applications programming

[StFr91a]

_Ralf Steinmetz, Christian Fritzsche; Abstractions for Continuous-Media Program-

ming; Computer Communications, Band 15, Nt.6, Juli/August 1992.

Abstractions for continuous-
media programming

Ralf Steinmetz* and) Christian Fritzsche' survey techniques for
programming multimedia applications

. LA
.. d

This paper surveys different techniques for programming
multimedia applicattons. As tar as we know, no work on
multimedia programming as an integral part of high level
. languages has yet been performed (e.g to treat media as

" types). Some new :deas and concepts in this direction are

- presented

Keywords mult:med;a continuous- medaa programmrng,' -

mult:medfa ob;ects multimedia data types

-Work on multimedia computing and communications
- has focused on the provision of suitable workstation-and
network components, together with appropnate software

- technology. The HeiTS (Heidelberg High-Speed Transport

System) prototype under development at IBM ENC in

Heideltberg, is one of these systems’'. Today’s multimedia

applications are usually programmed in conventional
languages (such as C), augmented with hardware-specific
multimedia librartes. Replacing any underying continuous-
media device, even with a functionally-equivalent
component from another vendor, often requires re-
implementing a substantial part of the application
programs. Some applications may have been produced
with tools either generaling or providing the code to
interface with the multimedia devices. In such cases any
replacement of the multimedia equipment requires major
changes in the tools, new interfacing methods, and at the
least a regeneration of the applications’ executable code.

“IBM European Networking Center, Tiergarienstrasse 8, 6900 Heidelberg,
Gernmany (e-mail: steinmet at dhdibmi_bitnet)

' Johann Wolgang Goethe-University of Frankfurt, Computer Science
Departmont, Rohoert-Mayer-Strasse 11-15, 600G Frankfurt, Gernmany
te-mail, fntzsch at ehittmuinformatik.uni-frankfur.de)

Thus, the following questicns arise:

1. Why are multimedia applications so hardware
dependent?

.2, How can this preblem be overcome?

" An analogy can be made to technlques for programming’

with floating:point .numbers. The diverse hardware

-engines for performing floating pomt processmg are also

different in terms of architecture, instructions and-inter-
faces. Sometimes, RISC architectures or parallel processing,
are used. Nevertheless, only a few standard representation

. formats such as the 1EEE format are used. Programmers use
- built-in functions.of high-Hevel languages (HLL) for their

programming with real numbers. Any change in the
hardware would rarely affect, for example, a Fortran
application program.

Compared to our multimedia environment we -find’
relatively well-defined abstractions, wsually HLL data
types, within the programming languages. It is thus
possible to hide the actual hardware from the application
without any major decrease in performance.

The research community frequently approaches
multimedia programming within object-oriented environ-
ments (see References 2, 4 and 5 at one workshop on
multimedia®, and 11, 19, 21 and 22 as further examples).
We encompass a similar developmentin the presentation
of communication functions to the applications. ‘Multi-
media aobjects’ allow for a fast integration of all kinds of
very different capabitities and functions with the environ-
mentitself. Unfortunately, the class hierarchies encountered
are very dissimilar: today, Lhere is no consensus on a
common or ‘the best’ class hierarchy. A multimedia
product developed with an object-oriented language is
still the exception.

0140-3664/92/006396-07 @ 1992 Butterworh-Heinemann Ltd

396

camputer communicalions

real-time OS kernel

10

1

12

" Jeffay, K The Real-Time Producer/Consumer Paradigm:

Towards Verifiable Real-Time Computations PhD
Thesis, University of Washington (1989}

Wirth, N ‘Toward a discipline of real-time pro-
gramming’ Commun, ACM Vol 20 No 8 (August 1977)
pp 577—583

Sha, L, Rajkumar, R and Lehoczky, }J P ‘Priority
inhentance protocols: an approach to real-time
synchronization’ [EEE Trans. Comput Vol 39 No 9
{Septemnber 1990) pp 1175-1185

Jeffay, K Scheduling Sporadic Tasks With Shared
Resources in Hard-Real-Time Systems University of
North Carolina at Chapel Hill, Department of Com-
puter Science, Technical Report TR90-038 (August
1990)

Smith, J B, Smith, F D, Calingaert, P, Hayes,] R,

vol 15 no 6 july/august 1992

13

14

15

16

Holland, D, Jeffay, K and Lansman, Lt UNC Colfabor-
atory Project: Overview University of North Carolina
at Chapel Hill, Department of Computer Science,
Technical Report TR90-042 (1990)

