
Darmstadt University of Technology

A Flexible, QoS-Aware
IPIATM Adaptation Module

Jens Schmitt

December 1999

Technical Report TR-KOM-1999-06

lndustrial Process and System Communications (KOM)

Departrnent of Electrical Engineering 8 Information Technology
Merckstraße 25 D-64283 Darrnstadt - Gerrnany

Phone: +49 6151 166150
Fax: +49 6151 166152
Email: infoQK0M.t~-darrnstadt.de
URL: http://w.kofn.e-technik.tu-darrnstadt.de/

A Flexible, QoS-Aware IPIATM
Adaptation Module

Jens Schmitt

Industrial Process and System Communications
Department of Electrical Engineering and Information Technology

Darmstadt University of Technology
Merckstr. 25 D-64283 Darmstadt Germany

{Jens.Schmitt, Martin.Karsten, Lars.Wolf, Ralf.Steinmetz] @kom.tu-darmstadt.de

Abstract

Overlaying IP-based networks onto ATM subnetworks is a network configuration Pattern found increas-
ingly often. While IP networks traditionally only offer plain "best-effort" service they are iiow evolving
to offer more sophisticated services. Nevertheless, the exact mechanisms for providing QoS are not yet
settled and essentially non-existing in today's production-level networks, with the Inteniet being the
most popular and important example. On the other hand, ATM networks have been designed from their
inception to offer a wide range of QoS mechanisms. Thus, given the configuration of an IP overlay net-
work over an ATM subnetwork, it is very attractive to leverage ATM's QoS mechanisms to alleviate
IP's QoS problem, at least partially. The invocation of those mechanisms will be done on so-called IPI
ATM edge devices which are exactly at the frontier between the IP and ATM network. In particular.
these edge devices could map reservation requests within the context of the RSVPIIntSerii architecture
onto especially setup VCs.

In this report we describe the design and implementation of a flexible, QoS-aware IPIATM adapta-
tion module. This adaptation module allows an IPIATM edge device to route IP datagrarns depending
on their contents onto especially setup VCs in a performant manner. To achieve performance it is neces-
sary to implement this module in kerne1 space, at least partially. On the other hand, it shoiild be easy to
use, for e.g. an RSVPflntSew over ATM, or a DiffServ over ATM mapping module. Therefore, the
adaptation module was split into two parts, a kernel-level part that handles all the time-critical tasks of
data forwarding and a user-level part which gives access to the functionality provided by the adaptation
module.

The result is a very flexible and general IPIATM adaptation module that can be integrated conve-
niently with earlier results of the prqject on approaches of how to map the RSVPIIntServ mechanism
onto those of an ATM subnetwork.

This work is supported in part by a grant of Volkswagen-Stiftung, D-30519 Hannover, Germany,

Table of Contents

1 Introduction ... 5
. .

1.1 Motivation . 5

1.2 Outline . 5

2 Architecture of the IPIATM Adaptation Module 7

2.1 Overview . 7

2.2 Design Goals . 7

2.2.1 Problem-Specific Goals . 7
2.2.2 General Goals . 8
2.2.3 Secondary Goals . 9

2.3 Components and their Relations . 10

2.4 Interface to the IPIATM Adaptation Module . 13

2.5 Functional Restrictions of the Current Implementation . 13

2.6 System Requirements . 14

3 The VCM Kernel Instance 15

3.1 Overview . 15

3.2 Review of UNIX Device Drivers and the STREAMS Mechanism 15

3.2.1 UNIX Device Drivers . 15
3.2.2 STREAMS Framework and Mechanisms . 16

3.3 Architecture of the Fore ATM Network Driver . 19

3.4 Design Goals and Decisions . 20

3.5 Architecture of the VCM Kernel Instance . 21

3.6 Modules of the VCM Kerne1 Instance . 23

3.6.1 Solaris Device Driver Specifics Module: vcm-ddi.c 23
3.6.2 VCM STREAMS Multiplexing Device Driver: vcm-dev.c. 23
3.6.3 VCM STREAMS Module: vcm-m0d.c . 26

. 3.6.4 Filter Configuration and Management Module: vcm-fi1ter.c. 28
3.6.5 Filter Rule Matching Module: vcm-ru1e.c . 30

4 The VCM User Instance 32

4.1 Overview . 32

4.2 Design Goals and Decisions . 32

4.3 Architecture of the VCM User Instance . 33

4.3.1 GlobalView . 33
4.3.2 Static Model . 34

4.4 User Interface Layer Classes . 36

4.4.1 The Filter Class . 36
4.4.3 The FilterRule Class . 37
4.4.3 The VC Class . 38
4.4.4 The PointToPointVC Class . 39
4.4.5 The MultipointVC Class . 40
4.4.6 The QoS Class . 40
4.4.7 The AddrResolver Class . 41

. 4.4.8 The SimpleAddressResolver Class 41

4.5 Kerne1 Interface Layer Classes . 41

4.5.1 The KernelIF Class . 41
4.5.2 The UNIcontrol Class . 42

. 4.5.3 The VCMcontrol Class 43

. 4.6 Auxiliary Classes 43

. 4.6.1 The List Class
4.6.2 The SortedList Class
4.6.3 The VCDVCTuple Class
4.6.4 The AddrPartyIDTuple Class

4.7 Example of Use . 47

.. 5 Summary 49

References .. 50

1 Introduction

1.1 Motivation

IP-based production networks essentially still offer only best-effort service, and so does the largest IP-
based network - the Intemet. However, the Internet is becoming or even already is a commercially used
ubiquitous communication infrastructure. A fact which will eventually require the Intemet (or also large
IP-based intranets) to be able to accurately predict its performance for business-critical applications, i.e.
deliver stringent Quality of Service (QoS) guarantees for those applications.

On the other hand, the Asynchronous Transfer Mode (ATM) technology offers a lot of QoS-enabling
facilities. However, due to its homogeneity stipulation, it faces its degradation to a link layer which is
being used by TCPAP in the core of the network where its accurate QoS mechanisms are most needed.
The result is:

IP lacks QoS, but has a wide distribution - ATM has QoS, but is not available end-to-end.
Hence it seems very reasonable that IP takes ATM's assist in order to provide QoS, so that
its huge User base can profit from ATM's facilities without the need of introducing ATM
end-to-end.

In previous reports ([SWS97a], [SKWS98]) of the IQATM project we used the term overlay model for
that kind of operation for the special case when mapping the RSVPAntServ architecture onto ATM sub-
networks.

In general, the problem of providing QoS in packet-switched networks can be separated into the dis-
tinct but related problems on the control and the data path. Previous prototypical implementations
within the project ([SWS97b], see also Appendix) mainly focused on solution approaches for the con-
trol path issues of the problem, while they used a very simple and inefiicient solution for the problem of
providing QoS on the data path. That was due to the non-availability of source code of the ATM net-
work driver, which needs to be modified for that purpose. Now we have access to such source code
(thanks to the Fore partner's programme) and thus it was decided to overcome the deficiencies of the
previous implementations on the data path.

Therefore we developed in a first step an IPIATM adaptation module that allows to instruct the for-
warding path inside an IPIATM edge device to "route" IP data flows according to some characteristics
onto especially setup ATM VCs. While the adaptation module's provided functionality is sufiicient for
efficiently operating RSVPAntServ on the data path, it is intentionally designed more flexible to allow
for other QoS-conveying infomation in IP datagrams (as e.g. contained in the Differentiated Services
(DiffServ) byte) tobe a source of special handling in the ATM network as well.

1.2 Outline

In the next chapter, the overall architecture of the IPIATM adaptation module is being presented. We
provide the design goals which lead the development of this adaptation module and give their rationale.
Then a macroscopic view on the components of the adaptation module is given and the general interface
to the adaptation module is described. The adaptation module consists of two instances which work
together:

a kernel instance, and a
User instance.

In chapter 3, we describe the design and implementation of the kernel instance by looking at both, its
global architecture and the functionality provided locally by the modules which form that architecture.

In chapter 4, details on the User instance are presented. Again we start by looking at its architecture,
before we go into the details of the implementation of the cornponents which rnake up that architecture.

In addition, we illustrate the application of the IPIATM adaptation module by a short example of how to
use it via the library interface provided by the User instance of the adaptation module.

In the last chapter, we provide a short Summary of the report and give the relevant literature refer-
ences.

2 Architecture of the IPIATM Adaptation Module

2.1 Overview

In this section we describe the architecture of the IPIATM adaptation inodule. We start by giving a brief
overview of the function of that rnodule, which will further on also be called VCM (Virtual Circuit
Management) module. We discuss its design goals and what it is aimed at, and at the same time we
point out what it is not, respectively what have been secondary goals during the process of development
and why some restrictions have been made. Following these discussions we present the different com-
ponents of the VCM module and their relationships ainong themselves as well as their relationship with
existing code in the operating system and the ATM network device driver. Furthermore, we shortly
illustrate its interface that shall allow higher layerllevel software to make use of ATM's advanced QoS
capabilities in an easy and elegant manner. A more detailed view on that interface is given in chapter 4.

The code for the IPIATM adaptation module is still a Prototype and does not offer yet all the func-
tionality one could wish. What is still missing and which restrictions apply is treated at the end of this
section along with the systein requirements of the implementation of the VCM module.

2.2 Design Goals

We can distinguish between problem-specific goals and general design goals. Problem-speciiic goals
are related to what we actually Want to achieve with respect to the functionality of our IPIATM adapta-
tion inodule. General goals are related to desirable characteristics any software system is thriving to
achieve. however we highlight those that are of particular importance for the VCM module.

2.2.1 Problem-Specific Goals

The first and foremost design goal is certainly to offer a rich functionality, which is to have a means of
using ATM's mechanisms and characteristics for any IP QoS related matters, examples of which could
be:

RSVPiIntServ,
ST-11,
DiffServDP precedence,
policy-based configurational (static) QoS,
secure communications (e.g. for VPNs),
simple hybrid TCPIIP-ATM API.

From the pretty diverse sample potential uses of the VCM module it follows that flexibility should be
one of the most important design goals for the adaptation module. Flexibility here is with regard to:

mapping of flows onto VCs, i.e. rnany-to-many relationships between flows and ATM VCs should be
possible,
description of what constitutes a flow (arbitrary rules on IP and higher level headers), i.e. more or
less arbitrary rules on IP and higher level headers should be possible to define a flow of data that
shall be forwarded using one or more (in case of multicast) VCs.

Another more technically motivated design goal is tobe independent of IP convergence modules used
for best-effort IP traffic delivery, i.e. the VCM module should be capable of interworking interchange- -
ably witb any of the following (only the most prominent examples): -

ForeIP - the proprietary implementation from Fore of IP over ATM for uni- and multicast best-effort
transmissions,

Classical 1P over ATM (CLIP) - the IETF standard solution for unicast hest-effort IP traffic over
ATM subnetworks,
Multi-Protocol over ATM (MPOA) - the ATM Forum's standard for delivering IP (beyond others)
over ATM networks (again only unicast best-effort IP traffic).

The idea behind the independence from the IP convergence module in use is to be able to make use of
their different strengths, e.g.

when using ForeIP, then IP multicast is available and we are able to test all the fancy RSVP over
ATM multicast issues we derived conceptually in [SKWS98],
when using CLIP, then we will certainly find a large installed base and should thus in principle be
able to use the VCM module as a base for larger tests,
when using MPOA, then we can make use of NHRP-initiated shortcuts for unicast IP transmissions
and thus maximally switched paths, an interesting feature we have investigated coi~ceptually in
[SWKf99] and would like to be able to test in practice.

2.2.2 General Goals

Of Course, the list of general design goals is virtually endless, however what we Want to do here is to
emphasize those that are of special significance to the development of the IPIATM adaptaition module.
These are:

Modularity of the code, especially in order to ease portahility and migration to new rcleases of the
operating system andtor ATM network driver code.
Reusability of the code, since some parts could also be interesting to filtering software for firewalls
or similar environments that need to deal with customizable forwarding decisions within an edge
router, therefore genericity in this Part could be beneiicial.
Minimization of kernel-level part, while maximizing the user-level Part without sa~:rificing e f i -
ciency on the data forwarding path, i.e. only the most necessary changes to the forwarcling behavior
should be realized inside the kernel, while all the control functionality should be handed over to the
user-space part of the implementation. Rationale behind this goal is the ease of development and
coding in user-space when compared to kernel space.
Extensibility of the code, is certainly a must: as for example the mles constituting a QoS-worthy
flow will certainly experience changes and extensions. Similarly, with the advent of 1 P ~ 6 the header
formats will change and that must be accommodated by future versions of the VCM mcidule as well.
Minimal invasiveness with respect to existing code, i.e. Fore's ATM driver code shouldl not be mod-
ified unnecessarily if possible, the same applies for the Solaris operating system source code*. This
is a pragmatic design goal which allows us in the first place to make the code availahle to our part-
ners at Deutsche Telekom AG since modifications inside the Solaris source code andlor the Fore
ATM network driver code would either necessitate the existence of a source code license or only the
hinaries could be delivered thus preventing further extensions and modifications of the IPIATM
adaptation module.
Simple, but flexible interface to the Services provided by the VCM module. We Want an object-ori-
ented interface since this represents the problem domain well.

