
applications programming
[StFr9la] Ral/Slriimlrtz, @risl&n F~.ilzsclle; Abstrnctions for Continuous-Media . . Program-

' ming; Computer C6rrimunications. Band 1S.Nr.6, Jul'i/Augu~t 1'992. . .

Abstractions for continuous-
media programming

Ralf Steinmetz* and J Christian Fritzschet survey techniques for
programming multirnedia applications

. ~ ~. : . . : . .
. . .

. . .: .
. :.

. ,
. .

.~hi is , the foll&witig q ~ i ~ t i o n s arise: ',

Jhis paper surveys different techniques for p'rogrammin:
rnultimedia applications. As tar as we know, no work on

1 . Why are rnultirnedia applications so hardware
rnultirnedia prograrnrning as an integral part of high fevel

dependent? . languages has yet been perforrned (e.g to treat rnedia as
2. How can this problem.be overcome?

fypes). Same new ideasand concepLs. in this direction are . . ' .. ' . .
presented. ' . An analogy q n be rnade-to techniques-for programming

' ' with floating'point nunibers. T h e diverse , hardware ~eywords: multirnedia, coqtin,uous-rnedia :programming ..

rnultimedia objects, rnultirnedia data types engines for perforrning floating point processing are also . .
. . . .

. - different in terrns of architecture, instructions and inter-
faces. Sornetirnes. RlSC architectures or parallel processing

Work on rnultimedia cornputing and comrnuiiications
' ha2 focused'on the'provision of suitable workstation:and

nehvorkcornponents. togetherwith appropriate soitware
; technology. The HeiTS (Heidelberg High-Speed Transport

System) Prototype under development at IBM ENC in
. . Heidelberg, isone of these systernsl.~oday'smultimedia

applications are usually programrned in conventional
languages (such as C), augrnented with hardware-specific

: rnultimedia libraries. Replacingany underlying continuous-
media device, even with a functionally-equivalent
cornponent from another vendor. often requires re-
implementing a substantial part of the application
prograrns. Sorne applicaiions niay have been produced
with tools either generaiing or providing the code to
interface with the multimedia devices. In such cases any
replacerneiit of the rnuliirnedia equiprnent requires rnajor
changes in the tools, new interfacing rnethods. and at the
least a regeneraiion o l thr applications' executable code.

'IBM Eiiro~>can NelworkingC<.nl<,r. Ti<,rgan<.nitra~rr 8.6900 Hridrlhrrg.
Gerinany (P-iiiail: ririninr1 ai dlidiliiiii.l>iinrll
'lohann Wolgang C.o?th<>-Uiiivi,r,ily o(Iraiikfiin. <:oiiil>t>lcr S<iencr
Dcpanrn<.nl. Kohvn-Mayer-Stra\r<' 11-15, bOfKI Frankfiin, C.rrinany
Ir-niail. Iri inrh ni rl>illiii.iiiforiiiattk.t~kki-lidnkf~~cl.~Ie)

are used. Nevertheless, only afew Standard representation
, formats suchasttie SEEforrnat are used. Programme? use
' built-in functioniof high-level IanguagesXHLL) ior their . '

prograrnrning with real nurnbeß. Any change in the
hardware would rarely affect, for exarnple, a Fortran
application program.

Compared to our multimedia environrnent we find :

relatively well-defined abstractions, usually HLL data
types, within the prograrnming languages. It is thus
possible to hide the achiai hardware frorn the application
without any rnajor decrease in perforrnance.

The research cornrnunity frequently approaches
rnultimedia prograrnmingwithin object-oriented environ-
rnents (see References 2, 4 and 5 at one workshop on
rnultirnediab, and 11 .19 , 21 and 22 as furtherexamples).
We encornpass a sirnilar developrnent in the presentation
of communication functions to the applications. 'Multi-
media objects' allow for a fast integration of all kinds of
very different capabilities and functions with the environ-
ment itself. Unfortunately, the class hierarchies encountered
are very dissirnilar: today, ihere is no Consensus on a
cornmon or 'the besc' class hierarchy. A multirnedia
product developed with an object-oriented language is
still the exception.