Luther, A C Digital Video in the PC Environment
McGraw-Hall, New York (1990)

Harney, K, Keith, M, Lavelle, G, Ryan, L D and Stark,
D] ‘The i750 video processor: A total multimedia
solution” Commun. ACM Vol 34 No 4 (April 1991) pp
64-79

Bux, W ‘Token-ring local-area networks and their
performance’ Proc. 1EEE Vol 77 No 2 (August 1989) pp
238-256

Reed, D P and Kanodia, R K ‘Synchrenization with
eventcounts and sequencers’ Commun. ACM Vol 22
No 2 (February 1979) pp 115-123

395

In this paper we describe various possiblé abstractions
for continuous media, and as a new concept we propose
to treat ‘multimedia’ as an integral part of a HLL.

LIBRARIES AS PROGRAMMING
ABSTRACTIONS

Let us first consider the most common approach currently
encountered: all continuous media processing is based
on a set of functions packaged as a library.

In a computing system, each device is accompanied by
a device driver and a libirary to control all the available
functions. In DiME, we experimented with a wide
assortment of audio and video devices attached to
workstations. We found that the libraries are very different
with respect to their degree of abstraction. Some can be
regarded as an extension to the window system, others
simply control collections of bytes to be passed as control
blocks to the respective device,

As an example let us take some functions which
support 1BM’s Audio Visual Connection (AVC):

~ach.channel
v_acb modé

AAPI_CHNA
AAFI PU\Y

: ,aud 1n1t(&acb) /‘ ach is the audlo control tlock %/

audrc = fab_open (AugiofullFileName, AAFB_QPEN, AAFB_EXNO,

0, &fzb, 0, B, 0, 0),

- fork (START ‘IN-PARALLEL).
aud stirt{&ach) . -
d15p1ayPos1tLon(RelatlveStartlme Duratlon)
acb.masvol = (un51gned char)Volume ‘
- audrg .= awd_crtl{8acb)

-Libraries ‘are very. con,vement at the. Qperatmg system .
- Tevel;but'theie'is no consensus{and we assurie there-will -

never be one) about which are the miost convenient
~functions for the variou$ devicés to-beé supported. As long
as there is no proper operating system support for

-multimedia and no integration into programming environ- -
ments, a variegated multitude of functional call interfaces

~will remain.
A maore structured approach interfaces audio’and video
through ‘toolkits’> 7. These toolkits are used:

® to abstract from the physical layer;

e to introduce client-server paradigms, i.e. to hide
communication;

e and as an interfface for quality of service (QoS)
parameters.

it is also known that toolkits facilitate the hiding of
implementation aspects such as the process structure.
From our experience, this ‘encapsulation’ of the basic
implementation architecture is only possible at the
expense of performance, and within one type of system
{e.g. only one operating system),

vol 15 no 6 july/august 1992

applications programming

' MULTIMEDIA-SPECIFIC ABSTRACTIONS AT

SYSTEM LEVEL

Some dedicated abstractions, such as ‘time capsules’®, are
seen by a multimedia system as extensions to files. These
extended files dre used for the storage, exchange, and
access of continuous media. Individual data items in a
time capsule have a life span’ or ‘duration’, in addition to
being associated with an indication as to the type of data
and the actual data.

This concept is easier to understand and more useful
for video than for audio. In the case of full-motion video
(25 frames per second), each frame has the duration of
40ms. In a normal presentation, the read access is
performed at this rate. For fast-forward, slow-forward, fast-
backward, etc., the presentation rate is changed. This can
be accomplished in one of two ways:

1. The presentation duration of the data items (i.e. the
video frames) can be altered. In the case of slow-
maotion video, individual consecutive frames become
valid for a longer duration. ,

2. The duration is not affected, but instead the selection
of the segments to be delivered by the time capsuie is

. influericed. At the fast forward- mode some datacitems - .
-will be skaped but the. duration “for -each- frame "
“remains. In “slow ‘motion mode, frames may be .-

delivered twice.”