*. Noie however that ir was cenainly necessaiy io know that code, in particular in ordcr to be able to f i t tht: adaptaiion
module so neatly into ihe cxisiing software

2.2.3 Secondary Goals

After having stated the general and problem-specific design goals for the IPIATM adaptation module,
we now Want to make clear what we did not aim at primarily ünd why. While the following points in
general certainly are important goals to strive for we will explain why we did not focus on them as
much as on the aforementioned goals. Those "neglected" design goals are:

100% optimized performance is not aimed at, although architecturally it should be possible if some
work in tuning the Software is invested. As mentioned above the performance-critical parts of the
code, which are represented by the decisions on the data path which packets to "route" on which VC
shall be part of the kernel like the rest of the communication subsystem under the Solaris operating
system. Thus there is no fundamental performance problem. However, we do not intend to tune all
the data structures to their optimum performance. For example, if the filter set inside the kernel is
represented by a simple linear list, there are only small performance penalties for a relatively small
filter set, whereüs of Course for larger sets with complicated (with respect to matching) filters this is
certainly a different story. In this area very recent research work is available on packet classification
(e.g. [WVTP97], [SVSW98] which also contain many pointers to other work in this field) which
could be easily incorporated in principle, yet in practice adding some implementation complexity
(and for maximum performance it would have to be done in hardware anyway), which was not con-
sidered necessary for our prototypical solution, which will under all likelihood never experience
such a large filter Set.
Portability - while being an honorable goal, this is in our case only possible to a very limited degree,
i.e. the code should be readily portable to System V based Unix platforms (e.g. Solaris, HP-UX, SGI,
Digital UNIX, ...) and ATM network drivers that offer an API to the UNI signalling facilities within
the driver code and a DLPI (Data Link Provider Interface) interface to upper layer protocols. How-
ever, operating system platforms that do not implement their communication subsystem based on the
STREAMS mechanism of System V, or ATM network drivers that do not conform to DLPI or do not
offer an API to the UNI services will certainly represent a major problem when the VCM module
code is to beported on them. While portability to such platforms in principle could be achieved by
isolating the platform-dependent code rigorously, this would lead to substantial implementation
efforts which are not justified for a prototypical system as is projected for the IPIATM adaptation
module.
CompIeteness - while the VCM module shall be flexible and extensible it is not aimed at being com-
plete. For example not all possible filter rules one could imagine should be implemented and made
readily accessible to the user, but rather a user should with a minimum of modifications to the VCM
module be able to extend the code for new filter rules to be applicable.
Failure Handling - since the IPIATM adaptation module is not aimed at being production-level
code, sometimes simple failure handling (defaulting to exiting in extreme failure situations instead of
handing over to the User with detailed reports of what went wrong) for ease of implementation
should be given preference over absolute protection against faults. Nevertheless, all faults should be
detected, albeit their handling does not always hüve tobe as sophisticated as one could desire.

70 emphasize once more: while the above goals have not been the leading forces for the development of
the IPIATM adaptation module, they have nevertheless not been totally neglected but have been realized
in a "best-effort" manner, whereas the aforementioned primary design goüls have been viewed as strict
requirements.

2.3 Components and their Relations
After having discussed the goals which led our development of the IPIATM adaptation module let us
now take an overall view on the actual design of the VCM module and how it fits into the existing code

of the operating system and the ATM network driver. This is illustrated in Figure 1. Let us start from the
bottom up. Here we have the hardware of the network adaptors, i.e. the ~ thernet? respectively the ATM
controller. This corresponds to the physical layer. In the case of Ethernet the link layer is almost trivial
and is realized in a moderately sized character device driver called leO (under Solaris) on top of which
the higher layer protocols are stacked. In a System V UNIX (as Solaris is one) the link layi-r would pro-
vide a Standard interface called DLPI in order to offer its Services to the network layer (iin the case of
BSD-based Systems the ifnet interface would be provided by the link layer module). Furtbermore, as is
depicted in Figure I, the upper layer protocol stack in System V UNIXes, i.e. the network and transport
layer is implemented in kernel space using the STREAMS framework. The IP STREAM,S multiplexer
driver serves as the central component receiving several streams from upstream and multiplexing them
on the correct downstream directions to the corresponding network drivers (according to the routingl
forwarding tahle). From the IP multiplexer there are always two streams leading downstream to the net-
work device drivers where one is for the ARP control requests and the other is for the actiial datagrams
to he sent over the network. For the former stream the ARP module is pushed, while for the latter the IP
and the ARP module are pushed, in that order. Upstream from the IP multiplexer there are the transport
layer STREAMS device drivers, the most common of which certainly are the TCP and UDP drivers.
There is one stream for each transport layer. On such a stream a module corresponding to i:he respective
transport layer is being pushed as can be seen again in Figure 1. Applications that Want to send data
using the TCP/IP protocol suite are of Course run in User space and transmit their data to the transport
layer devices by opening up a stream to the transport layer STREAMS devices (it is also possihle to
build up a stream directly to the IP multiplexer using "raw" IP, as for example does the RSVP daemon to
send its protocol messages) and crossing the user-kerne1 horderline by using the STREAMS head. An
example of such an application depicted in Figure 1 is the conferencing tool vic, of which ithere is a spe-
cial release that is RSVP-enabled, i.e. uses RSVP signalling in order to reserve resources for its video
flows to experience uncongested transmission paths. This is achieved hy contacting the RSVP daemon
that is running in User space via an API called RAP1 (which is under standardization by the XIOPEN
group?.

Let us now take a look on the ATM-side of our edge device. The ATM network driver is considerahly
more complex than the Ethernet network driver and is itself constructed of several modules that inter-
work with each other. Some of them, but not all, are depicted in Figure 1. The lowest, respectively clos-
est to the hardware controller is a character device driver named fatmO which interfaces directly to the
hardware of the ATM network adaptor and makes availahle some very hasic functionality like sending
and receiving data, reserving local VC resources, etc. Eventually, all the other functionality as e.g. sig-
nalling is hased on those functions in the fatmO driver. The Fore code encompasses two different signal-
ling modules (implemented as character device drivers):

Fore's proprietary SPANS signalling protocol, and
the standard-conform UNI 3.013.1 signalling as specified hy the ATM Forum.

On top of the signalling modules and the basic fatmO module there are several modules for different
kind of purposes, still implemented in kernel space. In Figure 1, two of them are depicted:

the Fore IP device STREAMS driver (called faO), implementing Fore's proprietary convergence
module for realizing hest-effort IP transmissions over an ATM suhnet hy using facilities provided by
the SPANS signalling,
the SDAPI device STREAMS driver (called sdapi), implementing a signd-driven API that allows for
direct access to the facilities provided by the UNI signalling.

T. We assumed the IP-side of the edge device to he connected to an Ethernet as it was actually the
case in our test settings.

.--. VCM Library
RSW-VIC RAP1 RSVPd exTCI

H

IP

I I \ I
I \ /

\
/

I
\

/
I / ,
I \ / , ,

X

I
I
I I
I I
I

Ethernet Controller ATM Controller

: STREAMS connections
- - - - B : non-STREAMS device

: non-STREAMS connections driverlmodule
0 : STREAMS device driver 0 : STREAMS module

* : Here we could also havr the classical IP or MPOA driver with our flexible design.

Figure I : Overall view on IPIATM adaptation module and its relationship to existing com-
ponents.

All of the above were the existing components before the introduction of the components for the IPI
ATM adaptation module. As already mentioned one of our most important design goals is to leave those

components untouched in order to be able to distribute code of our IPIATM adaptation module. The
components realizing the functionality of our IPIATM adaptation module are depicted in :Figure 1 with
bold frames. The most important is the VCM STREAMS device multiplexing driver which is located
between the IP multiplexer and a convergence IP module (in the example Fore IP was taken). The task
of the VCM device is to multiplex the IP data streams according to configurable Parameters onto ATM
VCs. The IP multiplexer essentially does not see the Fore IP driver any more but is now communicating
directly to the VCM multiplexer which however provides the same interface (DLPI) a!; the Fore IP
device driver so that the IP multiplexer does not realize it "talks" to someone else. The VCM multi-
plexer examines the IP datagram against a Set of filters that are configured into it. The coiifiguration of
the filters is possible via an ioctl interface of the VCM multiplexer (more details in chapter 3). If any
of the filter rules applies, the VCM multiplexer routes the datagram onto the respective \TC which has
been setup beforehand (see below on how), if none of the filters apply then the datagram is just passed
on to the faO driver. For the "rerouting" of the data over especially setup VCs, the VChf multiplexer
hands the successfully matched datagrams over to the VCM STREAMS module, which has been
pushed on the SDAPI STREAMS device. In the VCM module the IP datagrams are prepared for being
sent over their ATM VC by prepending an internal header required for the SDAPI driver. That is what
has tobe done for the ingress to & ATM network. For the egress from the ATM network, the inverse has
to be done by the VCM module: stripping off the internal header and putting the IP data::ram into the
upward directed stream to the IP multiplexer. These actions are depicted in Figure 1 by the dotted
arrows from the VCM device to the VCM module and from the VCM module to the data si:ream leading
into the IP multiplexer.

The remaining question certainly is: who sets up the VCs and controls the filter configuration in the
VCM device. This is done in User space by an instance of the VCM module that is being implemented
as a library. This library uses the SDAPI provided by Fore to setup and manage VCs. The:se actions are
recorded by the VCM module and thus it is able to construct the required internal headers for use of the
especially set up VCs. The other task of controlling the VCM device by managing its filter Set configu-
rations is also done by the VCM User library. The VCM library is all a User as e.g. the RSVP daemon
Sees when implementing its extended Trafiic Control Interface (exTCI) as described in [SKWS98].
Therefore the VCM library interface is a crucial part of the overall design of the IPIATM adaptation
module and we take closer look at it in the next section (for details see chapter 4).

2.4 Interface to the IPIATM Adaptation Module

The interface to the IPJATM adaptation module is implemented as a User level library that allows to Set
filters into the fonvarding path from the IP-side of an edge device to the ATM-side. Here, filters consist
of a number of rules which map data Aows on a number ATM VCs that can each be setup with a certain,
specified QoS. The User of that library only needs to supply the logic for which data streanislflows there
should be special treatment by the ATM subnetwork, the VCM module takes all the necessary steps to
setup corresponding VCs by using UNI signalling, rerouting the data path within the I:P/ATM edge
devices, and so on as described above. The logic is a simple restricted predicate logic, where the predi-
cates are based on arbitrary conditions in the headers including and above the IP layer combined by log-
ical ANDs, thus constituting a filter rule, while an ORed concatenation of such filter ru1e:s represents a
filter which is mapped on a set of VCs, where the sets of the VC endpoints is disjunct. In si more formal
way filters can be described as:

Let Aij(p), i=l, ..., n, j=l , ..., k, be predicates defined on the contents of the IP packet p,

1 i f l P dest-nddr = a.b.c.d
e.g. Ai, j (~) =

0 othenvise

then Fj = A,(p) A ... A A,(p) constitutes a filter rule forj=l,..,k,

and F = (F , V ... V F,;VC,, ..., VC,) constitutes a filter (with endpoints(VCi) n endpoints(VC,J

= (1 for all i,,j).

Since flexibility was the most important design goal for the interface towards the VCM, different kinds
of matching actual packet header subfields against,filters where introduced. i.e. predicate definitions are
very general. For example it is possible to do mask matches which is particularly suited to address fields
that are structured as e.g. IP's source and destination address fields, thus' allowing for filter rules to be
defined on whole IP subnets (e.g. "all traffic from subnet a.b.c shall take extra VC V when being for-
warded to subnet d.e.fl).

2.5 Functional Restrictions of the Current Implementation

In this subsection we Want to outline restrictions of the current implementation, which should however
not be critical for the use of the VCM module as a Prototype and which will be overcome in the next
releases of the IPIATM adaptation module in the next phase of the IQATM project. These restrictions
are:

Ease of implementation was often given preference over efficiency, as e.g. in the case of the simple
list of the filters inside the kernel module against which any incoming packets has to be matched.
Here certainly is much room for improvement by using a more sophisticated, tuned data stmctures
which allows for faster matching against the filter rules.

* The adaptation module is certainly very system-specific, however code at this level probably always
is. Nevertheless, we made a serious try to isolate system-specific code from general code so that the
porting task is simplified.
At the monient only one User of the IPIATM adaptation module per ATM network interface is possi-
ble at a time. However introducing multi-user capabilities into the library should be straightforward:

In the kernel module some additional identification for different users needs to be added in order
to restrict users administrative operations on filters onto their Set of filters.
In the User level instancellibrary it must be ensured that some actions, e.g. the set up of the plumb-
ing are only executed once for all users and not once for each user.