. . -- real-time OS kerne1

. .
8' JeHay, K The Real-Time Producer/Consurner ~aradi~rn:

Towards Verifiable Real-Time Cornputations PhD
Thesis, University o f Washington (1 989)

9 Wirth, N 'Toward a discipline of real-time pro-
gramming'Cornmun. ACMVoi 20 No 8 (August 1977)
pp 577-583

10 Sha, L, Rajkumar, R and Lehoczky, J P 'Priority
irihentance protocols: an approach to real-time
synchronization' IEEE Trans. Cornput Vol 39 No 9
(September 1990) pp 1175-1185

11 jeffay, K Scheduling Sporadic Tasks With Shared
Resources in Hard-Real-Time Systems University of
North Carolina at Chapel Hill, Departrnent of Com-
puter Science, Technical Report TR90-038 (August
1990)

12 Smith, J B, Smith, F D, Calingaert, P, Hayes, J R,

. .

~ o l i a n d , . ~ , jeffay,.~ and iansman, L UNC Collabor-
atory Project: Overview Univeßity of North Carolina
at Chapel Hill. Departrnent o f Computer Science,
Technical Report TR90042 (1990)

13 Luther, A C Digital Video in the PC Environment
McGraw-Hall. New York (1990)

14 Harney, K, Keith, M, Lavelle, G, Ryan, L D and Stark,
D J 'The i750 video processor: A total multimedia
solution' Cornrnun. ACM Vol 34 No 4 (April 1991) pp
64-79

15 Bux, W 'Token-ring local-area nehvorks and their
performance' Proc. IEEE V0177 No 2 (August 1989) pp
238-256

16 Reed, D P and Kanodia, R K 'Synchronization with
eventcounts and sequenceß' Cornrnun. ACM V0122
No 2 (February 1979) pp 115-123

applica tions programming

I n this we describe variou; possible abstractions
for continuous rnedia, and as a new concept we propose
to treat 'rnultirnedia' as an integral part of a HLL.

LlBRARlES AS PROGRAMMING
ABSTRACTIONS

Let us first considerthe most commonapproach currently
encountered: all continuous media processing is based
on a set of functions packaged as a library.

In acornputingsystem, each device isaccornpanied by
a device driver and a library to control all the available
functions. In DiME. we experimented with a wide
assortrnent of audio and video devices attached to
workstations. We found that the libraries arevevdifferent
with respect to their degree of abstraction. Sorne can be

. .
MULTIMEDIA-SPE-FIC ABSTRACTIONS AT
SYSTEM LEVEL

Sornededicated abstractions, such as'tirne ~ a ~ s u l e s ' ~ , are
seen by a multimedia system as extensions to files. These
extended files are used for the Storage, exchange. and
access of continuous rnedia. Individual data items in a
time capsule havea 'life span' or 'duration', in addition to
being associated with an indication as to the type of data
and the actual data.

This concept i s easier to understand and more useful
for video than for audio. In the case of full-rnotion video
(25 frames per second), each frame has the duration of
40 ms. In a normal presentation, the read access i s
performed at this rate. For fast-fonvard, slow-fonvard, fast-
backward, etc., the presentation rate is changed. This can
be accomplished in one of two ways:

regarded as an extension to the window System, others
simply control collections of bytes to be passed as control 1 . The presentation duration of the data items (i.e. the

blocks to the respective device. video frames) can be altered. In the case of slow-

As an example let us take some functions which rnotion video, individual consecutive frames become

support IßM's Audio Visual Connection (AVC): valid for a longer duration.,
2. The duration is not affected, but instead the selection

of the Segments to be delivered by the time capsule i s
a c b c h a n n e l = AAPILCHNA

. ,. infIcierjced.. At the 1a.t foyard-mode sarne data:item's. ., a c b node .,= AiPI-PL.AY ' , . :..,
'. . w i l l be,skipped. but the'duration for.eaah. frame .: .

'

. . . .
.

a u d L i n i t (8 a c b) /. acb is the a;dio cont.rol C,ock . . ' remains. ' In s low rnotion mode, frames niay b e . - '
delivered hvice: ~.

audrc = lab-open (Aud iaFu l lF i l eName, AAFBKOPEN. AAFB-EXNO. ~ ~ ~ ~ i ~ h ~ ~ could be extended by taking into
. . 0 . g f a b . 0 . 0. 0; 0) . . , , accoiini the granularity of the data items (pixel, video

. .. .
70- [START INPARALLEL). ' ' . .. - . . frarne,:sequenfe).f6r time'cdpsules. The change- of rate "..

