" manner, whereas the aforementioned primary design goals have been viewed a
requirements.

2.3 Components and their Relations

After having discussed the goals which led our development of the IP/ATM adaptation module
now take an overall view on the actual design of the VCM module and how it fits into the existing

9

the

trivial
which
pro-

se of
, as is
sport

lexer
g them
uting/
e net-
grams
the IP
nsport

ivers.
spective
nd data
nsport

ible to
on to
ad. An

a spe-
s video
aemon
PEN

ably
inter-
clos-
to the
nding
g. sig-
signal-

fferent

ence
d by

s for

the
of the operating system and the ATM network driver. This is illustrated in Figure 1. Let us start from
bottom up. Here we have the hardware of the network adaptors, i.e. the Ethernet† respectively the ATM
controller. This corresponds to the physical layer. In the case of Ethernet the link layer is almost
and is realized in a moderately sized character device driver called le0 (under Solaris) on top of
the higher layer protocols are stacked. In a System V UNIX (as Solaris is one) the link layer would
vide a standard interface called DLPI in order to offer its services to the network layer (in the ca
BSD-based systems the ifnet interface would be provided by the link layer module). Furthermore
depicted in Figure 1, the upper layer protocol stack in System V UNIXes, i.e. the network and tran
layer is implemented in kernel space using the STREAMS framework. The IP STREAMS multip
driver serves as the central component receiving several streams from upstream and multiplexin
on the correct downstream directions to the corresponding network drivers (according to the ro
forwarding table). From the IP multiplexer there are always two streams leading downstream to th
work device drivers where one is for the ARP control requests and the other is for the actual data
to be sent over the network. For the former stream the ARP module is pushed, while for the latter
and the ARP module are pushed, in that order. Upstream from the IP multiplexer there are the tra
layer STREAMS device drivers, the most common of which certainly are the TCP and UDP dr
There is one stream for each transport layer. On such a stream a module corresponding to the re
transport layer is being pushed as can be seen again in Figure 1. Applications that want to se
using the TCP/IP protocol suite are of course run in user space and transmit their data to the tra
layer devices by opening up a stream to the transport layer STREAMS devices (it is also poss
build up a stream directly to the IP multiplexer using "raw" IP, as for example does the RSVP daem
send its protocol messages) and crossing the user-kernel borderline by using the STREAMS he
example of such an application depicted in Figure 1 is the conferencing tool vic, of which there is
cial release that is RSVP-enabled, i.e. uses RSVP signalling in order to reserve resources for it
flows to experience uncongested transmission paths. This is achieved by contacting the RSVP d
that is running in user space via an API called RAPI (which is under standardization by the X/O
group).

Let us now take a look on the ATM-side of our edge device. The ATM network driver is consider
more complex than the Ethernet network driver and is itself constructed of several modules that
work with each other. Some of them, but not all, are depicted in Figure 1. The lowest, respectively
est to the hardware controller is a character device driver named fatm0 which interfaces directly
hardware of the ATM network adaptor and makes available some very basic functionality like se
and receiving data, reserving local VC resources, etc. Eventually, all the other functionality as e.
nalling is based on those functions in the fatm0 driver. The Fore code encompasses two different
ling modules (implemented as character device drivers):

• Fore’s proprietary SPANS signalling protocol, and
• the standard-conform UNI 3.0/3.1 signalling as specified by the ATM Forum.

On top of the signalling modules and the basic fatm0 module there are several modules for di
kind of purposes, still implemented in kernel space. In Figure 1, two of them are depicted:

• the Fore IP device STREAMS driver (called fa0), implementing Fore’s proprietary converg
module for realizing best-effort IP transmissions over an ATM subnet by using facilities provide
the SPANS signalling,

• the SDAPI device STREAMS driver (called sdapi), implementing a signal-driven API that allow
direct access to the facilities provided by the UNI signalling.

†. We assumed the IP-side of the edge device to be connected to an Ethernet as it was actually
case in our test settings.

10

e IP/
those
All of the above were the existing components before the introduction of the components for th
ATM adaptation module. As already mentioned one of our most important design goals is to leave

arp

ip

arp

IP

TCP UDP

udptcp

arp

ip

arp

VCM

le0

RSVPd exTCI
VCM Library

VCM
control

UNI
control

vcm

sdapi

UNISPANS

fatm0

Ethernet Controller ATM Controller

fa0*

O
pe

ra
tin

g
S

ys
te

m
 K

er
ne

l
U

se
r

S
pa

ce
H

ar
dw

ar
e

RAPIRSVP-VIC

: STREAMS connections
: non-STREAMS connections

: STREAMS device driver

: non-STREAMS device

: STREAMS module

driver/module

* : Here we could also have the classical IP or MPOA driver with our flexible design.

Figure 1:Overall view on IP/ATM adaptation module and its relationship to existing com-
ponents.

11

. The
with
ted

he task
ATM

cating
e IP
ulti-

tion of
y

h has
passed
exer
been

being
what
se has
to the
dotted
ding

in the
ented
ns are
of the
figu-

emon
S98].
tion

to set
nsist
ertain,
there

teps to
dge

e predi-
by log-
nts a

ormal
components untouched in order to be able to distribute code of our IP/ATM adaptation module
components realizing the functionality of our IP/ATM adaptation module are depicted in Figure 1
bold frames. The most important is the VCM STREAMS device multiplexing driver which is loca
between the IP multiplexer and a convergence IP module (in the example Fore IP was taken). T
of the VCM device is to multiplex the IP data streams according to configurable parameters onto
VCs. The IP multiplexer essentially does not see the Fore IP driver any more but is now communi
directly to the VCM multiplexer which however provides the same interface (DLPI) as the For
device driver so that the IP multiplexer does not realize it "talks" to someone else. The VCM m
plexer examines the IP datagram against a set of filters that are configured into it. The configura
the filters is possible via anioctl interface of the VCM multiplexer (more details in chapter 3). If an
of the filter rules applies, the VCM multiplexer routes the datagram onto the respective VC whic
been setup beforehand (see below on how), if none of the filters apply then the datagram is just
on to the fa0 driver. For the "rerouting" of the data over especially setup VCs, the VCM multipl
hands the successfully matched datagrams over to the VCM STREAMS module, which has
pushed on the SDAPI STREAMS device. In the VCM module the IP datagrams are prepared for
sent over their ATM VC by prepending an internal header required for the SDAPI driver. That is
has to be done for the ingress to an ATM network. For the egress from the ATM network, the inver
to be done by the VCM module: stripping off the internal header and putting the IP datagram in
upward directed stream to the IP multiplexer. These actions are depicted in Figure 1 by the
arrows from the VCM device to the VCM module and from the VCM module to the data stream lea
into the IP multiplexer.

The remaining question certainly is: who sets up the VCs and controls the filter configuration
VCM device. This is done in user space by an instance of the VCM module that is being implem
as a library. This library uses the SDAPI provided by Fore to setup and manage VCs. These actio
recorded by the VCM module and thus it is able to construct the required internal headers for use
especially set up VCs. The other task of controlling the VCM device by managing its filter set con
rations is also done by the VCM user library. The VCM library is all a user as e.g. the RSVP da
sees when implementing its extended Traffic Control Interface (exTCI) as described in [SKW
Therefore the VCM library interface is a crucial part of the overall design of the IP/ATM adapta
module and we take closer look at it in the next section (for details see chapter 4).

2.4 Interface to the IP/ATM Adaptation Module

The interface to the IP/ATM adaptation module is implemented as a user level library that allows
filters into the forwarding path from the IP-side of an edge device to the ATM-side. Here, filters co
of a number of rules which map data flows on a number ATM VCs that can each be setup with a c
specified QoS. The user of that library only needs to supply the logic for which data streams/flows
should be special treatment by the ATM subnetwork, the VCM module takes all the necessary s
setup corresponding VCs by using UNI signalling, rerouting the data path within the IP/ATM e
devices, and so on as described above. The logic is a simple restricted predicate logic, where th
cates are based on arbitrary conditions in the headers including and above the IP layer combined
ical ANDs, thus constituting a filter rule, while an ORed concatenation of such filter rules represe
filter which is mapped on a set of VCs, where the sets of the VC endpoints is disjunct. In a more f
way filters can be described as:

Let Ai,j(p), i=1,...,n, j=1,...,k, be predicates defined on the contents of the IP packet p,

e.g. Ai j, p() 1 if IP dest-addr = a.b.c.d

0 otherwise



=

12

inds
ons are
s fields
s to be
g for-

ever
next

ctions

simple
tched.
ctures

lways
that the

ossi-
ard:
 order

plumb-

-based
ters)
to the
tic of

es that

ystem

version

(at the
re is

able
then constitutes a filter rule forj=1,..,k,

and constitutes a filter (withendpoints(VCi) ∩ endpoints(VCj)

= {} for all i,j).

Since flexibility was the most important design goal for the interface towards the VCM, different k
of matching actual packet header subfields against filters where introduced, i.e. predicate definiti
very general. For example it is possible to do mask matches which is particularly suited to addres
that are structured as e.g. IP’s source and destination address fields, thus allowing for filter rule
defined on whole IP subnets (e.g. "all traffic from subnet a.b.c shall take extra VC v when bein
warded to subnet d.e.f").

2.5 Functional Restrictions of the Current Implementation

In this subsection we want to outline restrictions of the current implementation, which should how
not be critical for the use of the VCM module as a prototype and which will be overcome in the
releases of the IP/ATM adaptation module in the next phase of the IQATM project. These restri
are:

• Ease of implementation was often given preference over efficiency, as e.g. in the case of the
list of the filters inside the kernel module against which any incoming packets has to be ma
Here certainly is much room for improvement by using a more sophisticated, tuned data stru
which allows for faster matching against the filter rules.

• The adaptation module is certainly very system-specific, however code at this level probably a
is. Nevertheless, we made a serious try to isolate system-specific code from general code so
porting task is simplified.

• At the moment only one user of the IP/ATM adaptation module per ATM network interface is p
ble at a time. However introducing multi-user capabilities into the library should be straightforw
• In the kernel module some additional identification for different users needs to be added in

to restrict users administrative operations on filters onto their set of filters.
• In the user level instance/library it must be ensured that some actions, e.g. the set up of the

ing are only executed once for all users and not once for each user.

• Furthermore, there maybe problems with filters that can apply at the same time, here a priority
mechanism (set by policies: e.g. IntServ-related filters may be of higher priority than DiffServ fil
should be devised. Again this should be very easy to achieve by simply adding a priority field
filter structure in the kernel and just propagating the configuration of that additional characteris
a filter through the user library to the actual users of the adaptation module, which are the on
have the knowledge to set such policies/priorities.

2.6 System Requirements

Having mentioned that the code is system-specific, we certainly have to specify which are the s
requirements when actually running the code as it is provided:

• The edge devices must be running under the SUN Solaris 2.5.1/2.6 operating system (earlier
of Solaris should be no problem, but were not tested).

• The edge devices must use Fore network adapters with ForeThought’s Software Release 5.0
time of writing it is unfortunately not yet absolutely clear whether a source code license from Fo
required in order to access the SDAPI library interface).

• The previous point means we are using ATM’s UNI 3.0/3.1 to signal VCs, thus a switch must be
to understand this signalling.

F j A1 p() … An p()∧ ∧=

F F1 … Fk∨ ∨ VC1 … VCv, ,;()=

13

t sure
urers,
evices
ed as
• During our development and testing we only used a Fore switch (Fore LE 155). We are no
whether signalling would work if edge devices are connected to switches of other manufact
which in theory they certainly should. Therefore we recommend a test scenario where edge d
are connected to Fore switches while inside the ATM network other ATM switches could be us
well.