Furthermore. there maybe problems with filters that can apply at the same time, here a priority-based
mechanism (set by policies: e.g. IntServ-related filters may be of higher priority than DiffServ filters)
should be devised. Again this should be very easy to achieve by simply adding a priority field to the
filter structure in the kernel and just propagating the configuration of that additional characteristic of
a filter through the user library to the actual users of the adaptation module, which are the ones that
have the knowledge to Set such policieslpriorities.

2.6 System Requirements

Having mentioned that the code is system-specific, we certainly have to specify which are the system
requirements when actually mnning the code as it is provided:

The edge devices must be running under the SUN Solaris 2.5.112.6 operating system (earlier version
of Solaris should be no problem, but were not tested).
The edge devices must use Fore network adapters with ForeThought's Software Release 5.0 (at the
time of writing it is unfortunately not yet absolutely clear whether a source code license from Fore is
required in order to access the SDAPI library interface).
The previous point means we are using ATM's UNI 3.013.1 to signal VCs, thus a switch must be able
to understand this signalling.

During out development and testing we only used a Fore switch (Fore LE 155). We are not Sure
whether signalling would work if edge devices are connected to switches of other manufacturers,
which in theory they certainly should. Therefore we recornmend a test Scenario where edge devices
are connected to Fore switches while inside the ATM network other ATM switches could be used as
well.

3 The VCM Kerne1 Instance

3.1 Overview

In this section the kernel part of the VCM module is presented in more detail. As already pointed out in
the last section, one of the main goais for the design of the VCM module is to keep the VCM kernel
instance as minimal and lean as possible and to extend its services by the User level module (layering
principle). The reasons for that are:

ease of development,
comfort of programming,
maximum use of existing facilities of the ATM network driver code (a user-level API allowing direct
access to the UNI signalling is availahle).

In order to explain in more detail the inner working of the VCM kernel instance, we first give a short
review of UNIX device drivers in general and the STREAMS mechanism found in System V Unix sys-
tems, as e.g. SUN's Solaris, in order to implement (among other things) the communication subsystem.
Furthermore, we present a high level overview of the architecture of Fore's ATM network driver code in
order to be able to show how the VCM kerne1 instance interfaces to that code, respectively how it makes
use of the facilities provided by the driver.

Although the design goals for the IPIATM adaptation module have already been stated and reasoned
about in the discussion on the overall architecture of the VCM module, we again look at these in a more
concrete and detiiled fashion for the VCM kernel instance. Next, the architecture of the VCM kernel
instance is being regarded with an emphasis on how the VCM kerne1 instance is related to existing mod-
ules which are either part of the operating system or part of the ATM network driver. In the rest of the
section we then delve into the details of the implementation of the VCM kernel instance.

3.2 Review of UNIX Device Drivers and the STREAMS Mechanism

In this subsection we review the fundamental concepts of System V Unix device drivers in general and
the STREAMS frainework in order to ease understanding of the description of our implementation of
the IPIATM adaptation module. Of Course, this is only a very shallow overview and without any pre-
knowledge it might he difficult to follow later on, so for a more complete presentation of these general
issues we refer to ([Sun96], [Sun95].

3.2.1 UNIX Device Drivers

A device driver consists of a set of routines that allows the kernel and User programs to communicate
with peripheral devices. The purpose of a device driver is to hide the complex device-specific details
from the User and the rest of the operating system. It allows the User to use regular file system calls to
access a device by translating them into device specific commands. Device drivers are part of the kernel.
There are two basic categories:

hlock device drivers. and
character device drivers.

Block device drivers are used for peripherals which must handle file Systems, like hard disks. The read
and write operations use fixed size data blocks. Character device drivers do not require fixed sized
blocks F01 the read and write operation. Therefore, almost every device can be accessed via a character
device driver. Even classicai hlock devices can be handled by a special "raw" character device driver.

Character device drivers are typically used for asynchronous terminals (serial drivers), mice and net-
work adapter cards. A special type of character device drivers are pseudo device drivers. They offer an

entry point to the kernel, but do not really comrnunicate with a device. The character device "Idevl
kmem" for example is a pseudo driver that provides the possibility to read directly from the kernel
memory. The kernel expects certain routines in a device driver. These driver entry points must follow
the special naniing conventions below. The following routines form the interface between the device
driver and the rest of the kernel:

Initialization (xx-init) *,
Open and close (xx-open, xxclose),
Read and write (xxread, xx-write),
Special inputloutput (xx-ioctl),
Intermpt handler (xx-intr),
Pol1 (xx-poll),
Select (xx-select),
Strategy (xx-strategy).

The initialization routine is called at boot time. This function checks if the device really exists in the
systern. It resets Hags and Counters and allocates the required resources. The Open routine prepares the
device for the input and output operations. The close function is called to deactivnte the device. The
read and write functions perform the data transfer to and from the device. They are invoked: when a User
process calls a read or write system call.

The input/output control routine offers some special functions for character devices. It is called when
the user process issues an ioctl system call. This routine is often used to get information about the cur-
rent Status of the device.

The interrupt handler is called when the device sends an interrupt. The purpose of an iinterrupt is to
indicate that the device requires the attention of the kernel. A device interrupts for exaniple if it has
completed an operation or if new data has arrived. If a device is not able to generate interriipts, the ker-
nel can periodically call n pol1 routine in order to service the device. The pol1 routine is called at each
clock tick. It is helpful for handling slow devices. The select routine allows the device drivcr to perforni
synchronous multiplexing. It checks if the device is ready for a read or write access. Block devices
require a strategy routine to sort the read and write requests into a queue. Character device drivers do
not require a strategy routine.

Not all functions must he present for each driver. For example it would not make sense to provide a
write routine for a mouse or a read routine for a printer driver. Furthermore, the Set of functiions depends
on the type of the device. The dnver routines are divided into two groups according to the process con-
text. The read, write and the ioctl routine form the top half of the driver. Strategy and intei-mpt handler
routines can be called in interrupt context and belong to the hottom half of the driver.

3.2.2 STREAMS Framework and Mechanisms

The STREAMS mechnnism was developed in 1983 by Dennis Ritchie. The first operating system that
included STREAMS was UNIX System V Release 3.0. The STREAMS concept provides a convenient
mechanism for the design of layered protocol stacks. It allows a clean Separation between device inde-
pendent and device specific code.

A strearn is a full-duplex communication path between a User process and a device. It consists of a
STREAMS head, a STREAMS driver and one or more connected modules, which can be pushed onto

t. xx stands for the prefix uf the device drivcr.

the stream dynamically by User programs (see Figure 2). The modular layered structure makes
STREAMS a valuable tool especially for the development of network protocols.

STREAMS Head

STREAMS Module

I t
STREAMS Driver

/ A $
Y

Hardware

Figure 2: STREAMS Framework.

The communication between the modules and therefore between the User process and the driver is
done by passing messages up or down the stream. Each message contains a message type to indicate its
intended purpose. For example the message type M-DATA is usually used for messages that contain
ordinary data. Messages of the type M-PROTO usually contain control information and associated data.

Special put routines are used to send STREAMS messages. A 'write put' (xx-wput) function is
called to pass a message to the next module below (downstream) and a 'read put' (xx-rput) routine is
used to send messages to the next module above (upstream).

STREAMS modules are used to manipulate the messages that are passed through the stream. They
can be pushed onto or popped from the stream dynamically. Each STREAMS module consists of a pair
of queues, one for the read side (rqueue) and one for the write side (wqueue). A queue consists of a
message queue. which contains the messages that wait for service and a put routine. It may have a ser-
vice routine to allow deferred message processing.

STREAMS head and STREAMS driver are special mandatory modules for each stream. The
STREAMS head is the interface between a User process and the stream in kernel space. It is allocated
and initialized when the stream is opened for the first time. The STREAMS head converts the User
requests into STREAMS messages and it provides the STREAMS messages which were sent upstream
in a user readable form to the process in User space.

The STREAMS driver provides the interface between the kernel and the device. Like regular charac-
ter device drivers it hides the complexities of the underlying hardware from the kernel and the User pro-
cesses. It converts the STREAMS messages into data structures that the device understands. Like the
STREAMS head, the STREAMS driver is initialized via the Open system call.

A special feature of the STREAMS mechanism is the possibility to multiplex streams. This is done
by special modules called STREAMS multiplexers (Figure 3 shows a simplified implementation of the
TCPAP stack using the STREAMS framework). A multiplexer which multiplexes data from several
upper streams to one single lower stream is called "N-to-I" or "upper" multiplexer. A multiplexer which
has only one upper stream but several lower streams is called "I-ro-M" or "lower" multiplexer. This
property provides a usefiil service especially for the implementation of internetworking protocols which
might route data over different network interfaces. For example one IP module can multiplex the incom-

ing data to several network drivers. The appropriate driver module can be chosen in accordance to the
forwarding decision.

Figrrre 3: TCPAP protocol stack STREAMS implementation

Of Course STREAMS does not specify the "protocol" which neighbouring drivers/modules use to com-
municate with each other. This is opaque to the STREAMS mechanism and makes it such a generally
utilizable facility. For our purposes, the most interesting communication is between the I:P multiplexer
and the device-specific drivers. Here, the entry point for IP traffic into the device driver depends again
on the operating system. In a STREAMS environment it would be a Data Link Provider Interface
(DLPI) [OS1911 and in a BSD based Unix system a BSD socket interface (the ifnet interface).

3.3 Architecture of the Fore ATM Network Driver

In order to understand how the VCM kerne1 instance fits into the existing ATM network driver code and
how it makes use of that code, we give a brief overview on the architecture of the Fore /\TM network

driver. A view on the modular structure of that architecture based on functional groups is illustrated in
Figure 4.

Fore IP Classical IP SDAPI

I I
Core functionality

Platforni-specific device driver parts
(PCA-ZOOE, SBA-2OOE. HE)

Figurv 4: Modular Structure of Fore's ATM network driver.

Here, we can see that device-specific, low-level code is well shielded from the code of convergence
modules like MPOA, CLIP and ForeIP by using an abstract core module that provides a device-inde-
pendent interface to functionality as e.g. reserving local resources when opening a VC or sending data
onto a VC. While the arrows indicate which modules are using which other modules. not all the interde-
pendencies have been drawn, but only those related to control path issues, while almost all modules use
on their data path the Services provided by the core functionality module.

The Fore ATM network driver supports two different signalling protocols:

SPANS (Simple Protocol for ATM Network Signalling): Fore's propnetary signalling protocol, and
UNI 3.013.1 Signalling: the ATM Forum's standard signalling protocol at the User-Network Inter-
face.

Those two both use the functions provided by the core module in order to setup VCs, indicate willing-
ness for reception of incoming VCs, etc. The only convergence module that is still using SPANS is the
Fore IP module, a proprietary solution from Fore to realize best-effort IP over ATM for uni- as well as
multicast. All the other convergence modules use the standard-conform UNI signalling module. Those
are:

the Classical IP over ATM module that implements unicast best-effort IP over ATM according to the
IETF specifications RFC 1577 and RFC 1483.
the ATM Forum's MPOA solution which builds upon ATM Forum's LAN Emulation standard and
the IETF NHRP specification.
the XTI (XfOpen Transport Interface) which represents a standard API for native ATM programming
in the tradition of System V's TL1 (Transport Layer Interface).

the SDAPI whjch is the kernel-level component for a user-level lihrary that allows to ai:cess directly
the UNI 3.0t3.1 signalling Services.

Another module is ILMI (Interim Local Managrnent Interface), which helps in autoconfiguring the
ATM network hy e.g. soliciting ATM addresses of a certain network interface, etc. The ILMI rnodule is
implemented on top of the SDAPI module, i.e. uses its interface to the UNI signalling to accomplish its
task.

Internally, the ATM drivet modules are not implemented as STREAMS modulestdriv~ers. However
a11 the modules that interface to upper layers of the protocol stack (CLIP, Fore IP, MF'OA) or even
directly to the User (XTI, SDAPI) provide a STREAMS interface, i.e. are ready to receiv'e STREAMS
messages. In the case of the IP convergence modules (CLIP. Fore IP, MPOA) the STREAMS message
passing is hased on the DLPI.

3.4 Design Goals and Decisions

Apart from the design goals for the overall architecture which also apply to the VCM kernel instance,
there are also more specific design goals for the VCM kernel instance:

The functionality provided hy the VCM kernel instance should he kept minimal, but complete
("Keep it lean and clean"). The goal was to design atomic functions which can he cornposed to an
enhanced higher level service provided hy the VCM User instance. The rationale for thii; is the higher
effort required for development and coding in the kernel space when compared to User space imple-
mentations.
Despite minirnality the VCM kernel instance should offer as much flexibility as possible, especially
with regard to the specification of rules that specify which packets helong to a flow fix which spe-
cial VCs are available (virtually any information contained in IP and upper layer headers should he
possihle to qualify for such special treatment hy the ATM network). In particular different kinds of
granularity should he possible. e.g. traffic from certain suhnets (identified by CIDR prefixes) should
be a possihle criterion as well as application suhflows that are qualified by e.g. (transport protocol,
source address, destination address, source port, destination port, andor even RTP header fields). - The STREAMS-related operations should be separated as far as possible from the operations which
are needed to accomplish the required fiinctionality of roiiting the IP packets according to config-
urahle criteria on different especially setup VCs. Hence, the structure of the VCM User instance
should he modular.