Herrtwich's work® could be extended by taking into
account the granularity of the data items (pixel, video .
frame, sequence) for time’ capsules. The change of rate
sHould not. be performed on a per-sample basis, but
instead should be applicable to sequences of samples.
With- respect to the video presentation-Hardware, each -
video frame must still have the same duration; a changein.
the rate is not applicable. The same’is true for audio. For
intermediate processing this may not apply A simifar
approach comblnlng the data thh the rate is presented

~ by Glbbs et. af" :

.-

ABSTRACT DATA TYPES AS PROGRAMMING
ABSTRACTIONS

As we use the answerlng machine example throughout

. this paper, fet us specify this application with’ Abstract -

Data Types (ADT), which is one example of a formal
specification. This formal definition - also called abstract
type definition - is an interface specification without any
description of the internal algorithms.

Usingthe ADT definition we encountered some severe
restrictions: communtcation and synchronization cannot
be expressed directly, and synchronization of multimedia
data is essential for most multimedia applications. These
applications also include a certain degree of parallelism
which can only be expressed with an ADT by using some
tricks, as shown in the following example. {The order of
the functions’ execution is not defined since this does not
make sense in an ADT specification.)

The following example describes the answering

3497

applications programming

machine whichwe used asa prelir'riinary example to étudy
and compare the various programming interfacing
techniques:

ADT Answering Machine

operations:

create : -> CALL_LIST,
togele_state -> {eollect_

calls,
report_
calls};
answer : CALL x CALL_LIST ->> BOOLEAN x
CALL_LIST,
play o CALL_LIST ->> BOOLEAN x
CALL_LIST;

velume_control : INTEGER

semantics:
create = create_list();
answer{call,call_list)
= IF collect_calls
= THEN{(accept_call AND play_information_
message AND
recard AND disconnect)

enqueve(call, call_list))
ELSE (FALSE, call 1jst)

p]ay(call Ilst))
IF report. calls
THEN{(play_voice: ma)](head(call llst) AND
display_relative-position),
dequeue(call_list))
ELSE (FALSE,call_list);

Although.the ADT deﬁnitjdn of the answering'-macﬁin_e

. gives a good preliminary idea of the actual application; it

excludes the description of some essential features, and
thus it is not a real substitute for the required multimedia
programming, abstractigns. This formalism looks like a
program, but it does not define the communication
required between the functions. State selection and

volurme control are possible at any time during operation;
" these operate in paralkél. At this level of abstraction we

"+ canniot describe details such as how to play voicé mail, or.
how to. determine the. average. volume, level..Even the ..

N required synchrgnization between play__voice - mail
and display. _relative__position .cannot be specified. -

OBJECT ORIENTED APPROACHES AS .
PROGRAMMING ABSTRACTIONS

" In object-oriented environments - according to Wegner's
definition® '° - multimedia programming is approached
by the implementation and expansion of class hierarchies.
However, very different types of such class hierarchies can
be built

An application related class hierarchy introduces
abstractions conceived specifically for ane application or
a well defined set of applications and it's environment.
This is the most commonly used approach, and leads to
the actual variety of class hierarchies.

Let us now focus on the view of objects in a more
physical sense. Let us associate devices with objects, as

398

done, for example, in the DIME project’’. Common
methods should be usable in a device-independent
fashion. Synchronization methods are applicable to many
devices and may be mapped onto, for instance, start/
stop/on/off operations. Some devices may comprise
various media, e.g. a computer-controlled VCR or Laser
Disc Player (LDP) are storage devices combining video
and audio. Within multimedia systems an abstract type
definition of devices such as cameras and monitors can be
provided. However, nothing is said about the actual
implementation. It tumed out to be a rather difficult task
to define a common interface across several similar audic
or video input or output devices as shown, in the
following example:

class media_device
{char® name-
public:
void on(), off{);
};/% end media_device®/

class media_in_device :
public medi1a_device
fprivate:
DATA data;
public:. '
rufDATA get data(y
1 /% end medla in d£v1c€ '/

class media_cut_device :
public.
void put_data(refDATA dat);
l /* end media_out_device %/

class aﬂswerlng“mach1ne T
publlc media_device
{private: ' .
-list my_list; // class for ADT list
media_in_device recorder;
media_out_device message_for_caller,
message_from_caller;
refDATA information; // text a caller hears
vold dlsplay_0051t1on ()
pUbllc ;
voxd answer()
{wessape.for_caller.on()! :
message_for_caller,put data(lnformatlon)
- message_ for1pallar of f{}¥;
recorder ‘en();
my_list.enqueue(recorder. get_ data())
-recorder off ()
R
vold play()

message_from_caller.on{(),
message_from_caller put_data(my_list . head(});
display_position(};
message_from_caller.off(};
my_list. dequeue();
!