14

out in
ernel
ayering

ect

hort
sys-
ystem.
de in
makes

asoned
more

ernel
g mod-
f the

al and
ion of
pre-
neral

nicate
etails

calls to
kernel.

e read
sized
aracter
river.
d net-
ffer an
3 The VCM Kernel Instance

3.1 Overview

In this section the kernel part of the VCM module is presented in more detail. As already pointed
the last section, one of the main goals for the design of the VCM module is to keep the VCM k
instance as minimal and lean as possible and to extend its services by the user level module (l
principle). The reasons for that are:

• ease of development,
• comfort of programming,
• maximum use of existing facilities of the ATM network driver code (a user-level API allowing dir

access to the UNI signalling is available).

In order to explain in more detail the inner working of the VCM kernel instance, we first give a s
review of UNIX device drivers in general and the STREAMS mechanism found in System V Unix
tems, as e.g. SUN’s Solaris, in order to implement (among other things) the communication subs
Furthermore, we present a high level overview of the architecture of Fore’s ATM network driver co
order to be able to show how the VCM kernel instance interfaces to that code, respectively how it
use of the facilities provided by the driver.

Although the design goals for the IP/ATM adaptation module have already been stated and re
about in the discussion on the overall architecture of the VCM module, we again look at these in a
concrete and detailed fashion for the VCM kernel instance. Next, the architecture of the VCM k
instance is being regarded with an emphasis on how the VCM kernel instance is related to existin
ules which are either part of the operating system or part of the ATM network driver. In the rest o
section we then delve into the details of the implementation of the VCM kernel instance.

3.2 Review of UNIX Device Drivers and the STREAMS Mechanism

In this subsection we review the fundamental concepts of System V Unix device drivers in gener
the STREAMS framework in order to ease understanding of the description of our implementat
the IP/ATM adaptation module. Of course, this is only a very shallow overview and without any
knowledge it might be difficult to follow later on, so for a more complete presentation of these ge
issues we refer to ([Sun96], [Sun95].

3.2.1 UNIX Device Drivers

A device driver consists of a set of routines that allows the kernel and user programs to commu
with peripheral devices. The purpose of a device driver is to hide the complex device-specific d
from the user and the rest of the operating system. It allows the user to use regular file system
access a device by translating them into device specific commands. Device drivers are part of the
There are two basic categories:

• block device drivers, and
• character device drivers.

Block device drivers are used for peripherals which must handle file systems, like hard disks. Th
and write operations use fixed size data blocks. Character device drivers do not require fixed
blocks for the read and write operation. Therefore, almost every device can be accessed via a ch
device driver. Even classical block devices can be handled by a special "raw" character device d

Character device drivers are typically used for asynchronous terminals (serial drivers), mice an
work adapter cards. A special type of character device drivers are pseudo device drivers. They o

15

"/dev/
ernel
follow
evice

the
pares the
e. The
a user

when
he cur-

t is to
it has
he ker-
each
form
vices
vers do

vide a
pends
s con-
ndler

m that
nient
e inde-

ts of a
d onto
entry point to the kernel, but do not really communicate with a device. The character device
kmem" for example is a pseudo driver that provides the possibility to read directly from the k
memory. The kernel expects certain routines in a device driver. These driver entry points must
the special naming conventions below. The following routines form the interface between the d
driver and the rest of the kernel:

• Initialization (xx_init)‡,
• Open and close (xx_open, xx_close),
• Read and write (xx_read, xx_write),
• Special input/output (xx_ioctl),
• Interrupt handler (xx_intr),
• Poll (xx_poll),
• Select (xx_select),
• Strategy (xx_strategy).

The initialization routine is called at boot time. This function checks if the device really exists in
system. It resets flags and counters and allocates the required resources. The open routine pre
device for the input and output operations. The close function is called to deactivate the devic
read and write functions perform the data transfer to and from the device. They are invoked when
process calls a read or write system call.

The input/output control routine offers some special functions for character devices. It is called
the user process issues an ioctl system call. This routine is often used to get information about t
rent status of the device.

The interrupt handler is called when the device sends an interrupt. The purpose of an interrup
indicate that the device requires the attention of the kernel. A device interrupts for example if
completed an operation or if new data has arrived. If a device is not able to generate interrupts, t
nel can periodically call a poll routine in order to service the device. The poll routine is called at
clock tick. It is helpful for handling slow devices. The select routine allows the device driver to per
synchronous multiplexing. It checks if the device is ready for a read or write access. Block de
require a strategy routine to sort the read and write requests into a queue. Character device dri
not require a strategy routine.

Not all functions must be present for each driver. For example it would not make sense to pro
write routine for a mouse or a read routine for a printer driver. Furthermore, the set of functions de
on the type of the device. The driver routines are divided into two groups according to the proces
text. The read, write and the ioctl routine form the top half of the driver. Strategy and interrupt ha
routines can be called in interrupt context and belong to the bottom half of the driver.

3.2.2 STREAMS Framework and Mechanisms

The STREAMS mechanism was developed in 1983 by Dennis Ritchie. The first operating syste
included STREAMS was UNIX System V Release 3.0. The STREAMS concept provides a conve
mechanism for the design of layered protocol stacks. It allows a clean separation between devic
pendent and device specific code.

A stream is a full-duplex communication path between a user process and a device. It consis
STREAMS head, a STREAMS driver and one or more connected modules, which can be pushe

‡. xx stands for the prefix of the device driver.

16

makes

driver is
dicate its

contain
d data.
on is
tine is

m. They
f a pair
ts of a
e a ser-

. The
llocated

user
pstream

arac-
r pro-
Like the

done
f the
eral
hich
This
hich
com-
the stream dynamically by user programs (see Figure 2). The modular layered structure
STREAMS a valuable tool especially for the development of network protocols.

The communication between the modules and therefore between the user process and the
done by passing messages up or down the stream. Each message contains a message type to in
intended purpose. For example the message type M_DATA is usually used for messages that
ordinary data. Messages of the type M_PROTO usually contain control information and associate

Special put routines are used to send STREAMS messages. A ‘write put’ (xx_wput) functi
called to pass a message to the next module below (downstream) and a ‘read put’ (xx_rput) rou
used to send messages to the next module above (upstream).

STREAMS modules are used to manipulate the messages that are passed through the strea
can be pushed onto or popped from the stream dynamically. Each STREAMS module consists o
of queues, one for the read side (rqueue) and one for the write side (wqueue). A queue consis
message queue, which contains the messages that wait for service and a put routine. It may hav
vice routine to allow deferred message processing.

STREAMS head and STREAMS driver are special mandatory modules for each stream
STREAMS head is the interface between a user process and the stream in kernel space. It is a
and initialized when the stream is opened for the first time. The STREAMS head converts the
requests into STREAMS messages and it provides the STREAMS messages which were sent u
in a user readable form to the process in user space.

The STREAMS driver provides the interface between the kernel and the device. Like regular ch
ter device drivers it hides the complexities of the underlying hardware from the kernel and the use
cesses. It converts the STREAMS messages into data structures that the device understands.
STREAMS head, the STREAMS driver is initialized via the open system call.

A special feature of the STREAMS mechanism is the possibility to multiplex streams. This is
by special modules called STREAMS multiplexers (Figure 3 shows a simplified implementation o
TCP/IP stack using the STREAMS framework). A multiplexer which multiplexes data from sev
upper streams to one single lower stream is called "N-to-1" or "upper" multiplexor. A multiplexer w
has only one upper stream but several lower streams is called "1-to-M" or "lower" multiplexer.
property provides a useful service especially for the implementation of internetworking protocols w
might route data over different network interfaces. For example one IP module can multiplex the in

Hardware

User Space

Kernel Space STREAMS Head

STREAMS Module

User Process

Figure 2:STREAMS Framework.

STREAMS Driver

17

to the

com-
nerally
lexer
again
rface

and
work
ing data to several network drivers. The appropriate driver module can be chosen in accordance
forwarding decision.

Of course STREAMS does not specify the "protocol" which neighbouring drivers/modules use to
municate with each other. This is opaque to the STREAMS mechanism and makes it such a ge
utilizable facility. For our purposes, the most interesting communication is between the IP multip
and the device-specific drivers. Here, the entry point for IP traffic into the device driver depends
on the operating system. In a STREAMS environment it would be a Data Link Provider Inte
(DLPI) [OSI91] and in a BSD based Unix system a BSD socket interface (the ifnet interface).

3.3 Architecture of the Fore ATM Network Driver

In order to understand how the VCM kernel instance fits into the existing ATM network driver code
how it makes use of that code, we give a brief overview on the architecture of the Fore ATM net

Hardware

User Space

Kernel Space STREAMS Head

FTP

Figure 3:TCP/IP protocol stack STREAMS implementation

ATM Driver

STREAMS Head

TCP STREAMS device driver (Upper Multiplexer)

Telnet

Ethernet Driver

Ethernet Device ATM Device

IP STREAMS device driver (Lower Multiplexer)

18

ted in

gence
-inde-
g data

terde-
les use

nd
ter-

illing-
is the
ll as
Those

o the

nd

ming
driver. A view on the modular structure of that architecture based on functional groups is illustra
Figure 4.

Here, we can see that device-specific, low-level code is well shielded from the code of conver
modules like MPOA, CLIP and ForeIP by using an abstract core module that provides a device
pendent interface to functionality as e.g. reserving local resources when opening a VC or sendin
onto a VC. While the arrows indicate which modules are using which other modules, not all the in
pendencies have been drawn, but only those related to control path issues, while almost all modu
on their data path the services provided by the core functionality module.

The Fore ATM network driver supports two different signalling protocols:

• SPANS (Simple Protocol for ATM Network Signalling): Fore’s proprietary signalling protocol, a
• UNI 3.0/3.1 Signalling: the ATM Forum’s standard signalling protocol at the User-Network In

face.

Those two both use the functions provided by the core module in order to setup VCs, indicate w
ness for reception of incoming VCs, etc. The only convergence module that is still using SPANS
Fore IP module, a proprietary solution from Fore to realize best-effort IP over ATM for uni- as we
multicast. All the other convergence modules use the standard-conform UNI signalling module.
are:

• the Classical IP over ATM module that implements unicast best-effort IP over ATM according t
IETF specifications RFC 1577 and RFC 1483.

• the ATM Forum’s MPOA solution which builds upon ATM Forum’s LAN Emulation standard a
the IETF NHRP specification.

• the XTI (X/Open Transport Interface) which represents a standard API for native ATM program
in the tradition of System V’s TLI (Transport Layer Interface).

Platform-specific device driver parts
(PCA-200E, SBA-200E, HE)

UNISPANS

SDAPI

ILMI

Fore IP Classical IP

XTI

MPOA

Core functionality

Figure 4:Modular Structure of Fore’s ATM network driver.

19

ectly

the
le is
sh its

ever
even
MS

essage

nce,

higher
imple-

e-
ld be
s of
hould
tocol,
elds).

s which
onfig-
tance

by the
d that
. C++.
• the SDAPI which is the kernel-level component for a user-level library that allows to access dir
the UNI 3.0/3.1 signalling services.

Another module is ILMI (Interim Local Managment Interface), which helps in autoconfiguring
ATM network by e.g. soliciting ATM addresses of a certain network interface, etc. The ILMI modu
implemented on top of the SDAPI module, i.e. uses its interface to the UNI signalling to accompli
task.

Internally, the ATM driver modules are not implemented as STREAMS modules/drivers. How
all the modules that interface to upper layers of the protocol stack (CLIP, Fore IP, MPOA) or
directly to the user (XTI, SDAPI) provide a STREAMS interface, i.e. are ready to receive STREA
messages. In the case of the IP convergence modules (CLIP, Fore IP, MPOA) the STREAMS m
passing is based on the DLPI.

3.4 Design Goals and Decisions

Apart from the design goals for the overall architecture which also apply to the VCM kernel insta
there are also more specific design goals for the VCM kernel instance:

• The functionality provided by the VCM kernel instance should be keptminimal , but complete
("Keep it lean and clean"). The goal was to designatomic functions which can be composed to an
enhanced higher level service provided by the VCM user instance. The rationale for this is the
effort required for development and coding in the kernel space when compared to user space
mentations.