A design decision we made was to implement the VCM kernel instance in C. This was motivated hy the
fact that the STREAMS framework and the kernel entry points are tobe specified in C anyway and that
it would make only limited sense to have a hybrid design hy introducing another language, as e.g. C++.
Furthermore, performance is an argurnent for using C.

3.5 Architecture of the VCM Kerne1 Instance .

As illustrated in Figure I, the VCM kerne1 instance's functionality is distributed over two distinct kernel

: STREAMS connections : non-STREAMS device - - - - : non-STREAMS connections driverlmodule

0 : STREAMS device driver 0 : STREAMS module

* : Here we could also have the classical IP or MPOA driver with our flexible design

Figure 5: View on the VCM kernel instance and its relationship to existing components

modules (bold frames respectively lines represent new components respectively relations):

VCM STREAMS multiplexing device driver: this component is located just beneath the IP
STREAMS multiplexer, linked to it by two streams, one for the ARP requests (I) and one for the
actual flow of IP datagrams to the ATM network interface (2). Since it is tobe configured from User
space (3), it needs to be realized as a driver, since otherwise ioctl commands could not pass the 1P
multiplexer unless we do not Want to change the Solaris source code of the IP STREAMS multi-
plexer. Furthermore, it needs to be implemented as a STREAMS multiplexer since it multiplexes
messages from the IP multiplexer onto the utilized IP convergence module (in Figure 1 this is the
Fore IP rnodule, here called faO) corresponding on whether they arrived through the IP datagram
stream or the ARP message stream (4). For best-effort IP datagrams which do not correspond to any
of the rules being configured, the VCM device will just pass on the IP datagram to the utilized IP

convergence module. Similarly, for all the configuration when the plumbing between the IP
STREAMS device and the ATM network interface is Set up, the VCM device utilizes the services
provided by the IP convergence module and again just passes the related STREAMS messages
exchanged between the IP device driver and the IP convergence module driver back ancl forth. How-
ever, if an IP datagram passes by that satisfies any of the rules configured into the VCM device, that
IP datagram will be taken out of the default best-effort data path and be handed over to the other
component of the VCM kernel instance: the VCM STREAMS module. Note that by "squeezing" the
VCM device between the IP multiplexer and the IP convergence module there are no rnodifications
necessary, neither for the Solaris operating source code nor for the ATM network driver code.
VCM STREAMS module: this component "sits" on top of the SDAPI device driver on the stream
from the VCM User instance, which manages the VCs by using the SDAPI library, to the SDAPI
device. The main task of the VCM module is to receive IP datagrams from the VCM device (5) and
passing them on to the SDAPI device (6) . thus representing an entry point into the queues of the
SDAPI device for the different VCs. In the reverse direction, for data arriving on those especially
setup VCs the VCM module again acts as an entry point of the received IP datagrams back into the
IP device drivet's queues (7). Furthermore, the VCM module listens to all SETUP requests from the
VCM User instance (8) and copies the negotiated headers for sending on those VCs into internal buff-
ers that can later on be associated to filter rules thus allowing IP datagrams satisfying thi: filter rule to
be actually sent on that VC.

It is cmcial to understand how these two component work together, so let it be emphasized once more:
the VCM STREAMS multiplexing driver examines the flow of IP datagrams passed from the IP multi-
plexer to the ATM network interface represented by any of the possible IP convergence inodules. If it
detects an IP datagram that matches any of the filter rules in its filter Set, this datagram ii; taken out of
the default path to the respective IP convergence module and handed over to the VCM STR.EAMS mod-
ule which passes it ori to the SDAPI STREAMS device driver. To enable the SDAPI device to send the
datagram on the associated VC of the matching filter rule, an internal header indicating the VC descrip-
tor and other information needs to be prepended. This header is recorded by the VCM moclule when the
VC is set up by the VCM User instance, which is possible since the VCM module is pushed onto the
stream between the VCM user instance and the SDAPI device driver.

The configuration of the filter set is being done by the VCM User instance via a controlling stream to
the VCM device driver (3) using ioctl system calls with various VCM-specific commandis correspond-
ing to actions as e.g. introduction of a new filter, deletion of an existing filter. etc. Whenever a new filter
is Set up by issuing the corresponding ioctl, the SDAPI-specific headers being recorded by the VCM
module for the last SETUP requests are associated with that filter (note that those can potentially be
multiple).

3.6 Modules of the VCM Kerne1 Instance

After having introduced the fundamental global architecture of the VCM kernel instance It:t us now take
a more local and detailed view on the internal modules that implement the VCM kernel instance.

3.6.1 Solaris Device Driver Specifics Module: vcmddi .C

This module implements all the necessary functions for a Solaris device driver, respectively in general a
Solaris loadable kernel module. This code is partially shared between rhe VCM STREAMS driver and
the VCM STREAMS module and partially specific for each of those two. It is very system-specific code
that is why it was isolated in a separate module.

The shared functionality for the VCM STREAMS device and module is with regard to the kernel
entry points for loadable kernel modules, which is the same for both. This code is extremely Solaris-
specific and certainly needs a major porting effort when desiring to port the VCM kernel instance.

The specific code for the device respectively the module is concerned with their different kernel
entry points as e.g. for attaching, detaching, probing, etc. a device. All of these functions are written in
conformance to the DDI (Device Dnver Interface) and DKI (Device Kernel Interface) specifications for
System V Unix systems, so that at least for those systems the porting of these parts should be straight-
fonvard.

Since the Solaris operating system kernel is multi-threaded it is important to realize that the code of
the VCM kerne1 instance needs to be MT-safe. The STREAMS framework offers some mechanisms to
restrict the parallelism among the different entry points for the STREAMS mechanisms: MT perimeters
(for more details See [Sun95]). We have tried to allow as much parallelism as possible, yet not allowing
for race conditions inside our VCM kernel instance. Therefore we specified an inner perimeter always
spanning a pair of queues and an outer perimeter with exclusive access to the Open and close procedure
of the VCM STREAMS dnver and module.

3.6.2 VCM STREAMS Multiplexing Device Driver: vcm-dev . C

This module contains all the VCM STREAMS device specific functionality. This is composed of the
various STREAMS entry points typical for a STREAMS multiplexing device driver and some addi-
tional other functions mainly dealing with configuration of the VCM STREAMS device and handing
over the datagrams to the VCM STREAMS module.

3.6.2.1 Kernel Entry Points

The first entry point that is called when the VCM STREAMS device is opened (by using the normal
system call open()) is

int vcm-dev-open(queue-t *q, dev-t *devp, int flag, int eflag,
cred-t *credp)

which does all the necessary initialization tasks. What this routine does depends upon how often it has
been called already. When it is called the first time it assumes that the control queue from the VCM User
instance is to be opened and makes the necessary initialization for that queue. For further open()'s it
detects that the control queue is already opened and Opens as next queues the IP and ARP queue. in that
order (which is the order in which the TCPDP stack is built up (plumbed) in the Solaris operating sys-
tem, which however could certainly be different for other operating systems or even other releases of
Solaris). Those two queues are initialized as well and further open()'s are rejected by the VCM device
indicating that it is already busy, i.e. can service only one User instance at the same time.

To ensure that the order of the open()'s is correct is not part of the VCM STREAMS device but is the
task of the VCM User instance using the VCM device. When vcm-dev-open() has been called for all
three queues then the upward STREAMS connections in Figure 1 have been set and the VCM device is
now able to monitor the IP data stream from the IP multiplexer to the ATM network interface, receive
ioctl commands from the VCM User instance and pass selected datagrams to the VCM STREAMS
module. Again it is under the responsibility of the VCM User instance to ensure that the plumbing in the
downward direction from the VCM device to the utilized IP convergence is set correct.

The logically inverse entry point is

int vcm~dev~close(queue~t*, int, crebt*)

which just closes the queue that it was called for and releases some internal data structures that were
associated with that queue. It is verified that the queue is one of control, ARP or IP queue, otherwise the
close is rejected.

Let us now come to the entry points that are really working on the data streams beirig exchanged
between the IP multiplexer, the VCM device and the IP convergence module respectively the VCM
STREAMS module. The first one is

int vcmdev-uwput(queue-t *q, mblk-t * W)

This function is always called when there are messages to he delivered downwards from either the IP
multiplexer or the VCM User instance. Let us Start with the case of the control queue (from the VCM
User instance to the VCM device). Here the main task is to receive different ioctl commands that can he
issued hy the VCM User instance. Those ioctls can he:

I-LINK: This will, when received the first time, link the VCM STREAMS multiplexer to the lower
IP queue leading to the IP convergence module. When heing called with the lower IP queue already
heing setup it is assumed that now the lower ARP queue again leading to the IP convergence module
is to he linked to the VCM device. Again, ensurance of the correct order is under the responsihility of
the VCM User instance.
I-UNLINK: This will unlink the lower queues from the VCM device to the IP convergence module
again. The order of unlinking is the reverse order of the linking. Further unlinks will he rejected.
VCM-NEWFILTER
VCM-ADDVC2FILTER \

These are ioctl commands that trigger functions that
deal with the configuration and management of the
filter set maintained hy the VCM STREAMS device.
However that is delegated to the function
vcm-dev-user-iocti () described helow.

VCM-LISTFILTER

VCM-FLUSH I
Success or failure of those ioctl commands is then passed hack upstream using STREAMS mecha-
nisms. It has to he noted that for the control queue, rnessages are never passed on to the lower queues
instead they are always terminated in the VCM device.

For the IP queue and the ARP queue, if a message frorn upstream is of a message type that possihly
contains data (M-DATA, M-PROTO or M-PCPROTO), it is examined more closely. If it actually con-
tains an IP datagram, then the actual data fonvarding is delegated to the function
vcm-dev-dataf orwarding () which is descrihed helow.

Of Course, the VCM device does the necessary flush handling for multiplexing drivers if an
M-FLUSH message is received. Any other messages for the IP and ARP queues are just heing passed
on to the respective lower queues.

Unless they are not high priority messages all actions described ahove on passing messages on to the
lower queues are first queued in the queue serviced by the VCM device. The entry poini: that services
this queue is

int vcmdev-uwsrv(queue-t *B)

This function just checks the upper queue on which an enqueued message arrived and theii sends on the
message to the respective lower queue suhject to the flow control mechanism of the STREAMS frame-
work.

The entry point for the service routine on the lower queue of the VCM STREAMS multiplexer is

int vcmdev-lwsrv(queue-t *B)

This function is needed in order to ensure that, after the STREAMS flow control mechanism has back-
enabled a previously congested lower queue to the ATM network driver, the upper queue is back-
enabled again. A lower put routine however is not necessary.

Those were all the entry points on the write side, let us now turn to the read side of the VCM device.
The first routine that is invoked for messages coming from downstream (i.e. from the IP convergence
module) is

i n t vcm-dev-lrput(queue-t *q, mblk-t *mg)

The main task of that function is to pass on the messages received from the IP convergence module to
the corresponding upper queues, i.e. either to the IP or ARP queue. Another task of the lower read put
routine is to record the replies of the IP convergence module to DLPI requests from the IP multiplexer
concerning the length of the link layer header, which serve for optimizing the data path in the kernel
implementation. That knowledge is required for our purposes in order to be able to recognize all IP dat-
agrams and to be able to locate them in STKEAMS messages. Furthermore, processing of M-FLUSH
messages is provided.

Again as in the downstream case, messages are first queued in the VCM device unless they are not high
priority messages. The kernel entry point that services these enqueued messages is

i n t vcm-dev-lrsrv(queue-t *q)

This function checks for the lower queue on which the message was received and directs it to the corre-
sponding upper queue subject to the flow control mechanism enforced by the STREAMS framework.

The kernel entry point

i n t vcm-dev-ursrv(queue-t *q)

is again just needed in order to ensure that after a previously congested IP multiplexer is back-enabled
again that this action is propagated to the lower queues as well.

3.6.2.2 Other Functions

Let us now turn to the other functions that are not kernel entry points, but which are however triggered
by the kernel entry point functions described above. The first of those functions is

i n t vcm~dev~user~ioctl(mblk~t *mp, struct iocblk * i o c p)

Its task is mainly to direct the different ioctl commands to the functions actually handling those requests
(located in the module vcm-fi1ter.c). Furthermore, the correct format and number of Parameters of those
requests is checked and in case they are incorrect a corresponding error is triggered to be delivered
upstream to the VCM User instance. Another task accomplished in this function is that the buffer of
headers recorded by the VCM STREAMS module is marked as already used if the respective com-
mands requires to do so (that is the case for the VCMNEWFILTER, VCM-ADDVC2FILTER,
VCM-CHANGEVC4FILTER commands).