{;/% end answering_machine */
main{){{,

The concepl of devices as a class hierarchy offers the
possibility of parallelism by a simple parallel execution of
the methods. Synchranization is not defined in this

computer communications

applications programming

" "a similar riotation of QCCAM 21314 (derivéd from CSP -
Communication Sequential Processes'® - as the language
for programming transputers'®) due to its simplicity and
inherent parailelism.

a,b REAL;
ldu_leftl, ldu.left2, ldu.left_mixed AUDIO_LDU;
WHILE ...
COBEGIN
PROCESS_1
input(microl, idu.leftl)
PROCESS_2
input{micro2, idu.left2)

ldu. left_mixed := a * idu.leftl + b % ldu.left2;
END_WHILE

For HLLs, an alternative to libraries is to consider the media
asdata types, e.g. a datatype forvideo. In the case of text,
a character would be the ‘atomic element’ (bits and bytes
aside). A program would manipulate characters: they can
be copied, compared with others, deleted, generated,
retrieved from a file, stored somewhere, be part of a data
structure, etc. Why not permit the same operations on

_ . continuous media-lagicat data units (LBU) (to the extent ™
" thatit makes sense)?- Viewing medlaas adata type; we cdn*

“distinguish different approaches based on the granularity
of the media fo be addressed by the functions {e.g. pixel,
whole picture or sequence of pictures; audio sample or
audio block). So far we experienced: -

e Ifthese sequences (LDUs) are too smafl, ég individual -
audip samples, real-time processmg ‘becomes difficult -

" (DSP algorithms _must be generated, changed,
enhanced'’). If the granularity is too coarse, individual

items are no longer accessible. As a practical solution, -

the programming capabilities should be restricted (i.e.
pixel manipulation for DCT or FFT are not the domain
of HLLs).

- # The meaning of the operatOrs +5 -
media-dependent, but also appl1cat|qnf§pecific; the

--addition of two video pictures may be a superposition -

(with some transparent colour) or just an addition of
the luminance values. An agreement.on. the.common
interpretation is required.

® The compiler generated heap size is restricted (for

efficiency purposes, chaining of audio/videc LDUs is’

not practical). Careful allocation and manipulation of
buffer space can be reached through a system-wide
homogeneous buffer management and/or applying
dedicated optimizing steps for the code generation.

Ttle_hl = open (NICROPHONE_1, ...}
file_h? = open (MICROPHONE_Z, . .)
file_h3 = open (SPEAKER, ...)

read (lile_hl)

read (iile_h2)

mix (file.hd Tfite_hl, tile_h2)

activale (file_hl, file_h2, {1}e.h3
400

system

etc.—:- is not or\l'y .

* Instead ofexteﬁ‘ding'the notion of data fype's we could try

to follow the approach of looking at continuous media
streams as files. By opening files we associate the physical
files with file names, and the program uses file handies. In
our case we will associate a device gene.ating or
consuming continuous media with a file name. Read and
write functions describe what will happen if data items are
avilable. By a seek function we could position at
individual items, but in the following we will typically
consider sequences of suchitems. Often such continuous
media may also be derived from a source like a
microphone orcamera, in such a case a seek function will
not be applicable. This is similar to discrete data derived
from a keyboard. This approach is very convenient in Unix
environments because there devices are often treated as
files at the application programming interface. We could
then extend the notion of a device to Leung’s ‘active
devices''®_ All file related functions are applicable, and in
addition a device could be activated and deactivated.
The activation means that the actual data transfer is
initiated, and it is stopped by issuing the deactivation
command. Less operations (than in the case of ‘media as
data type’) are applicable as natural extension to the file

A PEUCF.SS cont process a:

On_message_do
set_volume ...
set_loudness ...

[main] :
pid = create (cunt_process iy
“send (pid set_voldme, 3)
“Send (pid, 'set_lovdness) -~

Protocols for continuous media invoive time-dependent
processing. If we consider the lifetime of a process to be

equivalent to the lifetime of the respective connection ..

between the source and the sinks, then another way of

. incorporating media processing in the HLL is to look at- -

continuous media as processes_ Creation of the process
identifies and reserves the respective physical devices.
The interface to continuous media is through IPC. For
example, the transfer of continuous media-data can be

controlled by issuing signals or messages. The continuous--~

media process itself determines what actions should be
carried out., So far we experienced that there is no
approach’leading to the solution. Nate that this report
discusses on-going (and not completed) research.