• Despite minimality the VCM kernel instance should offer as muchflexibility as possible, especially
with regard to thespecificationof rules that specify which packets belong to a flow for which sp
cial VCs are available (virtually any information contained in IP and upper layer headers shou
possible to qualify for such special treatment by the ATM network). In particular different kind
granularity should be possible, e.g. traffic from certain subnets (identified by CIDR prefixes) s
be a possible criterion as well as application subflows that are qualified by e.g. (transport pro
source address, destination address, source port, destination port, and/or even RTP header fi

• The STREAMS-related operations should be separated as far as possible from the operation
are needed to accomplish the required functionality of routing the IP packets according to c
urable criteria on different especially setup VCs. Hence, the structure of the VCM user ins
should bemodular.

A design decision we made was to implement the VCM kernel instance in C. This was motivated
fact that the STREAMS framework and the kernel entry points are to be specified in C anyway an
it would make only limited sense to have a hybrid design by introducing another language, as e.g
Furthermore, performance is an argument for using C.

20

rnel

IP
r the
user
the IP

multi-
lexes
is the
agram

to any
d IP
3.5 Architecture of the VCM Kernel Instance

As illustrated in Figure 1, the VCM kernel instance’s functionality is distributed over two distinct ke

modules (bold frames respectively lines represent new components respectively relations):

• VCM STREAMS multiplexing device driver : this component is located just beneath the
STREAMS multiplexer, linked to it by two streams, one for the ARP requests (1) and one fo
actual flow of IP datagrams to the ATM network interface (2). Since it is to be configured from
space (3), it needs to be realized as a driver, since otherwise ioctl commands could not pass
multiplexer unless we do not want to change the Solaris source code of the IP STREAMS
plexer. Furthermore, it needs to be implemented as a STREAMS multiplexer since it multip
messages from the IP multiplexer onto the utilized IP convergence module (in Figure 1 this
Fore IP module, here called fa0) corresponding on whether they arrived through the IP dat
stream or the ARP message stream (4). For best-effort IP datagrams which do not correspond
of the rules being configured, the VCM device will just pass on the IP datagram to the utilize

arp

ip

arp

IP

udptcp

arp

ip

arp

VCM

le0

UNI

fatm0

fa0* sdapi

vcm

User Space

Kernel Space

: STREAMS connections
: non-STREAMS connections

: STREAMS device driver

: non-STREAMS device

: STREAMS module

driver/module

* : Here we could also have the classical IP or MPOA driver with our flexible design.

Figure 5:View on the VCM kernel instance and its relationship to existing components.

TCP UDP

1

3

2

4

8

6

SPANS

7

5

21

e IP
ices
ssages
. How-
e, that
other

" the
ations

am
API

) and
of the

cially
to the

m the
al buff-
rule to

more:
ulti-
s. If it
out of
mod-
d the
scrip-
en the

to the

m to
ond-
filter
VCM

ally be

take
.

eral a
r and
code
convergence module. Similarly, for all the configuration when the plumbing between th
STREAMS device and the ATM network interface is set up, the VCM device utilizes the serv
provided by the IP convergence module and again just passes the related STREAMS me
exchanged between the IP device driver and the IP convergence module driver back and forth
ever, if an IP datagram passes by that satisfies any of the rules configured into the VCM devic
IP datagram will be taken out of the default best-effort data path and be handed over to the
component of the VCM kernel instance: the VCM STREAMS module. Note that by "squeezing
VCM device between the IP multiplexer and the IP convergence module there are no modific
necessary, neither for the Solaris operating source code nor for the ATM network driver code.

• VCM STREAMS module: this component "sits" on top of the SDAPI device driver on the stre
from the VCM user instance, which manages the VCs by using the SDAPI library, to the SD
device. The main task of the VCM module is to receive IP datagrams from the VCM device (5
passing them on to the SDAPI device (6), thus representing an entry point into the queues
SDAPI device for the different VCs. In the reverse direction, for data arriving on those espe
setup VCs the VCM module again acts as an entry point of the received IP datagrams back in
IP device driver’s queues (7). Furthermore, the VCM module listens to all SETUP requests fro
VCM user instance (8) and copies the negotiated headers for sending on those VCs into intern
ers that can later on be associated to filter rules thus allowing IP datagrams satisfying the filter
be actually sent on that VC.

It is crucial to understand how these two component work together, so let it be emphasized once
the VCM STREAMS multiplexing driver examines the flow of IP datagrams passed from the IP m
plexer to the ATM network interface represented by any of the possible IP convergence module
detects an IP datagram that matches any of the filter rules in its filter set, this datagram is taken
the default path to the respective IP convergence module and handed over to the VCM STREAMS
ule which passes it on to the SDAPI STREAMS device driver. To enable the SDAPI device to sen
datagram on the associated VC of the matching filter rule, an internal header indicating the VC de
tor and other information needs to be prepended. This header is recorded by the VCM module wh
VC is set up by the VCM user instance, which is possible since the VCM module is pushed on
stream between the VCM user instance and the SDAPI device driver.

The configuration of the filter set is being done by the VCM user instance via a controlling strea
the VCM device driver (3) using ioctl system calls with various VCM-specific commands corresp
ing to actions as e.g. introduction of a new filter, deletion of an existing filter, etc. Whenever a new
is set up by issuing the corresponding ioctl, the SDAPI-specific headers being recorded by the
module for the last SETUP requests are associated with that filter (note that those can potenti
multiple).

3.6 Modules of the VCM Kernel Instance

After having introduced the fundamental global architecture of the VCM kernel instance let us now
a more local and detailed view on the internal modules that implement the VCM kernel instance

3.6.1 Solaris Device Driver Specifics Module:vcm_ddi.c

This module implements all the necessary functions for a Solaris device driver, respectively in gen
Solaris loadable kernel module. This code is partially shared between the VCM STREAMS drive
the VCM STREAMS module and partially specific for each of those two. It is very system-specific
that is why it was isolated in a separate module.

22

rnel
laris-
.
ernel
ten in
s for
traight-

ode of
ms to
eters
owing
lways
ocedure

f the
ddi-
ing

rmal

it has
user

n()’s it
e, in that
sys-

ses of
evice

is the
for all
evice is
eive
AMS

in the

at were
ise the
The shared functionality for the VCM STREAMS device and module is with regard to the ke
entry points for loadable kernel modules, which is the same for both. This code is extremely So
specific and certainly needs a major porting effort when desiring to port the VCM kernel instance

The specific code for the device respectively the module is concerned with their different k
entry points as e.g. for attaching, detaching, probing, etc. a device. All of these functions are writ
conformance to the DDI (Device Driver Interface) and DKI (Device Kernel Interface) specification
System V Unix systems, so that at least for those systems the porting of these parts should be s
forward.

Since the Solaris operating system kernel is multi-threaded it is important to realize that the c
the VCM kernel instance needs to be MT-safe. The STREAMS framework offers some mechanis
restrict the parallelism among the different entry points for the STREAMS mechanisms: MT perim
(for more details see [Sun95]). We have tried to allow as much parallelism as possible, yet not all
for race conditions inside our VCM kernel instance. Therefore we specified an inner perimeter a
spanning a pair of queues and an outer perimeter with exclusive access to the open and close pr
of the VCM STREAMS driver and module.

3.6.2 VCM STREAMS Multiplexing Device Driver: vcm_dev.c

This module contains all the VCM STREAMS device specific functionality. This is composed o
various STREAMS entry points typical for a STREAMS multiplexing device driver and some a
tional other functions mainly dealing with configuration of the VCM STREAMS device and hand
over the datagrams to the VCM STREAMS module.

3.6.2.1 Kernel Entry Points

The first entry point that is called when the VCM STREAMS device is opened (by using the no
system call open()) is

int vcm_dev_open(queue_t *q, dev_t *devp, int flag, int sflag,
cred_t *credp)

which does all the necessary initialization tasks. What this routine does depends upon how often
been called already. When it is called the first time it assumes that the control queue from the VCM
instance is to be opened and makes the necessary initialization for that queue. For further ope
detects that the control queue is already opened and opens as next queues the IP and ARP queu
order (which is the order in which the TCP/IP stack is built up (plumbed) in the Solaris operating
tem, which however could certainly be different for other operating systems or even other relea
Solaris). Those two queues are initialized as well and further open()’s are rejected by the VCM d
indicating that it is already busy, i.e. can service only one user instance at the same time.

To ensure that the order of the open()’s is correct is not part of the VCM STREAMS device but
task of the VCM user instance using the VCM device. When vcm_dev_open() has been called
three queues then the upward STREAMS connections in Figure 1 have been set and the VCM d
now able to monitor the IP data stream from the IP multiplexer to the ATM network interface, rec
ioctl commands from the VCM user instance and pass selected datagrams to the VCM STRE
module. Again it is under the responsibility of the VCM user instance to ensure that the plumbing
downward direction from the VCM device to the utilized IP convergence is set correct.

The logically inverse entry point is

int vcm_dev_close(queue_t*, int, cred_t*)

which just closes the queue that it was called for and releases some internal data structures th
associated with that queue. It is verified that the queue is one of control, ARP or IP queue, otherw
close is rejected.

23

anged
VCM

the IP
VCM
can be

er
lready
module
lity of

ule
d.

mecha-
r queues

ossibly
on-
ction

if an
passed

n to the
rvices

s on the
frame-
Let us now come to the entry points that are really working on the data streams being exch
between the IP multiplexer, the VCM device and the IP convergence module respectively the
STREAMS module. The first one is

int vcm_dev_uwput(queue_t *q, mblk_t *mp)

This function is always called when there are messages to be delivered downwards from either
multiplexer or the VCM user instance. Let us start with the case of the control queue (from the
user instance to the VCM device). Here the main task is to receive different ioctl commands that
issued by the VCM user instance. Those ioctls can be:

• I_LINK : This will, when received the first time, link the VCM STREAMS multiplexer to the low
IP queue leading to the IP convergence module. When being called with the lower IP queue a
being setup it is assumed that now the lower ARP queue again leading to the IP convergence
is to be linked to the VCM device. Again, ensurance of the correct order is under the responsibi
the VCM user instance.

• I_UNLINK : This will unlink the lower queues from the VCM device to the IP convergence mod
again. The order of unlinking is the reverse order of the linking. Further unlinks will be rejecte

Success or failure of those ioctl commands is then passed back upstream using STREAMS
nisms. It has to be noted that for the control queue, messages are never passed on to the lowe
instead they are always terminated in the VCM device.

For the IP queue and the ARP queue, if a message from upstream is of a message type that p
contains data (M_DATA, M_PROTO or M_PCPROTO), it is examined more closely. If it actually c
tains an IP datagram, then the actual data forwarding is delegated to the fun
vcm_dev_dataforwarding() which is described below.

Of course, the VCM device does the necessary flush handling for multiplexing drivers
M_FLUSH message is received. Any other messages for the IP and ARP queues are just being
on to the respective lower queues.

Unless they are not high priority messages all actions described above on passing messages o
lower queues are first queued in the queue serviced by the VCM device. The entry point that se
this queue is

int vcm_dev_uwsrv(queue_t *q)

This function just checks the upper queue on which an enqueued message arrived and then send
message to the respective lower queue subject to the flow control mechanism of the STREAMS
work.

The entry point for the service routine on the lower queue of the VCM STREAMS multiplexer is

int vcm_dev_lwsrv(queue_t *q)

• VCM_NEWFILTER
VCM_ADDVC2FILTER
VCM_CHANGEFILTER
VCM_ADDFILTER
VCM_CHANGEVC4FILTER
VCM_DELFILTER
VCM_DELETEVCFROMFILTER,
VCM_EXISTFILTER
VCM_LISTFILTER
VCM_FLUSH

} These are ioctl commands that trigger functions that
deal with the configuration and management of the
filter set maintained by the VCM STREAMS device.
However that is delegated to the function
vcm_dev_user_ioctl() described below.