The function

i n t vcm-dev-datafowarding(queue-t *q, mblk-t* mg)

is concerned with messages possibly containing IP datagrams. Those messages are of type M-DATA,
M-PROTO or M-PCPROTO. For M-DATA messages it immediately follows that they contain data,
while for the other two it must first be checked whether they really contain an IP datagrarn by calling
the function check-fo-ata(). If an IP datagram is actually contained in the message being
received than that datagram is being compared against the filter set in order to find out whether there is
an especially setup VC for delivery of that datagram. This filtering is done by calling the function f i l -

ter(), which is Pan of the module vcm-fi1ter.c. If that function signals success than the message is
routed to the SDAPI device via the VCM STREAMS module using the function

int route2SDAPI(vcm-filter-t* f, mblk-t* mp)

This function prepends the stored headers for the identified filter to the message that matches the filter's
rule. In case there are multiple headers, i.e. multiple VCs on which the IP datagram has tobe sent, then
the replication of the IP datagram takes place here. The messages constructed from this are then passed
to the downstream queue of the VCM STREAMS module finally leading to the SDAPI device.

As already mentioned the function

int check-for-data(mb1k-t* mp)

checks whether a given message of type M-PROTO or M-PCPROTO actually contains an IP datagram.

3.6.3 VCM STREAMS Module: vcm-mod . C

This module contains the functionality specific for the implementation of the VCM STREAMS module.
Again we distinguish hetween the kernel entry points for the STREAMS mechanism and other func-
tions, although the VCM module consists almost exclusively of the STREAMS-related kernel entry
points.

3.6.3.1 Kerne1 Entry Points

The kernel entry point

int vcm-mod-open(queue-t *, dev-t *, int, int, cred-t *)

is called when the open() System call is issued for the SDAPI device (in case the VCM STREAMS
module is configured to be pushed on the SDAPI device). Besides the STREAMS-specific initializa-
tions this routine also sets the pointer (called sdapi-q) to its write queue such that the VCM device is
ahle to pass filtered IP datagrams over to the VCM module. Furthermore the huffers for recording head-
ers of recently setup VCs, the so-called VC template buffers, are initialized.

The inverse kernel entry point is

int vcm~mod~close(queue~t *)

being called when the SDAPI device is being close()'d. The sdapi-q is invalidated and the VC tem-
plate buffers are emptied.

The function

int vcm-mod-wputiqueue-t *, dlk-t *)
monitors the stream from the VCM User instance (which uses the SDAPI User lihrary) ito the SDAPI
device for messages of type M-PROTO which then necessarily have tobe messages containing data for
a certain VC heing setup hefore via the SDAPI User lihrary. Such messages contain exactly the SDAPI-
internal format needed to send data onto VCs setup hy the SDAPI device. We therefore record this
header in a VC template huffer and "swallow" the respective M-PROTO message. Again, to ensure a
correct operation of that mechanism we need the VCM User instance to assert that per VC being huilt up
only one time data is being sent from the VCM User instance onto that VC. Messages from other type
than M-PROTO are just passed on (to not interfere with the communication between the SDAPI User
library and the SDAPI device) and are enqueued for service hy the kernel entry point

int vcm-mod-wsrv(queue-t *)
which does not do much hesides STREAMS-specific flush handling and enforcing the flow control
mechanism provided by the STREAMS framework.

The entry point for the upstream directed put routine

int vcm-mod-rput(gueue-t *, dlk-t *)

is very simple and just enqueues STREAMS messages coming from the SDAPI device directed to the
VCM User instance in the VCM module's upstream queue unless they are not of the high priority type.

The such enqueued messages are then sewiced by

int ~cm~mod-rsrv(gueue-t *)

which checks whether the messages are of type M-PROTO and have in their SDAPI-internal header a
type field indicating that they are data messages. If that is the case then the respective message is
stripped off its SDAPI-internal header and passed on to the IP device directly, which is possible due to
the fact that the lower IP upstream read queue was recorded when the VCM device was linked under the
IP multiplexer (during the vcm-dev-open () function).

3.6.3.2 Other Functions

The auxiliary function

void flush-vc-templatebuffer0

purges the buffers containing the recently recorded headers for data that is to be sent to the SDAPI
device.

3.6.4 Filter Configuration and Management Module: vcmf i l ter . c
This module contains all the functionality related to filter-specific operations, which mainly deals with
configuration and management of the filters, i.e. their rules and associated VCs. The VCM kerne1
instance maintains a set of all active filters. This set is currently implemented as a simple linked list of
the following data structure

typedef struct vf <
predicate-list-t rule; / * Conjunction of packet predicates * /
mblk-t** VC-template;

int no-VC-templates;

struct vf* next;

1 vcmfilter-t;

Obviously, this is not efficient if the filter set becomes large. However, by separaring the filter-specific
operations from the rest of the code, it will be easy to optimize that data structure for fast matching
against IP datagrams passing by using the latest research results on packet classification under multiple
criteria [SVSW98].

3.6.4.1 Filter Configuration and Management functions

The functions described here correspond directly ro the ioctl commands that are recognized by the
upper write pur routine of the VCM device. They can be further divided into actual operations on the fil-
[er set and into diagnostic functions. Let us start with the former, supposedly more important ones.

The function

int vcm~newfilter(vcm~filter~t*)

inserts a new filter into the existing (possibly empty) filter Set (at the beginning of the linked list of fil-
ters). It first checks whether this is really a new filter or whether it is already contained in the filter Set
thus ensuring that no duplicates are stored in the filter set. Furthermore, it associates the set of SDAPI-

internal headers contained in the VC template buffer with the filter rule passed down from the VCM
User instance. The VCM User instance further ensures that the VC template buffer contains the desired
contents for which VCs where set up by itself.

For the case that one or even several VCs shall be added to an existing filter, the function

int vcm~addvc2filter(vc~filter~t*)

has been implemented. It copies the contents of the VC template buffer which has been populated by
corresponding operations in the VCM User instance, to the already existing VC templates of the given
filter. Hence from now On, IP datagranls satisfying the filter's rule will also be sent on the newly added
VC(s).

The function

int vc~changefilter(vcm~filterpair~t*)

allows to completely exchange the filter's rule with the given filter's rule without losing the association
to the existing VCs on which data satisfying the filter's rule are sent. The function is given both, the
existing filter and the new filter rule. The existing filter rule is needed in order to locate the filter for
which the rule has tobe exchanged.

The function

int vcmaddfilter(vcm-filterpair-t*)

adds a given filter to the existing filter set which however shares the Same VC set as an already existing
filter, that is also given when it is being called. This allows for a disjunction of filter rules: i.e. if any of
those filter rules is satisfied than a matched IP datagram is being sent on the shared VCs of those filters.

If the VC set shall be exchanged while the filter rule is retained, then the function

int vcm~changevc4filter(vcm~filter~t*)

is needed. As usual it ensures again that the given filter exists and if it does it removes it5 existing VC
set and copies instead the contents of the VC template buffer in place. Note again that it. is the VCM
User instance responsibility to populate the VC template buffer adequately.

The function

int vcm~delfilter(vcm~filter~t*)

deletes a given filter from the filter set. Of Course it is first assened that this filter is actiially existing
within the filter Set.

If a VC is to be removed from a given filter, then the function

int vcm~deletevcfromfilter(vcm~deletevc~t*)

is appropriate. It is given the filter for which a VC is tobe removed and the index of the VC which tem-
plate shall be removed from the associated VC set of the filter. That index represents the order in which
the VCs have been Set up and must be tracked by the VCM User instance.

As already mentioned there also diagnostic functions that enable the VCM User instance to elicit the
state of the VCM kemel instance with regard to the filter Set. A simple, but useful function to find out
whether a certain filter is actually existing in the VCM kerne1 instance's filter set is

int V-existfi lter(vcmfi1ter-t*)

If the filter exists it returns FILTEREXISTS otherwise it retum FILTERWESNOTEXIST.

The function

int vcmf lueh ()

allows to totally purge the filter set of the VCM kernel instance and should always be called when the
VCM User instance finishes for whatever reason.

A further useful function is

i n t v c m - l i s t f i l t e r o

It dumps the filter Set onto the console (and thus also in the log files of the Solaris operating system) of
the machine that is running the VCM module. An improved version of this could be to return that list of
filters to the VCM User instance.

3.6.4.2 Other Functions

The above functions all corresponded directly to ioctl commands, now we describe some other func-
tions of the vcm-fi1ter.c module.

The first function is

vcm-f i l te r - t* filter(mb1k-t *mg, i n t offset)

which traverses the filter set and tries to match the given IP datagram (in mg at the offset of f s e t)
against one of the filters by calling the function filter-match() which is located in the module
vcm-ru1e.c (see below). If a matching filter is found the search can be stopped since no duplicates are
ever inserted into the filter set.

The auxiliary function

vcm-fil ter-t* find-filter(vcm-filtert*)

is used in all locations where it is necessary to locate a given filter either to ensure whether it already
exists or because some configurational action is to be applied to it. It uses the function rule-match()

from the module vcm-ru1e.c (see below).

Another auxiliary function is

void kill-filter(vcm-filter-t*)

which frees all the heap-allocated memory for a given filter.

3.6.5 Filter Rule Matching Module: vcm-rule . C

This module contains all the functionality related to matching filter rules and the like. Whenever the
VCM shall be extended for new predicates defined on the contents of an IP datagram, then this is the
only module that needs to be touched. That is the reason why it was separated from the filter-specific
module vcm-fi1ter.c.

As already described in Section 2.4, a rule is composed of conjuncted predicates. Currently three dif-
ferent kinds of predicates are supported:

address-mask match predicates, which allow to specify a value and a mask and a matching value has
to be equal to the specified value at the positions defined by the mask,
exact match predicates which require a matching value to be exactly the same as the specified value,
and - range match predicates which allow to define a matching range in which the matching value has to be
located in order for the predicate to be true.

We assumed that with those three types of predicates most of the required semantics needed by Users of
the VCM module should be covered, however if not, it is straightforward to introduce new kinds of
predicates. Everything that is needed, from the perspective of the VCM kernel instance, is the definition

of an according data type and a matching function, as we have specified them for the three predicate
types given above:

For the address-mask matching predicate we have the function

int address-match(addressqredicate-t, ipaddr-t)

For the exact match predicate we have the function

int exact-match(exactqredicate-t, U-char)

For the range match predicate we have the function

int range-match(rangegredicate-t, U-short)

Furthermore, there are functions needed that serve as interface to the filter-specific func1:ionality con-
tained in vcm-fi1ter.c. One of them is the function

int rule-match(gredicate-list-t, predicate-list-tl

that evaluates whether two given rules are the same or not and returns the result.

The function

int filter-match(vcmfi1ter-t 'f, mblk-t *mp, int offset)

evaluates whether a given IP datagram (contained in mp at offset of fset) can be matched against the
given filter by using the functionaliry provided by the predicate matching functions described above.

Note that the latter two functions also need some minor modifications if a new predicate type shall be
introduced respectively if filter rules shall be extended by new fields in an IP datagram even if the exist-
ing predicates are used.

4 The VCM User Instance

4.1 Overview

In this section the VCM User instance is being presented and discussed. The basic idea of the VCM User
instance is to add one more abstraction level above the Services provided by the VCM kernel instance.
The rationale of this is to do as much as possible of the complex parts of the IPIATM adaptation module
in User space, while only time-critical parts are done in kernel space by the VCM kernel instance.
Therefore, the following tasks are done by the VCM User instance:

signalling message handling,
enforcement of the rules necessary for the correct operation of the VCM kernel module,
extensiodrefinement of the capabilities/services of the VCM kernel instance - easier setting of the
filter rules,
address resolution,
optionally IP-ATM QoS mapping (not yet implemented).

Again we Start by discussing the design goals specific to the VCM User instance in a more detailed fash-
ion than possible when presenting the overall architecture of the IPIATM adaptation module. Hereafter,
we present the architecture of the VCM User instance with an emphasis on how a User interfaces to the
VCM library. In the following, we discuss the implementation of the VCM User instance in more detail
in order to allow for possible modifications and extensions. At the end of the section we conclude with
an illustrative example on how to actually use the VCM library in order to set up a Special VC for a cer-
tain flow of IP datagrams.

4.2 Design Goals and Decisions

Besides the overall design goals for the VCM module as a whole (as described in Section 2.2), we also
have had some more specific design goals for the VCM User instance. Those are:

The interface to the VCM User instance should be flexible and easy to use. It should be extensible
for User code since not all potential uses of the VCM module can be anticipated now. Therefore we
decided to design it in an object-oriented fashion.
The VCM User instance should hide all the "knitty-gritty" details of the VCM kernel instance. In
principle, the VCM kernel instance already provides an interface to the User space. However, it is not
very convenient to use and many rules between using the VCM and the setup of VCs (which is not
part of the VCM kernel instance) must be obeyed, as e.g. the fact that all actions to kernel filters are
applied to the group of VCs that have been Set up since the last action (ioctl) demanded from the
VCM kernel instance. Therefore one of the main tasks of the VCM User instance is to enforce the
rules implied by the overall design of distributing the functionality into User and kernel space and by
the lean design of the VCM kernel instance. Furthermore, the VCM User instance enriches the ser-
vices provided by the VCM kernel instance by e.g. providing the disjunctive association between fil-
ter rules applying to the same Set of VCs (whereas the VCM kernel instance has no logical linkage
between such filters).
Another important goal when developing the VCM user instance must be the decent handling of
failure conditions as e.g. the case where a switch breaks down and all the VCs are torn down. The
VCM User instance must be able to signal these asynchronous events to a potential user of its ser-
vices and must be able to indicate which VCs are actually affected.