CONCLUSION

Qur first, very preliminary impression was that there exists
very little or no work in this area of HLL abstractions for
continuous media. And. 1oo many different object-
oriented approaches exist. This impression was correct.

Let us come back to the two questions posed within
the introduction:

computer communications

-

hierarch.yr and must be provided from elsewhere, Multiple

inheritance was often required in implementing the
answering machine.

Initial concepts of DIME were based on a dafa flow
principle with sources, sinks and intermediate processing
components. Similar approaches have recently been
discussed by Anderson and Chan? (see the comet’s node
types) Gibbs et al* (sinks, sources and filters) and
Steinberg et al.’? (module with variable number of input
and output data channels). This ‘Lego’ model allows us to
assemble the data flow path by chaining the object or
connecting input ports to the respectwe output ports of
other objects.

The media class hierarchy is a special media type
structuring method which defines classes correspondent
to the different attributes of the individual kinds of media.
The foliowing class hierarchy is extracted from the code
{see Appendix A}, and denotes oniy a part of the whole
hierarchy:

media
audio
music
opus
rote
Tee opsample coe.oeo
speECh ’

visual
video
image
_ animation- . |

pext-'

We defined the methods ‘get’ and ‘put’ for these classes.

Related ta the discussion about granularity of media, we
introduc_e a second kind of relationship, apart from the
_is-a hierarchy of classes. The new relationship is the

‘is- sequence-of‘ refationship to_model. the’ g.ranuladty :

_This offers the chance to defme synch romzatlon in terms
of granulanty
A unique property of multlmed1a objects is thelr

. lifetime, as discussed by Steinmetz et al.'' and denoted - . -

by Gibbs et al* as active objects. The processing is
performed for as long as the connection exists or data is

" transferred, even if no method {apart from a-'new’ and/or-

‘init’} is invoked. Typical methods are ‘play” and ‘stop’.
Gibbs' multimedia programming environment is extended
towards the user-oriented interface by a ‘scripting'
language with constructs for parallel, sequential and, for
example, repetitive processing ('a > > b’, ‘a&b’, 'n*a’).
Communication-oriented approaches incorporate
objects in distributed environments by exEI|c1tIy defmln%
classes and objects for communication?’. Blakowsky
distinguishes information, presentation and transport
classes. Information encapsulated by the information
objects can generate presentation objects to be played or
displayed. Information objects can also be converted into
transport cbjects far the purpose of communication, and
transformed into presentation objects afterwards (see

vol 15 no 6 july/august 1992

applications programming

Blakowsky? for the complete state transition gtaph). We
could imagine this model extended by a storage class as
information is processed/coded differently for communi-
cation, presentation as well as storage purposes. And
storage formats are essential as they rely on, for example,
database, CD- and compression-specific coding {plain
CD-ROM 150 9660, CD-ROM XA, DVI, CD-I, formats).

Another approach we studied is known as application
models. Applications are derived from a generic appli-
cation class hierarchy. We can either derive models from
the basic functions of the applications’ or understand
media as perception, storage, transmission and presen-
tation media. There are three fundamental combinations
of these media: the first we call “live presentation’, which
means that a live scene is perceived, the data are
transmitted and then presented, e.g. a live TV broadcast
that you watch on your TV at home. The second is a
‘recording medium’: a combination of perception and
storage media. The third combination is a (re-}play
medium that presents stored data. From these three
classes more specialized classes can be derived, eg.
video observation, video recorder, audio player, and
projectors for film or slides.

Related” to the inheritance within all the "above

- mentloned ooncepts are the advantages of po!ymorph:sm N
“.iie. thé sarme function ¢all &r-methad cdn be ‘applied to

different objects. We may use ‘play’ with, for example,
audio and video data, there will be different implemen-
tations to perform this command. The datamaybeafilein
the local file system or some audio/video sequence on a
remote file server. Within the objeci-oriented framework

" ‘play’ may be defined in various classes. According to the
object to perform this operation, the respective method is -

selected. Apart from code reuse,. this concept is very-,
useful considering the ease of the system’s use reducing
the complexity of the various underlying systems -and
approaching uniqueness.