24

back-
back-

vice.
gence

dule to
ad put
lexer
ernel
P dat-
LUSH

not high

corre-
ork.

nabled

gered

uests
f those
livered

fer of
com-
R,

_DATA,
ata,

alling
ing
here is
This function is needed in order to ensure that, after the STREAMS flow control mechanism has
enabled a previously congested lower queue to the ATM network driver, the upper queue is
enabled again. A lower put routine however is not necessary.

Those were all the entry points on the write side, let us now turn to the read side of the VCM de
The first routine that is invoked for messages coming from downstream (i.e. from the IP conver
module) is

int vcm_dev_lrput(queue_t *q, mblk_t *mp)

The main task of that function is to pass on the messages received from the IP convergence mo
the corresponding upper queues, i.e. either to the IP or ARP queue. Another task of the lower re
routine is to record the replies of the IP convergence module to DLPI requests from the IP multip
concerning the length of the link layer header, which serve for optimizing the data path in the k
implementation. That knowledge is required for our purposes in order to be able to recognize all I
agrams and to be able to locate them in STREAMS messages. Furthermore, processing of M_F
messages is provided.

Again as in the downstream case, messages are first queued in the VCM device unless they are
priority messages. The kernel entry point that services these enqueued messages is

int vcm_dev_lrsrv(queue_t *q)

This function checks for the lower queue on which the message was received and directs it to the
sponding upper queue subject to the flow control mechanism enforced by the STREAMS framew

The kernel entry point

int vcm_dev_ursrv(queue_t *q)

is again just needed in order to ensure that after a previously congested IP multiplexer is back-e
again that this action is propagated to the lower queues as well.

3.6.2.2 Other Functions

Let us now turn to the other functions that are not kernel entry points, but which are however trig
by the kernel entry point functions described above. The first of those functions is

int vcm_dev_user_ioctl(mblk_t *mp, struct iocblk *iocp)

Its task is mainly to direct the different ioctl commands to the functions actually handling those req
(located in the module vcm_filter.c). Furthermore, the correct format and number of parameters o
requests is checked and in case they are incorrect a corresponding error is triggered to be de
upstream to the VCM user instance. Another task accomplished in this function is that the buf
headers recorded by the VCM STREAMS module is marked as already used if the respective
mands requires to do so (that is the case for the VCM_NEWFILTER, VCM_ADDVC2FILTE
VCM_CHANGEVC4FILTER commands).

The function

int vcm_dev_dataforwarding(queue_t *q, mblk_t* mp)

is concerned with messages possibly containing IP datagrams. Those messages are of type M
M_PROTO or M_PCPROTO. For M_DATA messages it immediately follows that they contain d
while for the other two it must first be checked whether they really contain an IP datagram by c
the function check_for_data() . If an IP datagram is actually contained in the message be
received than that datagram is being compared against the filter set in order to find out whether t
an especially setup VC for delivery of that datagram. This filtering is done by calling the functionfil-

25

ge is

filter’s
nt, then
n passed

agram.

ule.
func-
entry

AMS
aliza-
s
head-

DAPI
data for
DAPI-
rd this
sure a
uilt up
r type
I user

ntrol
ter() , which is part of the module vcm_filter.c. If that function signals success than the messa
routed to the SDAPI device via the VCM STREAMS module using the function

int route2SDAPI(vcm_filter_t* f, mblk_t* mp)

This function prepends the stored headers for the identified filter to the message that matches the
rule. In case there are multiple headers, i.e. multiple VCs on which the IP datagram has to be se
the replication of the IP datagram takes place here. The messages constructed from this are the
to the downstream queue of the VCM STREAMS module finally leading to the SDAPI device.

As already mentioned the function

int check_for_data(mblk_t* mp)

checks whether a given message of type M_PROTO or M_PCPROTO actually contains an IP dat

3.6.3 VCM STREAMS Module:vcm_mod.c

This module contains the functionality specific for the implementation of the VCM STREAMS mod
Again we distinguish between the kernel entry points for the STREAMS mechanism and other
tions, although the VCM module consists almost exclusively of the STREAMS-related kernel
points.

3.6.3.1 Kernel Entry Points

The kernel entry point

int vcm_mod_open(queue_t *, dev_t *, int, int, cred_t *)

is called when the open() system call is issued for the SDAPI device (in case the VCM STRE
module is configured to be pushed on the SDAPI device). Besides the STREAMS-specific initi
tions this routine also sets the pointer (calledsdapi_q) to its write queue such that the VCM device i
able to pass filtered IP datagrams over to the VCM module. Furthermore the buffers for recording
ers of recently setup VCs, the so-called VC template buffers, are initialized.

The inverse kernel entry point is

int vcm_mod_close(queue_t *)

being called when the SDAPI device is being close()’d. Thesdapi_q is invalidated and the VC tem-
plate buffers are emptied.

The function

int vcm_mod_wput(queue_t *, mblk_t *)

monitors the stream from the VCM user instance (which uses the SDAPI user library) to the S
device for messages of type M_PROTO which then necessarily have to be messages containing
a certain VC being setup before via the SDAPI user library. Such messages contain exactly the S
internal format needed to send data onto VCs setup by the SDAPI device. We therefore reco
header in a VC template buffer and "swallow" the respective M_PROTO message. Again, to en
correct operation of that mechanism we need the VCM user instance to assert that per VC being b
only one time data is being sent from the VCM user instance onto that VC. Messages from othe
than M_PROTO are just passed on (to not interfere with the communication between the SDAP
library and the SDAPI device) and are enqueued for service by the kernel entry point

int vcm_mod_wsrv(queue_t *)

which does not do much besides STREAMS-specific flush handling and enforcing the flow co
mechanism provided by the STREAMS framework.

26

to the
 type.

ader a
sage is

due to
der the

SDAPI

with
kernel
list of

ecific
ching
multiple

by the
e fil-
s.

f fil-
r set
DAPI-
The entry point for the upstream directed put routine

int vcm_mod_rput(queue_t *, mblk_t *)

is very simple and just enqueues STREAMS messages coming from the SDAPI device directed
VCM user instance in the VCM module’s upstream queue unless they are not of the high priority

The such enqueued messages are then serviced by

int vcm_mod_rsrv(queue_t *)

which checks whether the messages are of type M_PROTO and have in their SDAPI-internal he
type field indicating that they are data messages. If that is the case then the respective mes
stripped off its SDAPI-internal header and passed on to the IP device directly, which is possible
the fact that the lower IP upstream read queue was recorded when the VCM device was linked un
IP multiplexer (during thevcm_dev_open() function).

3.6.3.2 Other Functions

The auxiliary function

void flush_VC_template_buffer()

purges the buffers containing the recently recorded headers for data that is to be sent to the
device.

3.6.4 Filter Configuration and Management Module:vcm_filter.c

This module contains all the functionality related to filter-specific operations, which mainly deals
configuration and management of the filters, i.e. their rules and associated VCs. The VCM
instance maintains a set of all active filters. This set is currently implemented as a simple linked
the following data structure

typedef struct vf {

 predicate_list_t rule; /* Conjunction of packet predicates */

 mblk_t** VC_template;

 int no_VC_templates;

 struct vf* next;

} vcm_filter_t;

Obviously, this is not efficient if the filter set becomes large. However, by separating the filter-sp
operations from the rest of the code, it will be easy to optimize that data structure for fast mat
against IP datagrams passing by using the latest research results on packet classification under
criteria [SVSW98].

3.6.4.1 Filter Configuration and Management functions

The functions described here correspond directly to the ioctl commands that are recognized
upper write put routine of the VCM device. They can be further divided into actual operations on th
ter set and into diagnostic functions. Let us start with the former, supposedly more important one

The function

int vcm_newfilter(vcm_filter_t*)

inserts a new filter into the existing (possibly empty) filter set (at the beginning of the linked list o
ters). It first checks whether this is really a new filter or whether it is already contained in the filte
thus ensuring that no duplicates are stored in the filter set. Furthermore, it associates the set of S

27

VCM
desired

ted by
given

dded

tion
, the
r for

xisting
y of
filters.

ng VC
VCM

sting

tem-
which

cit the
out
internal headers contained in the VC template buffer with the filter rule passed down from the
user instance. The VCM user instance further ensures that the VC template buffer contains the
contents for which VCs where set up by itself.

For the case that one or even several VCs shall be added to an existing filter, the function

int vcm_addvc2filter(vcm_filter_t*)

has been implemented. It copies the contents of the VC template buffer which has been popula
corresponding operations in the VCM user instance, to the already existing VC templates of the
filter. Hence from now on, IP datagrams satisfying the filter’s rule will also be sent on the newly a
VC(s).

The function

int vcm_changefilter(vcm_filterpair_t*)

allows to completely exchange the filter’s rule with the given filter’s rule without losing the associa
to the existing VCs on which data satisfying the filter’s rule are sent. The function is given both
existing filter and the new filter rule. The existing filter rule is needed in order to locate the filte
which the rule has to be exchanged.

The function

int vcm_addfilter(vcm_filterpair_t*)

adds a given filter to the existing filter set which however shares the same VC set as an already e
filter, that is also given when it is being called. This allows for a disjunction of filter rules, i.e. if an
those filter rules is satisfied than a matched IP datagram is being sent on the shared VCs of those

If the VC set shall be exchanged while the filter rule is retained, then the function

int vcm_changevc4filter(vcm_filter_t*)

is needed. As usual it ensures again that the given filter exists and if it does it removes its existi
set and copies instead the contents of the VC template buffer in place. Note again that it is the
user instance responsibility to populate the VC template buffer adequately.

The function

int vcm_delfilter(vcm_filter_t*)

deletes a given filter from the filter set. Of course it is first asserted that this filter is actually exi
within the filter set.

If a VC is to be removed from a given filter, then the function

int vcm_deletevcfromfilter(vcm_deletevc_t*)

is appropriate. It is given the filter for which a VC is to be removed and the index of the VC which
plate shall be removed from the associated VC set of the filter. That index represents the order in
the VCs have been set up and must be tracked by the VCM user instance.

As already mentioned there also diagnostic functions that enable the VCM user instance to eli
state of the VCM kernel instance with regard to the filter set. A simple, but useful function to find
whether a certain filter is actually existing in the VCM kernel instance’s filter set is

int vcm_existfilter(vcm_filter_t*)

If the filter exists it returnsFILTEREXISTS otherwise it returnFILTERDOESNOTEXIST.

The function

int vcm_flush()

28

n the

em) of
ist of

func-

tes are

lready

r the
is the

pecific

ee dif-

lue has

d value,

s to be

users of
s of
nition
allows to totally purge the filter set of the VCM kernel instance and should always be called whe
VCM user instance finishes for whatever reason.

A further useful function is

int vcm_listfilter()

It dumps the filter set onto the console (and thus also in the log files of the Solaris operating syst
the machine that is running the VCM module. An improved version of this could be to return that l
filters to the VCM user instance.

3.6.4.2 Other Functions

The above functions all corresponded directly to ioctl commands, now we describe some other
tions of the vcm_filter.c module.

The first function is

vcm_filter_t* filter(mblk_t *mp, int offset)

which traverses the filter set and tries to match the given IP datagram (inmp at the offsetoffset)
against one of the filters by calling the functionfilter_match() which is located in the module
vcm_rule.c (see below). If a matching filter is found the search can be stopped since no duplica
ever inserted into the filter set.

The auxiliary function

vcm_filter_t* find_filter(vcm_filter_t*)

is used in all locations where it is necessary to locate a given filter either to ensure whether it a
exists or because some configurational action is to be applied to it. It uses the functionrule_match()
from the module vcm_rule.c (see below).

Another auxiliary function is

void kill_filter(vcm_filter_t*)

which frees all the heap-allocated memory for a given filter.

3.6.5 Filter Rule Matching Module:vcm_rule.c

This module contains all the functionality related to matching filter rules and the like. Wheneve
VCM shall be extended for new predicates defined on the contents of an IP datagram, then this
only module that needs to be touched. That is the reason why it was separated from the filter-s
module vcm_filter.c.