With respect to the programming language we decided to use C++, since we wanted an object-oriented
interface design to be accompanied with object-oriented coding. However, since the system-level inter-

faces to the VCM kerne1 instance and to the UNI sewices as provided by the SDAPI libraqr are in C, the
lower pan of the VCM User instance is rather procedural. Therefore C++ which Supports both para-
digms of programming, procedural and object-oriented. was ideal for our case.

We furtherly decided to implement the VCM User instance as a library instead of, e.g. a daemon,
because it is in our view a more fundamental way of offering its services, since a daenion could be
implemented by using the VCM library functions.

4.3 Architecture of the VCM User Instance

In this section we present the architecture of the VCM User Instance as a whole, before going into the
detailed description of the implemented classes. We start by taking a global view on the VCM User
instance's functionality and its relationships to its potential Users and the modules on which it is based.
After that, the static model of the VCM User instance is presented, thus simplifying the understanding of
the implementation description in the following sections.

4.3.1 Global View

In Figure 6, the relevant part of the overall architecture for the VCM User instance is shown. The VCM

DS SLA
Manager ATM

RSVPd exTCl i - - 1 VCM Library I
I VCM I UNI I
I Controi I Controi I

User Interface L,ayer

Kernel Interface Layei

User Space

- - - - - - - -
Kernel Space

Figure 6: Global View on Architecture of VCM User Instance.

User instance can on a macroscopic level be divided into two layers:

The User inferjace layer which is directed towards the User of the VCM Services as, e.g. the RSVP
daemon that "talks" via an extended Traffic Control Interface [SKWS98] to the VCM module in
order to Set up special VCs for RSVP-signalled IP data flows according to the IntServ !;pecifications
carried by the RSVP messages. Another example (as depicted in Figure 6) could be a IIiffServ SLA
(Service Level Agreements) Manager that maps the given SLAs into specific ATM VC!;.

The kernel integace layer on the other hand is directed towards the kernel-level modules, respec-
tively their user-level interface for managing the data fonvarding inside the kernel and the setup and
tear down, etc. of the especially customized VCs. Along those two different tasks it can be divided
even further into subcomponents:

UNI Control, which handles everything that is concerned with the UNI-signalled VCs and which
therefore uses the services provided by the user-level front-end to the SDAPI device (which itself
communicates to the SDAPI device via the STREAMS concept), and
VCM Control. which handles all the necessarv actions in order to invoke the VCM kernel
instance functionality of rerouting IP datagrams on specifically setup VCs depending on the con-
tents of these datagrams. Again the communication across the user-kerne1 space barrier is based
on the ~ ~ ~ ~ ~ ~ ~ m e c h a n i s r n .

Since the SDAPI library provides an upcall-based interface that requires a User to "listen" on specific
file descriptors periodically, it was decided to put this "polling" into an extra thread in order to not lock
a User of the VCM while doing signalling for VCs in the ATM network. That means the UNI Control
subcomponent of the kernel interface layer runs as a separate thread whereas all the other functionality
runs ai the main thread (separating the VCM Control subcomponent is possible but not necessary since
the interface to the VCM kernel instance works in a synchronous, immediate request-response fashion
so that locking for substantial periods is not an issue).

4.3.2 Static Model

A quite detailed static model, according to the CoadIYourdon notation (see [CY91]), of the VCM User
instance is given in Figure 7. Since it is almost in a one-to-one correspondence to the actual implemen-
tation of the VCM User instance and shows all relevant classes it is more than just an analysis result, but
rather encompasses already some design decisions.

The division between those classes that implement the kernel interface layer versus those classes that
represent the User interface layer is illustrated by the bold dashed frame which encompasses all the
classes that compose the kernel interface layer while (almost) all the surrounding classes belong to the
User interface layer.

While the description of the internals of the classes is being done in the following sections, let us
look here at the relations between the classes, where by the term relation we mean here: inheritance,
aggregation and object relations. The class K e r n e l I F represents the kernel interface layer's interface.
It inherits its functionality from the VCMcontrol and the rmi icont ro i class which have a direct cor-
respondence to the subcomponents forming the kernel interface layer's functionality as described
above. Theses classes are implemented quite monolithic in a style that is not object-oriented in nature.
That is due to their proximity to system-level interface, and actually the main task of that classes lies in
building a convergence "layer" towards the purely object-oriented user-interface layer from the C-style
system-level commands applying to the use of the SDAPI library and the VCM kernel instance.

The User interface layer is composed of much more classes. The most important one being the F i l -

t e r class. ~ i l t e r ' s consist of an arbitrary number (but at least one) of ~ i l t e r ~ u l e ' s and an arbitrary
number of vc'sf*, thus storing the association between the rules on which IP datagrams are allowed to
use which set of VCs. F i l t e r ' s have a relationship to the K e r n e l I F in order to access its functionality
for setting up kernel filters.

The vc class is an abstract base class for either PointToPointVC or Mult ipointVC. It has a one-
to-one relation to the class QOS and a relation to the K e r n e l I F in order to access its services for setting
up VCs via UNI signalling. Furthermore, it has a relationship to the class vci)'vc'hipie, whose

**. If the number of VCs is equal to 0, then the semantic of that filter is to discard a matching IP datagram, thus
accomplishing the usual functionality of a packet filter for firewalling purposes.

Fig~rre 7: The static model of
the VCM User instance.

callbackOnAsync resolve
VCSetupOrder

addRule
addVC
changeRule

1 changeVC
rernoveRule
rernoveVC
changeRuleSet

YhangeVCSet

1,m 0.m

VC

kernelfilter partylD operator!=
VCD

1 destAddr
operator<

filterlncharge
setlPSrcAddrMask open
setlPDstAddr
setlPDstAddrMask setup
setlPProto sendData
setTPSrcPort close 1
setTPSrcPortOffset asyncHandler
setTPDstPort , , \.- ,

I
I setup

I
I \

\

I \
\

I \
\

I API
I cardAddres

controlThrcadlD

I getCardAddress

I
I chanpeVC1Filtcr I
I delcteVCtrornF~lter

delcteFiltcr
I Kerne1 Interface
1 Layer

isiFilter
I

I I

setup
addDest
deleteDest

User 1:nterface
Layer

instances are kept in a container called V c L i s t in order to track all the VCs irrespective of whether they
were built up by the local VCM module or by another remote VCM module, i.e. for the first case they
are outbound while for the second case they are inbound. Only the outbound VCs are instances of the
class vc which explains that a vcwcniple object does not necessarily have a relation to a VC object.
The class M u i t i p o i n t v c which represents a specialization of vc contains an arbitrary number (but at
least one) of ~ddr~arty1DTuple objects in order to track the association between ATM addresses and
party IDs within a point-to-multipoint VC.

Isolated from the above classes of the User interface layer are the abstract base class AddrResolver

and its specialization SimpleAddrResolver, whose task it is to resolve an IP address into the corre-
sponding ATM address. The base class AddrResolver just specifies the abstract interface how such a
request is to be made: whereas SimpleAddrResolver implements a very simple (and inefficient) way
of eliciting the ATM address for a given IP address. Here a better scheme is required for actual use.
However by separating the interface from the implementation such an extension should be easily possi-
ble.

4.4 User Interface Layer Classes

Let us now look more closely into the classes which form the User interface layer. We will restrict our-
selves here to the classes actually being accessed by User code, while auxiliary classes will be dealt with
in a separate section (see section 4.6).

4.4.1 The Filter Class

The Fi l ter class is the most important class keeping track of the association
between filter rules and VCs. This is achieved by holding a sorted list on both the
~ i l t e r ~ u l e ' s and vc's. Furthermore, it is being tracked in which order the VCs

VCSetupOrder are set up in a separate iist called V C S e t u p O r d e r . Since the F i l t e r dass is the
only place where the link between filters and VCs is stored (as being described in

changeRule chapter 3 the VCM kerne1 instance does not know this association), it is also the
changeVC
rernoveRule place where asynchronous failures with respect to VCs as e.g. link failures can be
rernoveVC
changeRuleSet

brought to the attention of all the filter rules that are affected by such events.
However what exactly has to be done in case of such a failure cannot be decided
within the VCM User instance but must be specified by the User of the VCM
library. This is being done by specifying a handler for such situations which is

being stored in the cal lbackOnAsync function variable. Note that whenever asynchronous failure
conditions are signalled by the ATM network this handler will be called with information on what hap-
pened and which VC respectively which parties were affected, in the run-time context of the signalling
management (UNI Control) thread.

The interface of the F i l t e r class provides all potentially useful operations on both the filter rule and
the VC Set (after a F i l t e r has been constructed initially using its constructor):

addRule: add a filter rule to the existing disjunction of filter rules which maps certain IP datagrams
on the set of VCs for the existing filter.
addVC: add a VC to the existing Set of VCs (note that the VCs should have mutually exclusive Sets of
endpoints).
changeRule: exchange one of the filter rules against a new filter rule but leave the existing VC Set
in place.
changeVC: exchange a specified VC against a new one but leave the Set of filter rules in place.
removeRule: delete one of the filter rules constituting the filter rule Set. Note that if the last filter
rule is removed then the filter does not make much sense any more.

removevc: delete one of the VCs in the VC set of the filter. Note that if the VC set is empty after
that operation than IP datagrams that match one of the filter rules of the filter are heing discarded
which may or may not be desired.
changeRuleSet: exchange the existing filter rules against a new disjunction of filter rules hut leave
the VC Set in place.
changeVCset: exchange the existing VC set against a new VC Set but leave all filter riules in place.

It needs tobe mentioned that the above operations can fail in which case the methods "throw" adequate
exceptions.

4.4.2 The FilterRule Class

This class is the user-level front-end for specifying the criteria aga.inst which IP
datagrams should he matched in order to decide whether they talce the default
VC or an especially setup VC over an ATM subnetwork. A FilterRule object
is in direct correspondence to a kernel-level filter kernelFilter, more or less

setlPSrcAddr
setlPSrcAddrMask

just building an object-oriented wrapper around this C structure. The added
seflPDstAddr functionaiity is to inteliigentiy initialize the kernelFilter viith adequate
setlPDslAddrMask
setlpproto wild cards for the different kind of predicates which are supported! hy the VCM
setTPSrcPort
setTPSrcPorlOffsef kernel instance. The actual interface provided hy a FilterRule object
setTPDstPort depends upon which and how many predicates are supported. At the moment

the VCM kernel instance and thus also the VCM User instance "only" Supports
rules that are built from the predicates: IP source and destination address, trans-

port protocol, and transport protocol source and destination port. We have discussed how the VCM ker-
nel instance has to be modified for inclusion of other predicates and have illustrated how simple that is.
For the VCM User instance. the necessary modifications are even simpler. The only class that needs to
be changed is FilterRule. And here only a minor modification which provides the initialization of
that new predicate and a Set function for the predicate is necessary.

Correspondingly. the interface of the FilterRule class at the moment consists of the following
methods (excluding again the constructor and destructor of FilterRule):

setIPSrcAddr: this method Sets the IP source address predicate to the specified valiie (where the
mask is set to 32 bit, i.e. the match is exact).
setIPSrcAddrMask: this method sets the mask value for the IP source address predicate.
setIPDstAddr: this method Sets the IP destination address predicate to the specified value (where
the mask is Set to 32 bit, i.e. the match is exact).
setIPDstAddrMask: this method Sets the mask value for the IP destination address p:redicate.
setipproto: this method sets the 8-bit value against which the protocol field of ihe IP header
should be matched exactly in order to qualify for a certain transport protocol.
setTPSrcPort: this method sets the transport protocol source port predicate to the specified 16-bit
value (where the offset is initially Set to 0, thus degenerating the range match into an exact riiatch).
setTPSrcPortOf f set: this method Sets the offset value of the transport protocol source port pred-
icate, thus effectively specifying the magnitude of the range of that predicate.
setTPDstPort: this method sets the transport protocol destination port predicate to the specified
16-hit value (where the offset is initially set to 0, thus degenerating the range match into an exact
match).
setTPDstPortOffset: this method Sets the offset value of the tranbport protocol destination port
predicate, thus effectively specifying the magnitude of the range of that predicate.

Note that by just constructing a FilterRule and setting the desired predicates it is not yet activated in
the kernel, which is of Course obviouc since it is not associated with any VCs yet.