Our examples and the actual implementation were
done in C++, but the results are not at all.dependent-on
this speciﬁc‘ lariguage. For the future we seea coexistence”
of various class hierarchies -with complex interrelation-.
ships. Since this complexity is not easily manageable, let

us shift our focus to corwlentlonal HLLs.

'PROGRAMMING ABSTRACTIONS WITHIN -

HIGH-LEVEL LANGUAGES

In procedural HLLs, muitimedia functions may be issued
by a set of uniform, i.e. relatively device-independent
function calls. This leads to a certain desirable abstraction,
and assures better programming style and productivity.
However, programs must be able to manipulate multi-
media data very efficiently. Thus, in a procedural HLL the
program will typically directly access multimedia data
structures or control the attached processing engines via
device-dependent system calls. In Appendix B we
included some of the C-Code (itis C with C++ notation)
of the answertng machine. in the following example, we
just show typical programming statements making use of

399

applications programming

Tsichritzis (ed.}) Active Object Environments {June
1938} pp 121-128

22 Steinmetz, R and Meyer, T ‘Modelling distributed
multimedia applications’ JEEE Int. Workshop on
Advanced Communications and Applications for
High-Speed Networks Munich, Germany (March
1992)

APPENDIX A: PART OF THE ANSWERING
MACHINE’S C++-CODE WITH MEDIA AS
CLASS HIERARCHY

class media
fprivate:
// Attribute Set
public:
refDATA get();

class sentence ; :
public discourse
{private:
sequence_of word;
//public:
I

class word

class phonem

class wvisual :
public media
(private:
//>>>> local Attributes
/fpublic: ...
b

class

class

tlass

class -

class

class

class

402

void put(refDATA dat);
refAttributes information();
}i/* end media */

audio :
public media
{prlvate

'//>>>> local A.ttrlbutes

public:

.//>>» public methods

mUSIC :

public. audio

private’ o

//>>>> lacal’ Attr1butes -
public: T

//>3>> public methods

apus -
oublic music
{private;
sequeace_of nnte -
- f/>>3> local Attrlbutes ;
public:
//¥>>> public methods’
i

note
sample-

speech :
public media
[private:
J//>>>> local Attributes
public-
//>>»> public methods
K

discourse .
public speech
{private:
sequence_ol sentence:
//>»>> local Atiributes
//public:
I

APPENDIX B: EXTRACT OF C-CODE (IN
C++ NOTATION) OF THE ANSWERING
MACHINE

//Answering_Machine -
~ finclude <str1ng h>: T Ve . .
Hinclude. <stredm:b>. - PR

//functions;

state select_state ()

{/* collect-calls or report_calls®/

char selec},ionfflld"-

int’i = 0;- . .

cout<<” select operat1on state collect_calls ar
“repart_calls\d”; -

cio>> selection;

while (Select10nﬁ11++)

cout<<"your cheise: <<select10n<<
return (selectionfflQ”

" erum state {col]ect calls, report cal]sl

o)< \n";

= 'r'/*eport_calls “*/); !:

int volume_contraol;

.state sele;
T .jjopérating: .
main()
fo ST
sele = select_state(); -
- switch(sele)

case collect _calls;

{/*accept_call;

play_ intomatien _message;
record..determines average volume level..;
enqueue_call;

disconnect*/

cout<< "callecting\n”;

break;

!

case report_calls;

defavlt:

{//play_voice_mail..adjusts volume.. and
//display relative position in parallel
cout<<"reportingin”,
break;

cout<< "nene\n";

computer communicalions

1.

Why are multimedia applications so hardware
dependent?

The novelty and the diversity of device-specific
muitimedia functions are the main reasons for the
insufficiency of actual programming abstractions for
continuous media. Receiving data from a multimedia
device and controlling the device (which may be a
camera) is different to simply receiving chamcters
from a keyboard. There is an increase in complexity.
Also, different devices (a camera and a microphone, or
just two different CD-based storage devices) differ in
their functions.

. How can this problem be overcome?

With proper multimedia-specific operating system
extenston and programming abstractions, this insuf-
ficiency can be tackled. In this paper we discussed and
proposed some approaches for continuous media
abstmctions. Nevertheless, we doubt that there is one
single solution. HLLs, for example, require enhance-
ments, and we are presently experimenting with some
of these abstractions.