As already described in Section 2.4, a rule is composed of conjuncted predicates. Currently thr
ferent kinds of predicates are supported:

• address-mask match predicates, which allow to specify a value and a mask and a matching va
to be equal to the specified value at the positions defined by the mask,

• exact match predicates which require a matching value to be exactly the same as the specifie
and

• range match predicates which allow to define a matching range in which the matching value ha
located in order for the predicate to be true.

We assumed that with those three types of predicates most of the required semantics needed by
the VCM module should be covered, however if not, it is straightforward to introduce new kind
predicates. Everything that is needed, from the perspective of the VCM kernel instance, is the defi

29

edicate

y con-

e
ve.
all be
exist-
of an according data type and a matching function, as we have specified them for the three pr
types given above:

For the address-mask matching predicate we have the function

int address_match(address_predicate_t, ipaddr_t)

For the exact match predicate we have the function

int exact_match(exact_predicate_t, u_char)

For the range match predicate we have the function

int range_match(range_predicate_t, u_short)

Furthermore, there are functions needed that serve as interface to the filter-specific functionalit
tained in vcm_filter.c. One of them is the function

int rule_match(predicate_list_t, predicate_list_t)

that evaluates whether two given rules are the same or not and returns the result.

The function

int filter_match(vcm_filter_t *f, mblk_t *mp, int offset)

evaluates whether a given IP datagram (contained inmpat offsetoffset) can be matched against th
given filter by using the functionality provided by the predicate matching functions described abo

Note that the latter two functions also need some minor modifications if a new predicate type sh
introduced respectively if filter rules shall be extended by new fields in an IP datagram even if the
ing predicates are used.

30

M user
tance.
odule
ance.

of the

d fash-
eafter,
s to the
etail

with
cer-

e also

re we

is not
is not
rs are
m the

d by

n fil-
nkage

n. The
its ser-

riented
l inter-
4 The VCM User Instance

4.1 Overview

In this section the VCM user instance is being presented and discussed. The basic idea of the VC
instance is to add one more abstraction level above the services provided by the VCM kernel ins
The rationale of this is to do as much as possible of the complex parts of the IP/ATM adaptation m
in user space, while only time-critical parts are done in kernel space by the VCM kernel inst
Therefore, the following tasks are done by the VCM user instance:

• signalling message handling,
• enforcement of the rules necessary for the correct operation of the VCM kernel module,
• extension/refinement of the capabilities/services of the VCM kernel instance - easier setting

filter rules,
• address resolution,
• optionally IP-ATM QoS mapping (not yet implemented).

Again we start by discussing the design goals specific to the VCM user instance in a more detaile
ion than possible when presenting the overall architecture of the IP/ATM adaptation module. Her
we present the architecture of the VCM user instance with an emphasis on how a user interface
VCM library. In the following, we discuss the implementation of the VCM user instance in more d
in order to allow for possible modifications and extensions. At the end of the section we conclude
an illustrative example on how to actually use the VCM library in order to set up a special VC for a
tain flow of IP datagrams.

4.2 Design Goals and Decisions

Besides the overall design goals for the VCM module as a whole (as described in Section 2.2), w
have had some more specific design goals for the VCM user instance. Those are:

• The interface to the VCM user instance should beflexible andeasyto use. It should beextensible
for user code since not all potential uses of the VCM module can be anticipated now. Therefo
decided to design it in anobject-oriented fashion.

• The VCM user instance shouldhide all the "knitty-gritty" details of the VCM kernel instance. In
principle, the VCM kernel instance already provides an interface to the user space. However, it
very convenient to use and many rules between using the VCM and the setup of VCs (which
part of the VCM kernel instance) must be obeyed, as e.g. the fact that all actions to kernel filte
applied to the group of VCs that have been set up since the last action (ioctl) demanded fro
VCM kernel instance. Therefore one of the main tasks of the VCM user instance is toenforce the
rules implied by the overall design of distributing the functionality into user and kernel space an
the lean design of the VCM kernel instance. Furthermore, the VCM user instanceenrichesthe ser-
vices provided by the VCM kernel instance by e.g. providing the disjunctive association betwee
ter rules applying to the same set of VCs (whereas the VCM kernel instance has no logical li
between such filters).

• Another important goal when developing the VCM user instance must be thedecent handling of
failure conditions as e.g. the case where a switch breaks down and all the VCs are torn dow
VCM user instance must be able to signal these asynchronous events to a potential user of
vices and must be able to indicate which VCs are actually affected.

With respect to the programming language we decided to use C++, since we wanted an object-o
interface design to be accompanied with object-oriented coding. However, since the system-leve

31

C, the
para-

mon,
uld be

to the
user
ased.
ing of

VCM

VP
e in
ations
v SLA
faces to the VCM kernel instance and to the UNI services as provided by the SDAPI library are in
lower part of the VCM user instance is rather procedural. Therefore C++ which supports both
digms of programming, procedural and object-oriented, was ideal for our case.

We furtherly decided to implement the VCM user instance as a library instead of, e.g. a dae
because it is in our view a more fundamental way of offering its services, since a daemon co
implemented by using the VCM library functions.

4.3 Architecture of the VCM User Instance

In this section we present the architecture of the VCM User Instance as a whole, before going in
detailed description of the implemented classes. We start by taking a global view on the VCM
instance’s functionality and its relationships to its potential users and the modules on which it is b
After that, the static model of the VCM user instance is presented, thus simplifying the understand
the implementation description in the following sections.

4.3.1 Global View

In Figure 6, the relevant part of the overall architecture for the VCM user instance is shown. The

user instance can on a macroscopic level be divided into two layers:

• Theuser interface layerwhich is directed towards the user of the VCM services as, e.g. the RS
daemon that "talks" via an extended Traffic Control Interface [SKWS98] to the VCM modul
order to set up special VCs for RSVP-signalled IP data flows according to the IntServ specific
carried by the RSVP messages. Another example (as depicted in Figure 6) could be a DiffSer
(Service Level Agreements) Manager that maps the given SLAs into specific ATM VCs.

RSVPd

User Space

Kernel Space

DS SLA
Manager

DS
over
ATM

Stream to
SDAPI

Stream to
VCM

exTCI

Kernel Interface Layer

User Interface Layer

Figure 6:Global View on Architecture of VCM User Instance.

VCM Library

VCM
Control

UNI
Control

32

pec-
p and
vided

ich
itself

 con-
 based

ecific
lock
trol
tionality
ry since
fashion

user
lemen-
ult, but

ses that
all the

g to the

let us
ritance,
e.

-
cribed
nature.
lies in
-style

e

ed to

g

• The kernel interface layeron the other hand is directed towards the kernel-level modules, res
tively their user-level interface for managing the data forwarding inside the kernel and the setu
tear down, etc. of the especially customized VCs. Along those two different tasks it can be di
even further into subcomponents:
• UNI Control, which handles everything that is concerned with the UNI-signalled VCs and wh

therefore uses the services provided by the user-level front-end to the SDAPI device (which
communicates to the SDAPI device via the STREAMS concept), and

• VCM Control, which handles all the necessary actions in order to invoke the VCM kernel
instance functionality of rerouting IP datagrams on specifically setup VCs depending on the
tents of these datagrams. Again the communication across the user-kernel space barrier is
on the STREAMS mechanism.

Since the SDAPI library provides an upcall-based interface that requires a user to "listen" on sp
file descriptors periodically, it was decided to put this "polling" into an extra thread in order to not
a user of the VCM while doing signalling for VCs in the ATM network. That means the UNI Con
subcomponent of the kernel interface layer runs as a separate thread whereas all the other func
runs as the main thread (separating the VCM Control subcomponent is possible but not necessa
the interface to the VCM kernel instance works in a synchronous, immediate request-response
so that locking for substantial periods is not an issue).

4.3.2 Static Model

A quite detailed static model, according to the Coad/Yourdon notation (see [CY91]), of the VCM
instance is given in Figure 7. Since it is almost in a one-to-one correspondence to the actual imp
tation of the VCM user instance and shows all relevant classes it is more than just an analysis res
rather encompasses already some design decisions.

The division between those classes that implement the kernel interface layer versus those clas
represent the user interface layer is illustrated by the bold dashed frame which encompasses
classes that compose the kernel interface layer while (almost) all the surrounding classes belon
user interface layer.

While the description of the internals of the classes is being done in the following sections,
look here at the relations between the classes, where by the term relation we mean here: inhe
aggregation and object relations. The classKernelIF represents the kernel interface layer’s interfac
It inherits its functionality from theVCMcontrol and theUNIcontrol class which have a direct cor
respondence to the subcomponents forming the kernel interface layer’s functionality as des
above. Theses classes are implemented quite monolithic in a style that is not object-oriented in
That is due to their proximity to system-level interface, and actually the main task of that classes
building a convergence "layer" towards the purely object-oriented user-interface layer from the C
system-level commands applying to the use of the SDAPI library and the VCM kernel instance.

The user interface layer is composed of much more classes. The most important one being thFil-
ter class.Filter ’s consist of an arbitrary number (but at least one) ofFilterRule ’s and an arbitrary
number ofVC’s** , thus storing the association between the rules on which IP datagrams are allow
use which set of VCs.Filter ’s have a relationship to theKernelIF in order to access its functionality
for setting up kernel filters.

TheVCclass is an abstract base class for eitherPointToPointVC or MultipointVC . It has a one-
to-one relation to the classQoSand a relation to theKernelIF in order to access its services for settin
up VCs via UNI signalling. Furthermore, it has a relationship to the classVCDVCTuple, whose

**. If the number of VCs is equal to 0, then the semantic of that filter is to discard a matching IP datagram, thus
accomplishing the usual functionality of a packet filter for firewalling purposes.

33
callbackOnAsync

Filter

addRule
addVC
changeRule
changeVC
removeRule
removeVC
changeRuleSet
changeVCSet

VCSetupOrder

kernelFilter

FilterRule

setIPSrcAddr
setIPSrcAddrMask
setIPDstAddr
setIPDstAddrMask
setIPProto
setTPSrcPort
setTPSrcPortOffset
setTPDstPort
setTPDstPortOffset

VC
partyID
VCD

setup
sendData
close
asyncHandler
setFilterinCharge

destAddr
filterInCharge
open

AddrResolver

resolve

MultipointVC

setup
addDest
deleteDest
asyncHandler

AddrPartyIDTuple

addr
partyID

operator<
getAddr
getParty

operator!=

KernelIF
running

API
cardAddress
controlThreadID

UNIcontrol

getAPI
getCardAddress

VCMdevFD
IPcmIPFD

VCMcontrol

newFilter
addVC2Filter

IPcmARPFD

changeFilter
addFilter
changeVC4Filter
deleteVCfromFilter
deleteFilter
filterExists
flush
listFilter

QoS

SDU

getSDU

VCDVCTuple
VCD

operator<
getVC
setVC

operator!=

Simple
AddrResolver

resolve

PointToPointVC

setup

VCList

Figure 7:The static model of
the VCM user instance.

1

0,m

1,m

1

1

0,m

1

0,1

1

1

0,m

1

1,m

1

0,m

1

Kernel Interface
Layer

User Interface
Layer

34

y
they
s of the

t
and

re-
a

y
l use.
possi-

our-
alt with

tion
the
s

ed in
the
n be
nts.
cided
CM
h is
re
ap-
alling

nd

ams

ets of

set

.
lter
instances are kept in a container calledVCList in order to track all the VCs irrespective of whether the
were built up by the local VCM module or by another remote VCM module, i.e. for the first case
are outbound while for the second case they are inbound. Only the outbound VCs are instance
classVCwhich explains that aVCDVCTuple object does not necessarily have a relation to aVCobject.
The classMultipointVC which represents a specialization ofVCcontains an arbitrary number (but a
least one) ofAddrPartyIDTuple objects in order to track the association between ATM addresses
party IDs within a point-to-multipoint VC.