4.4.3 The VC Class

This class is an abstract base class for the PointToPointVC and MultigointVC

partylD classes for shared functionality between them and in order to be able to hold those

destAddr
two types of VCs in the Same container if that is desired by a User of the VCM.

filterlncharge Every vc is contained in exactly one Filter object and has a relation with a Ker- n nelIF object in order to access the UNI signalling functionality required for setiing
setup
sendData up and tearing down VCs. Furthermore, it has a relation to a VCDVCTugle object in
close
asyncHandler order to track the outbound VCs in the global vcList, and it has a one-to-one rela-
setFilterinCharge tion to a QoS object thereby expressing the fact that every VC has to have a certain

QoS. In addition, a VC keeps track of its party ID partyID and its VC descriptor
VCD. A further attribute of a VC is the destination ATM address destMdr it is connected with (in case
of a point-to-multipoint VC it is the address of that party for which the initial SETUP message is being
sent). In the attribute Open it is tracked whether the VC is already set up or not. The attribute iiiter-
InCharge Stores the Filter object to which the VC belongs. This is needed in order to be able to signal
asynchronous events that happen on a VC to the Filter object that "knows" which FilterRule
objects are affected by that.

The public interface offered by the vc class consists of the following methods (excluding the vc con-
structor and destructor functions):

setup: this is a pure virtual function that must be specified by the concrete setup functions of
derived classes. However, since the setup procedure for point-to-point and point-to-multipoint VCs
only differs with respect to a single fiag (the bearer capability connection configuration flag) that
must be Set for point-to-multipoint VCs while it must not be Set for point-to-point VCs, we have
summarized that shared functionality in a protected setup method that can be called by the derived
classes with the flag as Parameter. This setup procedure consists of filling in the required Information
Elements (IE) for the SETUP message as e.g. the calling party address, the called party address, the
desired QoS, etc., and then actually sending the constructed SETUP message via the routines offered
by the KernelIF object. While the SETUP message is in transit, the setup procedure "waits" on a
condition variable until either a CONNECT message or a RELEASEKELEASE COMPLETE mes-
sage is received, those signalling success respectively failure of the VC setup. If the setup was suc-
cessful, then an empty data buffer is sent on that VC (using the protected function send~ata),
which however is "swallowed" by the VCM STREAMS module and stored as a VC template for the
next filter being Set up in the VCM kerne1 instance.
close: this method allows to close a VC explicitly, in contrast to the VC destructor which among
other things also closes the VC (by calling the ciose method when it was still open).
asynciiandier: this function is called when an asynchronous event happens on a VC. It then calls
depending on the event the corresponding function of its f ilterInCharge.
setFilterInCharge: this method sets the filterInCharge attribute to the specified value. It is being
called from the Filter object which "knows" which VCs belong to it.

Besides the public interface there is one protected function that is important to be mentioned:
SendData: this protected method allows to send data onto the VC. It is protected, because Users of
the VCM library should not send data onto VCs, because those VCs are only for special IP data
streams flowing through the IPIATM edge device.

4.4.4 The PointToPointVC Class

This class is a specialization of the vc class described above. Actuall!~, it does not
offer very much added functionality. It just concretizes the setug method from its
base classes by calling its protected member function setug with the correct flag
for point-to-point VCs. An alternative to the design with an abstract base class VC
and specialized PointToPointVC and MultigointVC classes couild have been

to take the PointToPointVC class as a base and derive the MultigointVC class from it. This how-
ever seemed counterintuitive to us, since a point-to-multipoint VC does not have a ISA-relationship to a
point-to-point VC.

4.4.5 The MultipointVC Class

This class is another specialization of the vc base class. It also concretizes the
setug procedure specified by the base class by calling its protected 13etug proce-
dure, but now with a flag indicating that a point-to-multipoint VC shall be set up. In

addDest contrast to the PointToPointVC dass there is actually some more extra functionality,
deleteDest mainly for adding and dropping parties during the lifetime of a point-to-multipoint

VC:

addDest: this function allows to add a party to an existing point-to-multipoint VC. To achieve that,
the necessary E s are filled in. as e.g. the party's ATM address, and then an ADDPART'Y message is
sent using the functionality provided by the KernelIF object with which the VC is associated. The
addDest function then "walts" on a condition variable for the result of that ADDPAR.TY message,
which can either be an ADDPARTYACK or an ADDPARTYREJECT message, signalling success
respectively failure of the operation. In case the party could be added to the existing ps~int-to-multi-
point VC, its party ID is being kept track of in conjunction with its ATM address in an ;RddrParty-
IDTuple object that belongs to the MultipointVC object.
deleteDeat: this method allows to drop a specified party from the point-to-multipoini VC. In addi-
tion it releases the association between the party ID and ATM address for that party.
asynciiandler: in contrast to the PointToPointVC a specialized version of the as:yncHandler
method is required for the MultigointVC class due to the fact that there can be additional asyn-
chronous events for this kind of VCs. So, besides a RELEASE message, also a DROPPARTY mes-
sage can be a potential source of an asynchronous event, which needs to be handled differently, since
now the VC could potentially remain in place if the User wishes so. The user's preference with
respect to that are specified as already described by passing the asynchronous failure handler code to
the Filter object which is in charge for the vc object.

In all the methods described above the Multipointvc object makes sure that it always keeps its sorted
list of AddrPartyIDTugle objects up to date.

4.4.6 The QoS Class

The QOS Class is a lean class providing an easy interface to the QoS model ol! the UNI 3.01
3.1 specitications of the ATM Forum. While these require a lot of cumbersonie filling in of
IEs that apply to the QoS of a VC that is built up via a SETUP message, the QoS class
frees a User of the VCM library of thai burden wlthout hiding any of the QoS capabilities
of those specifications. A User can create a QOS object by just specifying

the traffic type it desires (which is one of {CBR,VBR,UBR)~~) to send,
the traffic class (which is one of qos-ciass{O-4)) it wants to use, and

the corresponding traffic Parameters (which are depending on the traffic type a subset of
(pcr,scr,mbs]) that apply to the connection.

It has to be noted here that we always perform uni-directional reservations, although for point-to-point
VCs bi-directional reservation would also be possible. This would however complicate our design and
we therefore decided to Support only unidirectional VCs.

The only method offered by the QoS class besides a constructor and destructor is getSDU which
returns a handle on the system-level representation of the IEs of a SETUP message as it is needed for
the routines offered by the SDAPI library.

4.4.7 The AddrResolver Class

The AdärResolver class is just a simple interface class that describes how an object
that resolves IP addresses into ATM addresses should be invoked, respectively the

resolve other way around how such an object can offer its services to the User. Hence, the only
pure virtual method being provided is resolve.

4.4.8 The SimpleAddressResolver Class

This class provides a very simple way of eliciting the ATM address of an ATM inter-
~ d d ~ ~ ~ ~ ~ l ~ ~ ~ face for which only the IP address is known. It is derived from the abstract base class

AdärResolver and thus inherits its interface description.
The resolve method is based upon the precondition that CLIP is mnning on the local
ATM interface as well as on the remote interface. It works the following way:

it invokes a shells script which in turn performs a traceroute for the IP address that is to be
resolved,
this causes the CLIP cache to contain the required IP-ATM address association,
from the cache this association is written to a local file,
which is in turn read by the resolve routine.

It is obvious that this is not the most efficient and elegant way of doing address resolution, however it
was simple. Yet, we will work on more sophisticated mechanism to do address resolution but for our
first prototypical solution it was sufficient to show that all the rest of the implementation is working.
The address resolution issue can be solved independently.

4.5 Kerne1 Interface Layer Classes

Let us now turn to the classes which form the kerne1 interface layer. As already mentioned, these classes
tend to be hybrids between C and C++ programming style due to their proximity to system-level inter-
faces.

4.5.1 The KernelIF Class

The KernelIF class is something like an "entrance door" to the parts of the VCM User
instance that communicate with the kernel-level instance of the VCM. It encompasses
the functionality of the VCM control subconiponent and the UNI control subcomponent
by inheriting the interface from its base classes VCMcontrol and üNIcontro1. Note
that there is always only one KernelIF object per ATM interface, i.e. if the edge device

tt. With the network adaptoi-s we used for testing (Fore's PCAZOOE and SBAZOOE) i t was nor possible to setup VBR
VCs, whereas our ATM switch (Fore's LE155) seemed to have no probleni with it.

has only one ATM card, then there can be only one KernelIF object. This restriction is controlled by
the running flag, which is a class variable indicating whether a KernelIF object is already existing
for a certain interface or not. When a KernelIF object is created it must be passed the IF' convergence
module on top of which the VCM device shall be "sitting", the IP address and netmask that shall be
assigned to that interface and the unit number of the interface on which the VCM mo~dule shall be
installed.

A possible design alternative would have been not to unify the interfaces of ~ ~ ~ c o n t r . 0 1 and UNI-
control via the KernelIF class. However, we decided it to be more convenient if anything that is
directed towards kernel-level functionality should be sent to a common interface.

4.5.2 The UNIcontrol Class

This class essentially builds an object-oriented wrapper around the functionally
UNlcontrol provided by the C-style SDAPI library which in turn provides an API to the UNI

signalling services provided by the ATM network drivet. When a 'J@iicontroi
cxdAddress
c o n t r o l ~ h r e a d l ~ object is created (something that can only be done by a KernelIl? object since B the ~ ~ ~ c o n t r o l constructor is protected an thus only derived clas?,es can access

eiCardAddress it), it is passed the unit number of the interface on which UNI services are
desired. From that unit number the first action is to elicit its own ATM address

using the SDAPI library and storing this address in cardAddress. It then creates an SDAPI instance
by specifying what is the callback function that shall be invoked on UNI signalling events. The result is
a handle on that instance which is stored in API for later reference in calls to the SDAPI library. Since
the creation of an SDAPI instance corresponds to the setting up of a stream from the SDAI'I library User
part to the SDAPI device, it is mide sure that the VCM STREAMS module is pushed on ttiat stream just
above the SDAPI device by configuring ihe Solaris autopush facility accordingly. After that operation
autopush must be reconfigured immediately in order to avoid pushing the VCM STREAMS module
onto other SDAPI streams which have nothing to do with the operation of the VCM. Henceforth, the
API instance is set up to listen to all UNI events that pertain to VCM related signalling aclivities (this is
achieved by using a certain, common preconfigured selector byte for all instances of VCMs) by issuing
the corresponding SDAPI libriry calls. If that was successful, the UNI control thread which handles the
UNI signalling events is created and the necessary synchronization primitives for communicating
between the control thread and the main thread are initialized.

This control thread, implemented by the class function controlThread goes into a dispatch loop
where it "sleeps" on a seiect System call until something happens on the API file descriptor. In that
case it calls the class function SDAPIcallback which then handles that signalling event. This handling
is actually quite complicated and depends on the state in which the VCM User is in. The inain question
here is whether the event is the answer for a certain request as e.g the setup of a VC, i.e. al synchronous
event that must then be signalled upwards to the main thread which is already waiting for it on a condi-
tion variable, or whether it is an asynchronous event, i.e. the main thread is not waiting for it. Further-
more the signalling events can either pertain to inbound or outbound VCs which must be distinguished
as well. In fact, all these complexities where the original motivation for locating that functionality into
the user-level part of the VCM since the development is very error-prone anyway and skiould thus not
furtherly be aggravated hy the difficulties of kemel-level coding and debugging.

The interface methods getAPI and getCaraAadress do just what their names suggest, they return
the API handle respectively the ATM address of the interface on which a UNicontiroi object is
located.

4.5.3 The VCMcontrol Class

The VCMcontrol class is an object-oriented wrapper class for the functionality
VCMcontrol provided by the C-style interface of the STREAMS head of the stream leading to

the VCM device. Like the üNicontro1 class it is a base class for the Kerne-
lPcmARPFD ~ I F class, which is the only one that is allowed to construct objects of it.
newFilier When a VCMcontrol object is constructed it is passed the IP convergence mod-
addVC2Filter
changeFilter ule the VCM device shall "sit" upon, the IP address and the netmask of the inter-
addFilter face on which the VCM shall be installed. It then makes sure that no VCM
changeVC4Filter
deleieVCfromFilter device exists already on that interface. Next, it constructs the STREAMS plumb-
deleteFilter ing below the VCM device by opening the VCM device and two STREAMS to
IilterExists

the IP convergence module, one for the ARP and the other for the IP stream. All
istFilter the file descriptors from these operations are stored in the VCMcontrol object

for later reference (in VCMdevFD, IPcmIPFD and IPcmARPFD, respectively).
Then the IP and ARP stream leading to the IP convergence module are linked below the VCM device,
which is then plumbed into the TCPlIP protocol stack under the specified IP address and netmask (using
ifconf ig).