Summarizing our view of programming multimedia
systems: applications may directly invoke libraries or even
call device drivers. A more.convenient approach is to use
- toolkits or even HLLs or object-oriented -environments.
We see a coexistence of thése various approaches with'a
lack of research and development in some of them (e.g,

HLLs). We are currently investigating the integration into

HLLs in more detail,

" ACKNOWLEDGEMENTS

Martin Zimmermann supported our practical work with
many valuable advices concerping object-orientation and
C++, and Manny Farber devoted considerable time for
commenting and lmprovmg the quality of the whole
waork. Thank you:

1

'REFERENCES

Hehmann, D, Herrtwich, R G and Steinmetz, R
Creating Heil5: Objectives of the Heidelberg High-
Speed Transport System Gl-Jahrestagung, Darmstadt
(October 1991)

Anderson, O and Chan, P ‘Toolkit support for
multiuser audiofvideo applications’ 2nd Int. Workshop
on Network and Operating System Support for Digital
Audio and Video Heidelberg, Germany (November
18-19 1991)

Blakowski, G ‘Concepts of a language for the
description of transport and (re-)presentation
properties of multimedia objects’ Informatik
Fachberichte No 293 (1991) pp 465-474 (in
German)

Gibbs, §, Breiteneder, C, Dami, L, de May, V and
Tschichritzis, D ‘A programming environment for
multimedia applications’ 2nd Int. Workshop on

vol 15 no 6 july/august 1992

applications programming

10

L

12

13

14

15

16

17

18

19

20

21

Network and Operating System Support for Digital
Audio and Video Heidelberg, Germany {Novermnber
18-19 1991)

Ruston, L, Blair, G, Coulson, G and Davies N ‘A tale
of two architectures’ 2nd int. Workshop on Network
and Operating System Support for Digital Audio and
Video Heidelberg, Cemnany (November 18-19
1991}

2nd International Workshop on Network and Operating
System Support for Digital Audio and Video Heidel-
berg, Germany (November 18-19 1991) Lecture
Notes in Computer Science Springer-Verlag, Berin
(1992)

Anderson, D, Govindan, R and Homsy, G Abstrac-
tions for Continuous Media in a Network Window
System Technical Report UCB/CSD 90/596, UC
Berkeley (September 1990)

Herrtwich, R G ‘Time capsules: an abstraction for
access to continuous-media data’ /EEE Real-Time
Systerns Symposium Odando, FL (December 5-7
1990) pp 11-20

Wegner, P ‘Dimensions of object-based language
design’ Proc. OOPSLA 87 (October 4-8 1987)
Nierstra, O M ‘A survey of object oriented concepts’
SICMQD Record Vol 18 No 1 (March 1989)
Steinmeiz,-R, Heite, R, Riickert,) and Schbner, B
‘Compound multimedia ‘objects - Integration into
network and operating systems’ Int. Workshop on
Network and QOperating System Suppost for Digital
Audio and Video Berkeley, CA (November 8-9
1990)

Steinberg, D, Sirota,) and Berry, D ‘A multimedia
application programming interface paradigm’ 2nd Int
Workshop on Network and QOperating System Support
for Digital Audio and Video Heidelberg, Germany
(November 18-19 1991)

Inmos Limited Occam Programming Manual Prentice-
Hall, NJ (1988)

.Steinmetz, R Occam 2: The Prograrmming Language

for. Parallel Processing Hithig-Vedag, Heldelberg_
(1988) (in German)

Hoare, CAR Commuriication Sequent:al Processes
Prentice-Hall, N] {1985)

Whitby-Strevens, C ‘Transputers - Past, present, and
future’ IEEE Micro Vol 10 No 6 (December 1990) pp
16-19/78-82

Rabiner, L R and Schafer, L W Digital Processing of
Speech Signals Prentice Hall, NJ (1978)

Leung, W H, Luderer, G W R, Morgan, M |, Roberts,
P R and Tu, 5-C A set of operating system mechanisms
to support multi-media applications’ Proc. Int
Seminar on Digital Commun. Zurich, Switzerland
(March 1988) pp 71-76

Little, T D C and Ghafoor, A ‘Synchronization and
storage models for multimedia objects’ IEEE Selected
Areas in Commun. Vol 8 No 3 (April 1990) pp
413-427

Feldhofier, H ‘Communication support for distributed
applications’ Int. IFIP Workshop on Open Distributed
Processing Berlin, Cemany (October 1991)

Fiume, E and Tsichritzis, D ‘Multimedia objects’in D

401