Isolated from the above classes of the user interface layer are the abstract base classAddrResolver
and its specializationSimpleAddrResolver , whose task it is to resolve an IP address into the cor
sponding ATM address. The base classAddrResolver just specifies the abstract interface how such
request is to be made, whereasSimpleAddrResolver implements a very simple (and inefficient) wa
of eliciting the ATM address for a given IP address. Here a better scheme is required for actua
However by separating the interface from the implementation such an extension should be easily
ble.

4.4 User Interface Layer Classes

Let us now look more closely into the classes which form the user interface layer. We will restrict
selves here to the classes actually being accessed by user code, while auxiliary classes will be de
in a separate section (see section 4.6).

4.4.1 The Filter Class

The Filter class is the most important class keeping track of the associa
between filter rules and VCs. This is achieved by holding a sorted list on both
FilterRule ’s andVC’s. Furthermore, it is being tracked in which order the VC
are set up in a separate list calledVCSetupOrder . Since theFilter class is the
only place where the link between filters and VCs is stored (as being describ
chapter 3 the VCM kernel instance does not know this association), it is also
place where asynchronous failures with respect to VCs as e.g. link failures ca
brought to the attention of all the filter rules that are affected by such eve
However what exactly has to be done in case of such a failure cannot be de
within the VCM user instance but must be specified by the user of the V
library. This is being done by specifying a handler for such situations whic

being stored in thecallbackOnAsync function variable. Note that whenever asynchronous failu
conditions are signalled by the ATM network this handler will be called with information on what h
pened and which VC respectively which parties were affected, in the run-time context of the sign
management (UNI Control) thread.

The interface of theFilter class provides all potentially useful operations on both the filter rule a
the VC set (after aFilter has been constructed initially using its constructor):

• addRule : add a filter rule to the existing disjunction of filter rules which maps certain IP datagr
on the set of VCs for the existing filter.

• addVC: add a VC to the existing set of VCs (note that the VCs should have mutually exclusive s
endpoints).

• changeRule : exchange one of the filter rules against a new filter rule but leave the existing VC
in place.

• changeVC : exchange a specified VC against a new one but leave the set of filter rules in place
• removeRule : delete one of the filter rules constituting the filter rule set. Note that if the last fi

rule is removed then the filter does not make much sense any more.

callbackOnAsync

Filter

addRule
addVC
changeRule
changeVC
removeRule
removeVC
changeRuleSet
changeVCSet

VCSetupOrder

35

fter
arded

ave

lace.

equate

h IP
efault

ded

M

ment
orts
trans-
M ker-
that is.
eeds to
of

g

re the

where

.
ader

16-bit
atch).
red-

cified
exact

port

in
• removeVC: delete one of the VCs in the VC set of the filter. Note that if the VC set is empty a
that operation than IP datagrams that match one of the filter rules of the filter are being disc
which may or may not be desired.

• changeRuleSet : exchange the existing filter rules against a new disjunction of filter rules but le
the VC set in place.

• changeVCset : exchange the existing VC set against a new VC set but leave all filter rules in p

It needs to be mentioned that the above operations can fail in which case the methods "throw" ad
exceptions.

4.4.2 The FilterRule Class

This class is the user-level front-end for specifying the criteria against whic
datagrams should be matched in order to decide whether they take the d
VC or an especially setup VC over an ATM subnetwork. AFilterRule object
is in direct correspondence to a kernel-level filterkernelFilter , more or less
just building an object-oriented wrapper around this C structure. The ad
functionality is to intelligently initialize thekernelFilter with adequate
wild cards for the different kind of predicates which are supported by the VC
kernel instance. The actual interface provided by aFilterRule object
depends upon which and how many predicates are supported. At the mo
the VCM kernel instance and thus also the VCM user instance "only" supp
rules that are built from the predicates: IP source and destination address,

port protocol, and transport protocol source and destination port. We have discussed how the VC
nel instance has to be modified for inclusion of other predicates and have illustrated how simple
For the VCM user instance, the necessary modifications are even simpler. The only class that n
be changed isFilterRule . And here only a minor modification which provides the initialization
that new predicate and a set function for the predicate is necessary.

Correspondingly, the interface of theFilterRule class at the moment consists of the followin
methods (excluding again the constructor and destructor ofFilterRule):

• setIPSrcAddr : this method sets the IP source address predicate to the specified value (whe
mask is set to 32 bit, i.e. the match is exact).

• setIPSrcAddrMask : this method sets the mask value for the IP source address predicate.
• setIPDstAddr : this method sets the IP destination address predicate to the specified value (

the mask is set to 32 bit, i.e. the match is exact).
• setIPDstAddrMask : this method sets the mask value for the IP destination address predicate
• setIPProto : this method sets the 8-bit value against which the protocol field of the IP he

should be matched exactly in order to qualify for a certain transport protocol.
• setTPSrcPort : this method sets the transport protocol source port predicate to the specified

value (where the offset is initially set to 0, thus degenerating the range match into an exact m
• setTPSrcPortOffset : this method sets the offset value of the transport protocol source port p

icate, thus effectively specifying the magnitude of the range of that predicate.
• setTPDstPort : this method sets the transport protocol destination port predicate to the spe

16-bit value (where the offset is initially set to 0, thus degenerating the range match into an
match).

• setTPDstPortOffset : this method sets the offset value of the transport protocol destination
predicate, thus effectively specifying the magnitude of the range of that predicate.

Note that by just constructing aFilterRule and setting the desired predicates it is not yet activated
the kernel, which is of course obvious since it is not associated with any VCs yet.

kernelFilter

FilterRule

setIPSrcAddr
setIPSrcAddrMask
setIPDstAddr
setIPDstAddrMask
setIPProto
setTPSrcPort
setTPSrcPortOffset
setTPDstPort
setTPDstPortOffset

36

those
M.

ing

-
rtain

eing

ignal

s of
t VCs
that

ave
d
ation

ess, the
offered

es-
s suc-

r the

ong

calls

eing

ers of
data
4.4.3 The VC Class

This class is an abstract base class for thePointToPointVC andMultipointVC
classes for shared functionality between them and in order to be able to hold
two types of VCs in the same container if that is desired by a user of the VC
EveryVC is contained in exactly oneFilter object and has a relation with aKer-
nelIF object in order to access the UNI signalling functionality required for sett
up and tearing down VCs. Furthermore, it has a relation to aVCDVCTuple object in
order to track the outbound VCs in the globalVCList , and it has a one-to-one rela
tion to aQoSobject thereby expressing the fact that every VC has to have a ce
QoS. In addition, a VC keeps track of its party IDpartyID and its VC descriptor

VCD. A further attribute of a VC is the destination ATM addressdestAddr it is connected with (in case
of a point-to-multipoint VC it is the address of that party for which the initial SETUP message is b
sent). In the attributeopen it is tracked whether the VC is already set up or not. The attributefilter-
InCharge stores the Filter object to which the VC belongs. This is needed in order to be able to s
asynchronous events that happen on a VC to theFilter object that "knows" whichFilterRule
objects are affected by that.

The public interface offered by theVCclass consists of the following methods (excluding theVCcon-
structor and destructor functions):

• setup : this is a pure virtual function that must be specified by the concrete setup function
derived classes. However, since the setup procedure for point-to-point and point-to-multipoin
only differs with respect to a single flag (the bearer capability connection configuration flag)
must be set for point-to-multipoint VCs while it must not be set for point-to-point VCs, we h
summarized that shared functionality in a protectedsetup method that can be called by the derive
classes with the flag as parameter. This setup procedure consists of filling in the required Inform
Elements (IE) for the SETUP message as e.g. the calling party address, the called party addr
desired QoS, etc., and then actually sending the constructed SETUP message via the routines
by theKernelIF object. While the SETUP message is in transit, thesetup procedure "waits" on a
condition variable until either a CONNECT message or a RELEASE/RELEASE COMPLETE m
sage is received, those signalling success respectively failure of the VC setup. If the setup wa
cessful, then an empty data buffer is sent on that VC (using the protected functionsendData),
which however is "swallowed" by the VCM STREAMS module and stored as a VC template fo
next filter being set up in the VCM kernel instance.

• close : this method allows to close a VC explicitly, in contrast to the VC destructor which am
other things also closes the VC (by calling theclose method when it was stillopen).

• asyncHandler : this function is called when an asynchronous event happens on a VC. It then
depending on the event the corresponding function of itsfilterInCharge .

• setFilterInCharge : this method sets the filterInCharge attribute to the specified value. It is b
called from theFilter object which "knows" which VCs belong to it.

Besides the public interface there is one protected function that is important to be mentioned:
• sendData : this protected method allows to send data onto the VC. It is protected, because us

the VCM library should not send data onto VCs, because those VCs are only for special IP
streams flowing through the IP/ATM edge device.

VC
partyID
VCD

setup
sendData
close
asyncHandler
setFilterinCharge

destAddr
filterInCharge
open

37

ot

VC
n

ip to a

e

. In
ality,
int

at,
age is

e
ge,
cess
multi-

di-

yn-
mes-

ly, since
with
code to

ed

I 3.0/
n of

ities
4.4.4 The PointToPointVC Class

This class is a specialization of theVCclass described above. Actually, it does n
offer very much added functionality. It just concretizes thesetup method from its
base classes by calling its protected member functionsetup with the correct flag
for point-to-point VCs. An alternative to the design with an abstract base class
and specializedPointToPointVC andMultipointVC classes could have bee

to take thePointToPointVC class as a base and derive theMultipointVC class from it. This how-
ever seemed counterintuitive to us, since a point-to-multipoint VC does not have a ISA-relationsh
point-to-point VC.

4.4.5 The MultipointVC Class

This class is another specialization of theVC base class. It also concretizes th
setup procedure specified by the base class by calling its protectedsetup proce-
dure, but now with a flag indicating that a point-to-multipoint VC shall be set up
contrast to the PointToPointVC class there is actually some more extra function
mainly for adding and dropping parties during the lifetime of a point-to-multipo
VC:

• addDest : this function allows to add a party to an existing point-to-multipoint VC. To achieve th
the necessary IEs are filled in, as e.g. the party’s ATM address, and then an ADDPARTY mess
sent using the functionality provided by theKernelIF object with which the VC is associated. Th
addDest function then "waits" on a condition variable for the result of that ADDPARTY messa
which can either be an ADDPARTYACK or an ADDPARTYREJECT message, signalling suc
respectively failure of the operation. In case the party could be added to the existing point-to-
point VC, its party ID is being kept track of in conjunction with its ATM address in anAddrParty-
IDTuple object that belongs to theMultipointVC object.

• deleteDest : this method allows to drop a specified party from the point-to-multipoint VC. In ad
tion it releases the association between the party ID and ATM address for that party.

• asyncHandler : in contrast to thePointToPointVC a specialized version of theasyncHandler
method is required for theMultipointVC class due to the fact that there can be additional as
chronous events for this kind of VCs. So, besides a RELEASE message, also a DROPPARTY
sage can be a potential source of an asynchronous event, which needs to be handled different
now the VC could potentially remain in place if the user wishes so. The user’s preference
respect to that are specified as already described by passing the asynchronous failure handler
theFilter object which is in charge for theVC object.

In all the methods described above theMultipointVC object makes sure that it always keeps its sort
list of AddrPartyIDTuple objects up to date.

4.4.6 The QoS Class

TheQoSClass is a lean class providing an easy interface to the QoS model of the UN
3.1 specifications of the ATM Forum. While these require a lot of cumbersome filling i
IEs that apply to the QoS of a VC that is built up via a SETUP message, theQoS class
frees a user of the VCM library of that burden without hiding any of the QoS capabil
of those specifications. A user can create aQoS object by just specifying

• the traffic type it desires (which is one of {CBR,VBR,UBR} ††) to send,
• the traffic class (which is one ofqos_class{0-4}) it wants to use, and

PointToPointVC

setup

MultipointVC

setup
addDest
deleteDest
asyncHandler

QoS

SDU

getSDU

38

et of

-point
n and

ded for

ject
ly the

only

er-
class

cal

ver it
r our
ing.

classes
inter-

ser
sses
ent

e

R

• the corresponding traffic parameters (which are depending on the traffic type a subs
{ pcr ,scr ,mbs}) that apply to the connection.