The interface which the VCMcontrol class provides for communicating with the VCM device corre-
sponds one-to-one with the available ioctl commands available at the STREAMS head of the stream
leading to the VCM device (see also Section 3.6.4):

newlilter: insert a new kernel filter into the VCM device's filter set.
addVC2Filter: add newly setup VC(s) for a specified kernel filter.
changefilter: change the filter rule for a given kernel filter without changing its VC set - addfilter: add a kernel filter that "routes" to the Same set of VCs as a given filter.
changeVC4Filter: change the VC set for a given kernel filter.
deleteVCfromFilter: delete a specified VC from a given kernel filter.
deletelilter: delete a kernel filter from the filter Set.
f ilterExists: test whether a given filter exists in the VCM device's filter set.
f lush: flush all the entries in the VCM device's filter Set.
1istFiiter: dump the current filter set onto the console.

The "added value" of that interface is that the Parameters of those methods can however be specified
more conveniently when compared to the STREAMS head interface.

4.6 Auxiliary Classes

In this section we present the implementation of auxiliary classes that were needed for the implementa-
tion of the functionality of the classes for the User and kernel interface layers described above. These are
mainly container classes (mostly used for the implementation of relations with variable cardinality), and
classes for storing logical associations between logically linked entities.

4.6.1 The List Class

An object of type List provides a list of type 'Value'
temglate <class Value>

claaa List {

Standard constmctor:

List () ;

Copy constmctor:

List(const List& 1 1;

Destructor:

-List () ;

Assignment Operator:

List6 operator=(const Listh 1);

Compare operations:

bool Operator==(const Listh 1) const:

bool operator!=(const Listh 1) const;

Class Iterator and ConstIterator provide a similar interface and can be used to iterate through a con-
tainer having access to its elements. ConstIterator have to be used for iterating through a constant con-
tainer object. Consequently the dereference-operator returns a reference to a constant object of type
'Value'. When removing an element from a container, all iterators pointing to that element are invali-
dated and must not be used anymore.

class Container::Iterator C
Iterator () :
Iteratorh Operator++();

Iteratorh operator--0;

Valueh operator*O const;

Operator== (const Iteratorh i) const;

Operator!= (const Iteratorr i) const;

1;

Empty the list:

void clear () ;

Insert element at beginning of list:

void push-front(const Valueh elem);

Remove first element:

void pop-front();

Append element at rear end:

void push-back(const Valueh elem);

Remove last element:

void pop-back();

Access first element:

Valueh front () ;

const Valueh front0 const;

Access last element:

Valueh back();

const Valueh back() const;

Get iterator pointing to first element:

Iterator begin0;

ConstIterator begin() const;

Get iterator pointing to last element:

Iterator end () ;

ConstIterator end0 const;

Insert element before 'pos'. Returns iterator pointing to a new element:

Iterator insert(ConstIterator pos, const Value& elem);

Erase element at 'pos'. Returns iterator pointing to next element after 'pos':

Iterator erase(ConstIterator pos);

Insert range of elements from another list, before 'pos':

void insert(ConstIterator pos,
ConstIterator first, ConstIterator last);

Erase range of elements. Returns iterator pointing to next element after last deleted:

Iterator grase(ConstIterator first, ConstIterator last)

Number of elements:

unsigned int size0 const;

Boolean value to indicate whether container is empty:

bool empty0 const;

1 ;

4.6.2 The SortedList Class

An object of type SortedList provides a sortable list of its value type. Type 'Key' should be Set to the
same type as 'Value' to indicate that the ordering is inherent to the value type. If a different key is used
to access elements of a list, type 'Value' must either be inherited from 'Key' or provide a conversion
operator to type 'Key'. The type 'Compare' must be a class adhering to the following interface:

struct CompareType {

operator bool(const Keyh, const Key&);

1;

The boolean function operator must model the 'less than' relation between two objects of type 'Key'. A
standard compare class exists, named 'Less', which uses the default. 'less than' operator.

Given the requirements above for 'Key' and 'Value', access methods (find, erase, etc.) can take both,
an element or a key as an argument.

template <class Value, class Key, class Compare,

class SortedList : public List<Value> <
SortedList provides with some restrictions the interface of class List and additionally, the following
methods are exported:

Find an element 'elem'. Returns an iterator pointing to that element. If 'elem' does not exist in the list,
an iterator to the next-larger element is returned.

ConstIterator lowerbound(const Key& elem) const;

Find an element 'elem'. Returns an iterator pointing to that element. Returns point to 'end()', if element
is not foiind.

ConstIterator find(const Key& elem) COnSt;

Find or insert an element 'elem'. Returns an iterator pointing to that element.

ConstIterator find-or-Insert-sortad(const Valueh elem);

Boolean value to indicate whether a sorted list contains a specific element:

bool contains(const Key& key) const;

Insert an element at the correct position. Returns pointer to new element:

ConstIterator insert-sorted(const Valueh elem) ;

Insert an element at the correct position and ensure uniqueness. Returns pointer to new element.
Returns iterator to 'end()', if element already exists:

ConstIterator insert-unique(const Valueh elem);

Erase element at position 'pos'. Returns iterator pointing to next element after 'pos':

ConstIterator erase(const Keyh elem) ;

1;

The restrictions to the interface of SortedList when compared to List is that the following methods are
not accessible, because they could compt the internal ordering:

void gush-front(const Valueh elem);

void gush-back(const Valueh elem);

Valueh front () ;

Valueh back () ;

Iterator insert(Iterator gos, const Valueh elem);

4.6.3 The VCDVCTuple Class

This class holds the logical association between a VC and its VC desc:riptor as it is
VCDVCTU I C used with the SDAPI library. As already mentioned we can distinguish inbound and

outbound VCs, where outbound VCs are initiated by the local VCM module and are
operator!= kept track of in a vc object which is then related to the corresponding 'JCDVCTugle
Operator< object. Inbound VCs are initiated by remote VCM modules and thus have no relation

to a corresponding vc object. Nevertheless they must also be tracked since UNI sig-
nalling is generated for them as well and those signals must be distingiiishable from

signals for outbound VCs. For that reason all the VCDVCTugle objects are kept in a global container
called VcList and when a signalling event occurs its VCD is used in order to decide whether it is for an
inbound or an outbound VC and if it is for an outbound VC then for which one.

The operator functions are needed in order to be able to hold the VCDVCTugle objecis in a sort-
edList container for faster access. The getvc and setvc methods are used for setting iip and query-
ing the relation to a vc object.

4.6.4 The AddrPartyIDTuple Class

This class holds the logical association between the party ID for a certain party
AddrPartylDTuple within a point-to-multipoint VC connection and its ATM addresis. A Multi-

PointVC object holds a SortedList of ~ d d r ~ a r t y ~ ~ ~ u g l e ' s in order to
keep track of that association. This is done, e.g. in order to be able to inform a

Operator!=
Operator< [R) User in case of a DROPPARTY message which party has actually tieen dropped.

The User can then decide how to handle that situation, i.e. whether the VC is still
gerParty valuable to him or whether the whole VC shall be torn down becaiise all parties

are essential for the communication to take place.
The operator functions are needed in order to be able to hold the AddrPartyIDTugle objects in a

SortedList container for faster access. The getAddr and getparty methods are used for querying the
relation between ATM addresses and party IDs.

4.7 Example of Use

In order to illustrate the use of the VCM User instance, i.e. its library interface, we present a simple
example of its usage in a hypothetical User code:

First of all a kerne1 interface must be created

KernelInterface *ki = new KernelInterface("qaa", "192.168.230.20".
"255.255.255.192". 0);

Here we take as an example CLIP as IP convergence module (the interface of which in our configura-
tion is called qaa) with the specified IP address and netmask, furthermore we use the ATM card with
unit number 0.

Next, an object for address resolution is created

SimpleAddressResolver sar;

Since we only have the SirngleAddressResolver available we use that one. We now use that object
in order to resolve two IP address into ATM addresses for peer edge devices for which we Want to setup
special filters:

in-addr-t fiddleIP = inet-addr("192.168.230.20");
atmaddr-t* fiddleATM = sar.resolve(fiddle1P);
in-addr-t violaIP = inet-addr("192.168.230.30");
at-addr-t* violaATM = sar.resolve(violaIP);

Now. a filter mle is created

FilterRule* f = new FilterRule;

and its IP destination address and transport protocol port predicates are Set

Next a QoS object is created and a point-to-multipoint VC object is created to the first peer edge device
with that QoS

QoS* qos = new QoS(CBR, qos-class-0. 11000);

MultigointVC* mgvc = new MultigointVC(fidd1eATM. qos, ki);

Then a filter object is created which associates the specified filter mle with that VC

where the last Parameter is a function variable specifying how asynchronous events on the given VC for
that filter should be handled. From now on, IP datagrams that satisfy the filter rule (i.e. are addressed to
the IP multicast group 224.6.6.6 with port 10000) are forwarded using the especially setup point-to-
multipoint VC.

If now the second peer edge device shall be added to the point-to-multipoint VC then

mpvc->addDest(violaATM);

does the job. Or if the first destination shall be deleted, then
mpvc->deleteDest(fiddleATM);

is appropriate.

This was only an illustrative example of some operations that are possible when using the described
VCM library.

5 Summary

In ttiis report we provided a detailed description of the design and implementation of an II1/ATM adap-
tation module which allows to leverage the QoS facilities provided by ATM for an overlaid IP-based
network. This description was structured according to the internal structure of the VCM module. The
VCM module is divided into a User instance and a kernel instance. In chapter 2 we provided the global
view on the interworking of those two, before we gave detailed descriptions of each and their internal
components in chapter 3 and chapter 4. While the kernel instance is designed according to the
STREAMS paradigm and implemented using the C programming language, the User instance's design
is object-oriented offering a library interface for the C++ programming language. We ttiink that this
hybrid design suits the respective needs of those two distinct instances best, since in kem~tl space effi-
ciency and ease of use of existing interfaces has preference over elegant design and reusability, whereas
for the User instance those two metrics are cmcial ones. One goal of the design was also to iiource out all
complex operations which are non-critical with respect to performance on the data forwarding path
from kernel into User space. That ensured maximum ease of development and coding and certainly will
ensure this for future modifications as well, thus making the IPIATM adaptation module a valuable tool
for further experimentation with IPIATM edge device functionality.

The adaptation module was intentionally designed as flexible and general as possible so that it can be
used for virtually any "QoS signal" given by the IP network in order to trigger special haridling by the
ATM network. Our motivation to do so was that while overlaying the RSVPIIntServ architecture was
the motivation to develop such an adaptation module in the first place it is conceivable that RSVPIInt-
Sem will only be one of several "tools" within IP-based networks for Users to convey their desires with
regard to QoS provisioning by the network. Thus flexibility was one of the rnost irnportant design goals
for the IPIATM adaptation module and has been like all the other design goals that were Set in Section
2.2 achieved from our point of view.

We think that together with the sophisticated solution approaches devised in [SKWS98] for the over-
laying ofRSVP/IntServ onto ATM networks which were also partially implemented for ou:r former pro-
totype implementation (see Appendix), the IPIATM adaptation module now also provides the potential
to support those approaches on the data path in a performant manner. Thus a complete so1:ution is now
achievable by the integration of those two Parts. 0f Course, this still remains on a protoitypical level,
since many of the operations of an actual production-level IPIATM edge device will be assisted by spe-
cial hardware. However, the overall architecture should remain the Same and the Same algorithms will
be applicable.

References
[CY91] P. Coad and E. Yourdon. Object-Oriented Analysis, 1991. Prentice Hall, Englewood Cliffs.
[OS1911 OS1 Work Group. Data Link Provider Interface Specification Rev. 2.0.0, August 1991. UNIX
International.
[SKWS98] Jens Schmitt, Martin Karsten, Lars Wolf, and Ralf Steinmetz. Intemet Integrated Services
Multicast on ATM Networks and RSVP Extensions for Charging, August 1998. Ist Milestone Report of
IQATM Project (Phase 2).
[Sun95] SunSoft. STREAMS Programmer's Guide , November 1995.
[Sun96] SunSoft. Writing Device Drivers , August 1996.
[SVSW98] S. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel. Fast and Scalable Layer Four
Switching. In Proceedings of SIGCOMM'Y8. ACM, September 1998.
[SWK+99] Jens Schmitt, Lars Wolf, Martin Karsten, Ralf Steinmetz, Yann-Olivier Lorcy, and Christian
Siebel. Shortcutting 1P Flows over Large ATM Networks. In Proceedings ofthe 2nd IEEE International
Conference on on ATM (ICATM'99). Colmar; France. IEEE, June 21-23 1999.
[SWS97a] Jens Schmitt, Lars Wolf, and Ralf Steinmetz. Interaction Approaches for Intemet and ATM
Quality of Service Architectures , June 1997. 2nd Milestone Report of IQATM Project (Phase I).
[SWS97b] Jens Schmitt. Lars Wolf, and Ralf Steinmetz. Design and Implementation of an RSVP over
ATM Prototype, October 1997. 3rd Milestone Report of IQATM Project (Phase I).
[WVTP97] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner. Scalable High Speed IP Routing
Lookups. In Proceedings of SIGCOMM'Y7. ACM, September 1997.