It has to be noted here that we always perform uni-directional reservations, although for point-to
VCs bi-directional reservation would also be possible. This would however complicate our desig
we therefore decided to support only unidirectional VCs.

The only method offered by the QoS class besides a constructor and destructor isgetSDU which
returns a handle on the system-level representation of the IEs of a SETUP message as it is nee
the routines offered by the SDAPI library.

4.4.7 The AddrResolver Class

TheAddrResolver class is just a simple interface class that describes how an ob
that resolves IP addresses into ATM addresses should be invoked, respective
other way around how such an object can offer its services to the user. Hence, the
pure virtual method being provided isresolve .

4.4.8 The SimpleAddressResolver Class

This class provides a very simple way of eliciting the ATM address of an ATM int
face for which only the IP address is known. It is derived from the abstract base
AddrResolver and thus inherits its interface description.
Theresolve method is based upon the precondition that CLIP is running on the lo
ATM interface as well as on the remote interface. It works the following way:

• it invokes a shells script which in turn performs atraceroute for the IP address that is to be
resolved,

• this causes the CLIP cache to contain the required IP-ATM address association,
• from the cache this association is written to a local file,
• which is in turn read by theresolve routine.

It is obvious that this is not the most efficient and elegant way of doing address resolution, howe
was simple. Yet, we will work on more sophisticated mechanism to do address resolution but fo
first prototypical solution it was sufficient to show that all the rest of the implementation is work
The address resolution issue can be solved independently.

4.5 Kernel Interface Layer Classes

Let us now turn to the classes which form the kernel interface layer. As already mentioned, these
tend to be hybrids between C and C++ programming style due to their proximity to system-level
faces.

4.5.1 The KernelIF Class

TheKernelIF class is something like an "entrance door" to the parts of the VCM u
instance that communicate with the kernel-level instance of the VCM. It encompa
the functionality of the VCM control subcomponent and the UNI control subcompon
by inheriting the interface from its base classesVCMcontrol andUNIcontrol . Note
that there is always only oneKernelIF object per ATM interface, i.e. if the edge devic

††. With the network adaptors we used for testing (Fore’s PCA200E and SBA200E) it was not possible to setup VB
VCs, whereas our ATM switch (Fore’s LE155) seemed to have no problem with it.

AddrResolver

resolve

Simple
AddrResolver

resolve

KernelIF
running

39

nce
all be
all be

t is

nally
NI

cess
are
ess
e
ult is
e
y user
m just

ule
, the
is is
suing
s the
ating

ng
estion
hronous
condi-
rther-
ished

into
us not

rn
has only one ATM card, then there can be only oneKernelIF object. This restriction is controlled by
the running flag, which is a class variable indicating whether aKernelIF object is already existing
for a certain interface or not. When aKernelIF object is created it must be passed the IP converge
module on top of which the VCM device shall be "sitting", the IP address and netmask that sh
assigned to that interface and the unit number of the interface on which the VCM module sh
installed.

A possible design alternative would have been not to unify the interfaces ofVCMcontrol andUNI-
control via theKernelIF class. However, we decided it to be more convenient if anything tha
directed towards kernel-level functionality should be sent to a common interface.

4.5.2 The UNIcontrol Class

This class essentially builds an object-oriented wrapper around the functio
provided by the C-style SDAPI library which in turn provides an API to the U
signalling services provided by the ATM network driver. When aUNIcontrol
object is created (something that can only be done by aKernelIF object since
theUNIcontrol constructor is protected an thus only derived classes can ac
it), it is passed the unit number of the interface on which UNI services
desired. From that unit number the first action is to elicit its own ATM addr

using the SDAPI library and storing this address incardAddress . It then creates an SDAPI instanc
by specifying what is the callback function that shall be invoked on UNI signalling events. The res
a handle on that instance which is stored inAPI for later reference in calls to the SDAPI library. Sinc
the creation of an SDAPI instance corresponds to the setting up of a stream from the SDAPI librar
part to the SDAPI device, it is made sure that the VCM STREAMS module is pushed on that strea
above the SDAPI device by configuring the Solarisautopush facility accordingly. After that operation
autopush must be reconfigured immediately in order to avoid pushing the VCM STREAMS mod
onto other SDAPI streams which have nothing to do with the operation of the VCM. Henceforth
API instance is set up to listen to all UNI events that pertain to VCM related signalling activities (th
achieved by using a certain, common preconfigured selector byte for all instances of VCMs) by is
the corresponding SDAPI library calls. If that was successful, the UNI control thread which handle
UNI signalling events is created and the necessary synchronization primitives for communic
between the control thread and the main thread are initialized.

This control thread, implemented by the class functioncontrolThread goes into a dispatch loop
where it "sleeps" on aselect system call until something happens on theAPI file descriptor. In that
case it calls the class functionSDAPIcallback which then handles that signalling event. This handli
is actually quite complicated and depends on the state in which the VCM user is in. The main qu
here is whether the event is the answer for a certain request as e.g the setup of a VC, i.e. a sync
event that must then be signalled upwards to the main thread which is already waiting for it on a
tion variable, or whether it is an asynchronous event, i.e. the main thread is not waiting for it. Fu
more the signalling events can either pertain to inbound or outbound VCs which must be distingu
as well. In fact, all these complexities where the original motivation for locating that functionality
the user-level part of the VCM since the development is very error-prone anyway and should th
furtherly be aggravated by the difficulties of kernel-level coding and debugging.

The interface methodsgetAPI andgetCardAddress do just what their names suggest, they retu
the API handle respectively the ATM address of the interface on which aUNIcontrol object is
located.

API
cardAddress
controlThreadID

UNIcontrol

getAPI
getCardAddress

40

lity
g to

od-
ter-
M

mb-
to
. All

evice,
(using

rre-
tream

ecified

menta-
ese are
), and
4.5.3 The VCMcontrol Class

TheVCMcontrol class is an object-oriented wrapper class for the functiona
provided by the C-style interface of the STREAMS head of the stream leadin
the VCM device. Like theUNIcontrol class it is a base class for theKerne-
lIF class, which is the only one that is allowed to construct objects of it.
When a VCMcontrol object is constructed it is passed the IP convergence m
ule the VCM device shall "sit" upon, the IP address and the netmask of the in
face on which the VCM shall be installed. It then makes sure that no VC
device exists already on that interface. Next, it constructs the STREAMS plu
ing below the VCM device by opening the VCM device and two STREAMS
the IP convergence module, one for the ARP and the other for the IP stream
the file descriptors from these operations are stored in theVCMcontrol object
for later reference (inVCMdevFD, IPcmIPFD and IPcmARPFD, respectively).

Then the IP and ARP stream leading to the IP convergence module are linked below the VCM d
which is then plumbed into the TCP/IP protocol stack under the specified IP address and netmask
ifconfig).

The interface which the VCMcontrol class provides for communicating with the VCM device co
sponds one-to-one with the available ioctl commands available at the STREAMS head of the s
leading to the VCM device (see also Section 3.6.4):

• newFilter : insert a new kernel filter into the VCM device’s filter set.
• addVC2Filter : add newly setup VC(s) for a specified kernel filter.
• changeFilter : change the filter rule for a given kernel filter without changing its VC set.
• addFilter : add a kernel filter that "routes" to the same set of VCs as a given filter.
• changeVC4Filter : change the VC set for a given kernel filter.
• deleteVCfromFilter : delete a specified VC from a given kernel filter.
• deleteFilter : delete a kernel filter from the filter set.
• filterExists : test whether a given filter exists in the VCM device’s filter set.
• flush : flush all the entries in the VCM device’s filter set.
• listFilter : dump the current filter set onto the console.

The "added value" of that interface is that the parameters of those methods can however be sp
more conveniently when compared to the STREAMS head interface.

4.6 Auxiliary Classes

In this section we present the implementation of auxiliary classes that were needed for the imple
tion of the functionality of the classes for the user and kernel interface layers described above. Th
mainly container classes (mostly used for the implementation of relations with variable cardinality
classes for storing logical associations between logically linked entities.

4.6.1 The List Class

An object of type List provides a list of type ‘Value’.

template <class Value>

class List {

Standard constructor:

List();

Copy constructor:

VCMdevFD
IPcmIPFD

VCMcontrol

newFilter
addVC2Filter

IPcmARPFD

changeFilter
addFilter
changeVC4Filter
deleteVCfromFilter
deleteFilter
filterExists
flush
listFilter

41

a con-
nt con-
of type
vali-
List(const List& l);

Destructor:

~List();

Assignment operator:

List& operator=(const List& l);

Compare operations:

bool operator==(const List& l) const;

bool operator!=(const List& l) const;

Class Iterator and ConstIterator provide a similar interface and can be used to iterate through
tainer having access to its elements. ConstIterator have to be used for iterating through a consta
tainer object. Consequently the dereference-operator returns a reference to a constant object
‘Value’. When removing an element from a container, all iterators pointing to that element are in
dated and must not be used anymore.

class Container::Iterator {

Iterator();

Iterator& operator++();

Iterator& operator--();

Value& operator*() const;

operator== (const Iterator& i) const;

operator!= (const Iterator& i) const;

};

Empty the list:

void clear();

Insert element at beginning of list:

void push_front(const Value& elem);

Remove first element:

void pop_front();

Append element at rear end:

void push_back(const Value& elem);

Remove last element:

void pop_back();

Access first element:

Value& front();

const Value& front() const;

Access last element:

Value& back();

const Value& back() const;

Get iterator pointing to first element:

Iterator begin();

ConstIterator begin() const;

Get iterator pointing to last element:

Iterator end();

42

the
used

rsion

y’. A

both,

wing

list,

ment
ConstIterator end() const;

Insert element before ‘pos’. Returns iterator pointing to a new element:

Iterator insert(ConstIterator pos, const Value& elem);

Erase element at ‘pos’. Returns iterator pointing to next element after ‘pos’:

Iterator erase(ConstIterator pos);

Insert range of elements from another list, before ‘pos’:

void insert(ConstIterator pos,
ConstIterator first, ConstIterator last);

Erase range of elements. Returns iterator pointing to next element after last deleted:

Iterator erase(ConstIterator first, ConstIterator last)

Number of elements:

unsigned int size() const;

Boolean value to indicate whether container is empty:

bool empty() const;

};

4.6.2 The SortedList Class

An object of type SortedList provides a sortable list of its value type. Type ‘Key’ should be set to
same type as ‘Value’ to indicate that the ordering is inherent to the value type. If a different key is
to access elements of a list, type ‘Value’ must either be inherited from ‘Key’ or provide a conve
operator to type ‘Key’. The type ‘Compare’ must be a class adhering to the following interface:

struct CompareType {

operator bool(const Key&, const Key&);

};

The boolean function operator must model the ‘less than’ relation between two objects of type ‘Ke
standard compare class exists, named ‘Less’, which uses the default ‘less than’ operator.

Given the requirements above for ’Key’ and ‘Value’, access methods (find, erase, etc.) can take
an element or a key as an argument.

template <class Value, class Key, class Compare>

class SortedList : public List<Value> {

SortedList provides with some restrictions the interface of class List and additionally, the follo
methods are exported:

Find an element ‘elem’. Returns an iterator pointing to that element. If ‘elem’ does not exist in the
an iterator to the next-larger element is returned.

ConstIterator lower_bound(const Key& elem) const;

Find an element ‘elem’. Returns an iterator pointing to that element. Returns point to ‘end()’, if ele
is not found.

ConstIterator find(const Key& elem) const;

Find or insert an element ‘elem’. Returns an iterator pointing to that element.

ConstIterator find_or_insert_sorted(const Value& elem);

Boolean value to indicate whether a sorted list contains a specific element:

bool contains(const Key& key) const;

43

lement.

s are

it is
and
are

tion
sig-
from
r
r an

y-

arty

rm a
pped.

still
rties

e

Insert an element at the correct position. Returns pointer to new element:

ConstIterator insert_sorted(const Value& elem);

Insert an element at the correct position and ensure uniqueness. Returns pointer to new e
Returns iterator to ‘end()’, if element already exists:

ConstIterator insert_unique(const Value& elem);

Erase element at position ‘pos’. Returns iterator pointing to next element after ‘pos’:

ConstIterator erase(const Key& elem);

};

The restrictions to the interface of SortedList when compared to List is that the following method
not accessible, because they could corrupt the internal ordering:

void push_front(const Value& elem);

void push_back(const Value& elem);

Value& front();

Value& back();

Iterator insert(Iterator pos, const Value& elem);

4.6.3 The VCDVCTuple Class

This class holds the logical association between a VC and its VC descriptor as
used with the SDAPI library. As already mentioned we can distinguish inbound
outbound VCs, where outbound VCs are initiated by the local VCM module and
kept track of in aVCobject which is then related to the correspondingVCDVCTuple
object. Inbound VCs are initiated by remote VCM modules and thus have no rela
to a correspondingVCobject. Nevertheless they must also be tracked since UNI
nalling is generated for them as well and those signals must be distinguishable

signals for outbound VCs. For that reason all theVCDVCTuple objects are kept in a global containe
calledVCList and when a signalling event occurs its VCD is used in order to decide whether it is fo
inbound or an outbound VC and if it is for an outbound VC then for which one.

The operator functions are needed in order to be able to hold theVCDVCTuple objects in aSort-
edList container for faster access. ThegetVC andsetVC methods are used for setting up and quer
ing the relation to aVC object.

4.6.4 The AddrPartyIDTuple Class

This class holds the logical association between the party ID for a certain p
within a point-to-multipoint VC connection and its ATM address. AMulti-
PointVC object holds aSortedList of AddrPartyIDTuple ’s in order to
keep track of that association. This is done, e.g. in order to be able to info
user in case of a DROPPARTY message which party has actually been dro
The user can then decide how to handle that situation, i.e. whether the VC is
valuable to him or whether the whole VC shall be torn down because all pa
are essential for the communication to take place.

The operator functions are needed in order to be able to hold theAddrPartyIDTuple objects in a
SortedList container for faster access. ThegetAddr andgetParty methods are used for querying th
relation between ATM addresses and party IDs.

VCDVCTuple
VCD

operator<
getVC
setVC

operator!=

AddrPartyIDTuple

addr
partyID

operator<
getAddr
getParty

operator!=

44

imple

figura-
with

ct
setup

device

VC for
sed to

int-to-

cribed
4.7 Example of Use

In order to illustrate the use of the VCM user instance, i.e. its library interface, we present a s
example of its usage in a hypothetical user code:

First of all a kernel interface must be created

KernelInterface *ki = new KernelInterface("qaa", "192.168.230.20",
"255.255.255.192", 0);

Here we take as an example CLIP as IP convergence module (the interface of which in our con
tion is calledqaa) with the specified IP address and netmask, furthermore we use the ATM card
unit number 0.

Next, an object for address resolution is created

SimpleAddressResolver sar;

Since we only have theSimpleAddressResolver available we use that one. We now use that obje
in order to resolve two IP address into ATM addresses for peer edge devices for which we want to
special filters:

in_addr_t fiddleIP = inet_addr("192.168.230.20");

atm_addr_t* fiddleATM = sar.resolve(fiddleIP);

in_addr_t violaIP = inet_addr("192.168.230.30");

atm_addr_t* violaATM = sar.resolve(violaIP);

Now, a filter rule is created

FilterRule* f = new FilterRule;

and its IP destination address and transport protocol port predicates are set

f->setIPDestAddress(inet_addr("224.6.6.6"));

f->setTPDestPort(10000);

Next a QoS object is created and a point-to-multipoint VC object is created to the first peer edge
with that QoS

QoS* qos = new QoS(CBR, qos_class_0, 11000);

MultipointVC* mpvc = new MultipointVC(fiddleATM, qos, ki);

Then a filter object is created which associates the specified filter rule with that VC

Filter* f = new Filter(Filter::RuleList(f), Filter::VCList(mpvc), ki,
callbackOnAsync);

where the last parameter is a function variable specifying how asynchronous events on the given
that filter should be handled. From now on, IP datagrams that satisfy the filter rule (i.e. are addres
the IP multicast group 224.6.6.6 with port 10000) are forwarded using the especially setup po
multipoint VC.

If now the second peer edge device shall be added to the point-to-multipoint VC then

mpvc->addDest(violaATM);

does the job. Or if the first destination shall be deleted, then

mpvc->deleteDest(fiddleATM);

is appropriate.

This was only an illustrative example of some operations that are possible when using the des
VCM library.

45

dap-
sed

. The
global
ternal
to the
design
this
ce effi-

whereas
e out all

path
nly will
e tool

can be
the

was
P/Int-
with

goals
ection

over-
pro-
ential
is now

level,
y spe-

s will
5 Summary
In this report we provided a detailed description of the design and implementation of an IP/ATM a
tation module which allows to leverage the QoS facilities provided by ATM for an overlaid IP-ba
network. This description was structured according to the internal structure of the VCM module
VCM module is divided into a user instance and a kernel instance. In chapter 2 we provided the
view on the interworking of those two, before we gave detailed descriptions of each and their in
components in chapter 3 and chapter 4. While the kernel instance is designed according
STREAMS paradigm and implemented using the C programming language, the user instance’s
is object-oriented offering a library interface for the C++ programming language. We think that
hybrid design suits the respective needs of those two distinct instances best, since in kernel spa
ciency and ease of use of existing interfaces has preference over elegant design and reusability,
for the user instance those two metrics are crucial ones. One goal of the design was also to sourc
complex operations which are non-critical with respect to performance on the data forwarding
from kernel into user space. That ensured maximum ease of development and coding and certai
ensure this for future modifications as well, thus making the IP/ATM adaptation module a valuabl
for further experimentation with IP/ATM edge device functionality.

The adaptation module was intentionally designed as flexible and general as possible so that it
used for virtually any "QoS signal" given by the IP network in order to trigger special handling by
ATM network. Our motivation to do so was that while overlaying the RSVP/IntServ architecture
the motivation to develop such an adaptation module in the first place it is conceivable that RSV
Serv will only be one of several "tools" within IP-based networks for users to convey their desires
regard to QoS provisioning by the network. Thus flexibility was one of the most important design
for the IP/ATM adaptation module and has been like all the other design goals that were set in S
2.2 achieved from our point of view.

We think that together with the sophisticated solution approaches devised in [SKWS98] for the
laying of RSVP/IntServ onto ATM networks which were also partially implemented for our former
totype implementation (see Appendix), the IP/ATM adaptation module now also provides the pot
to support those approaches on the data path in a performant manner. Thus a complete solution
achievable by the integration of those two parts. Of course, this still remains on a prototypical
since many of the operations of an actual production-level IP/ATM edge device will be assisted b
cial hardware. However, the overall architecture should remain the same and the same algorithm
be applicable.

46

NIX

vices
rt of

Four

tian
l

ATM

over

uting
References
[CY91] P. Coad and E. Yourdon. Object-Oriented Analysis, 1991. Prentice Hall, Englewood Cliffs.
[OSI91] OSI Work Group. Data Link Provider Interface Specification Rev. 2.0.0, August 1991. U
International.
[SKWS98] Jens Schmitt, Martin Karsten, Lars Wolf, and Ralf Steinmetz. Internet Integrated Ser
Multicast on ATM Networks and RSVP Extensions for Charging, August 1998. 1st Milestone Repo
IQATM Project (Phase 2).
[Sun95] SunSoft. STREAMS Programmer’s Guide , November 1995.
[Sun96] SunSoft. Writing Device Drivers , August 1996.
[SVSW98] S. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel. Fast and Scalable Layer
Switching. InProceedings of SIGCOMM’98. ACM, September 1998.
[SWK+99] Jens Schmitt, Lars Wolf, Martin Karsten, Ralf Steinmetz, Yann-Olivier Lorcy, and Chris
Siebel. Shortcutting IP Flows over Large ATM Networks. InProceedings of the 2nd IEEE Internationa
Conference on on ATM (ICATM’99), Colmar, France. IEEE, June 21–23 1999.
[SWS97a] Jens Schmitt, Lars Wolf, and Ralf Steinmetz. Interaction Approaches for Internet and
Quality of Service Architectures , June 1997. 2nd Milestone Report of IQATM Project (Phase 1).
[SWS97b] Jens Schmitt, Lars Wolf, and Ralf Steinmetz. Design and Implementation of an RSVP
ATM Prototype, October 1997. 3rd Milestone Report of IQATM Project (Phase 1).
[WVTP97] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner. Scalable High Speed IP Ro
Lookups. InProceedings of SIGCOMM’97. ACM, September 1997.

	A Flexible, QoS-Aware IP/ATM Adaptation Module
	Jens Schmitt
	Industrial Process and System Communications Department of Electrical Engineering and Information...
	Abstract
	Table of Contents
	1 Introduction
	1.1 Motivation
	1.2 Outline

	2 Architecture of the IP/ATM Adaptation Module
	2.1 Overview
	2.2 Design Goals
	2.2.1 Problem-Specific Goals
	2.2.2 General Goals
	2.2.3 Secondary Goals

	2.3 Components and their Relations
	Figure 1: Overall view on IP/ATM adaptation module and its relationship to existing components.

	2.4 Interface to the IP/ATM Adaptation Module
	2.5 Functional Restrictions of the Current Implementation
	2.6 System Requirements

	3 The VCM Kernel Instance
	3.1 Overview
	3.2 Review of UNIX Device Drivers and the STREAMS Mechanism
	3.2.1 UNIX Device Drivers
	3.2.2 STREAMS Framework and Mechanisms
	Figure 2: STREAMS Framework.
	Figure 3: TCP/IP protocol stack STREAMS implementation

	3.3 Architecture of the Fore ATM Network Driver
	Figure 4: Modular Structure of Fore’s ATM network driver.

	3.4 Design Goals and Decisions
	3.5 Architecture of the VCM Kernel Instance
	Figure 5: View on the VCM kernel instance and its relationship to existing components.

	3.6 Modules of the VCM Kernel Instance
	3.6.1 Solaris Device Driver Specifics Module: vcm_ddi.c
	3.6.2 VCM STREAMS Multiplexing Device Driver: vcm_dev.c
	3.6.3 VCM STREAMS Module: vcm_mod.c
	3.6.4 Filter Configuration and Management Module: vcm_filter.c
	3.6.5 Filter Rule Matching Module: vcm_rule.c

	4 The VCM User Instance
	4.1 Overview
	4.2 Design Goals and Decisions
	4.3 Architecture of the VCM User Instance
	4.3.1 Global View
	Figure 6: Global View on Architecture of VCM User Instance.

	4.3.2 Static Model
	Figure 7: The static model of the VCM user instance.

	4.4 User Interface Layer Classes
	4.4.1 The Filter Class
	4.4.2 The FilterRule Class
	4.4.3 The VC Class
	4.4.4 The PointToPointVC Class
	4.4.5 The MultipointVC Class
	4.4.6 The QoS Class
	4.4.7 The AddrResolver Class
	4.4.8 The SimpleAddressResolver Class

	4.5 Kernel Interface Layer Classes
	4.5.1 The KernelIF Class
	4.5.2 The UNIcontrol Class
	4.5.3 The VCMcontrol Class

	4.6 Auxiliary Classes
	4.6.1 The List Class
	4.6.2 The SortedList Class
	4.6.3 The VCDVCTuple Class
	4.6.4 The AddrPartyIDTuple Class

	4.7 Example of Use

	5 Summary
	References

	A Flexible, QoS-Aware IP/ATM Adaptation Module
	Jens Schmitt
	December 1999
	Technical Report TR-KOM-1999-06