aud:strt[&acb) . . stiould not. be performed on a per-sarnple basis.but
' ~displayPositian(RelativeStartime. O u r a t i o n)

'

insfead should be applicable to sequences o f samples..
. With- respect to rhe video presentationhardware. each
acb.masvö1 = ' (unsigned cha r) l a l ume bideo frame must still have the same duration; a change in.
a u d r ~ . = aud -c r t l (8acb) . . the rate is not applicable. The sameis true for audio. For
. . .

interrnediate processing this may not apply. A similar
approach cornbining the data with the rate ispresented

Libraries are very cowenient at the.operating System . ..by ~ ibb~.~t .~ , .? i .. . :
., ,. . , . .

. level~but:theiii;~o'c6ni.ensus'(aridwe a s s h e there will. . .~ . .
never be one) about which are t h e rnost convenient

. ,
functions forthevarious devices to-bhsuppor ted:~~ long . .

as there is no proper operating system support for ABSTRACT DATATYPES AC PROGRAMMlNG
. ~ . . rnultirnediaand no iotearatiori into.oroaramminaenviron- . ..ABSTRACTIONS

ments. a variegated multitude of functional call interfaces
will remain.

A more stluctured approach interfaces audio and video
through 'toolkits".'. These toolkiü are used:

to abstract from the physical layer;
to introduce client-sewer paradigms, i.e. to hide
communication;
and as an interface for quality of sewice (QoS)
Parameters.

It i s also known that toolkits lacilitate the hiding of
implementation aspects such as the process structure.
From our experience. this 'encapsulation' of the hasic
implemeniation architecture is only possihle at i h r
expense of performance. and within one type 01 systeni
(e.g. only one operating system).

As we use the answering machine example throughout
this Paper. iet us specify this application w i th Abstract
Data Types (ADT), which is one example of a formal
specification. This formal definition - also called abstract
type delinition - is an interface specification without any
description 01 the internal algorithrns.

Usingthe ADTdefinition we encountered sonie severe
restrictions: communication and synchronization caiinot
be expressed directly. and synchronization of rnultimedia
data i s essential for most muitimedia applications. These
applications also include a certain degree of parallrlisni
which can only be expressed with an ADT by usingsoiiic
tricks, as shown in the following examplr. (The order ol
the functioiis'execution is not definrd sinre this docs iioi
make sense in an ADT specification.)

The following example descrihes tlie answrriiig

vol 15 no 6 july/august 1992 197

applications programming

rnachine which we used asapreli~inatyexample tostudy
and compare the various programming interfacing
techniques:

AOT Ansuer ing Rachine
Operat ions:

c r e a t e - > CALLLLIST:
t o g g l e - s t a t e : .> (c o l l e c t L

c a l l s .
r e p o r t -
c a l l s l :

answer : CALL CALLLLIST -> BOOLEAN';
CALLLLIST;

PI~Y : CALLLLIST . > BOOLEAN x
CALLLLIST;

v o l u m e ~ c a n t r o l : INTEGER

semant ics :
c r e a t e = c r e a t e - l i s t () ;
a n s u e r (c a l l . c a l l _ l i s t)

= I F c o l l e c l _ c a l l s
= THEN((accept_cal l AN0 p l a y _ i n f o r m a t i o n _

message AND
reco rd AND d isconnec t) ,

enqueue(ca!l.call_list))
ELSE (F A L S . c a l l L l i s t) ;

. . .

d e q u e u e i c a l ~ _ l i s t) I
ELSE (FALSE.cal1.1iit); ..

Althoughthe ADT definit& of'the answering.-machine
' . gives a good preliminaty ideaof the actual app!icaiion; it

. excludes the description of some essential features; and
thus it is not a real substitute for the required multirnedia
programrning abstractions. This forrnalism looks like a
prograrn, but i t does not define the communication
required behveen the functions. State seleaion and
volume contrql are possible at any time during~peration;

. ihese .o~eratein ,par~kl.'~~t,.this'le\iel o j abstraction we ,
canriot dexribe details such as how toplay voice mail. or.

- . . how t o deprmine -the average. vo!ume, leuel., Eveo the :.
required syrichronitation between play-voice-mail
and display-relative_position . . cannot . . . be specified..,.

.~ . .

OBJECT-ORIENTED APPROACHES AS
PROGRAMMING ABSTRACTIONS

In object-oriented environments - according to Wegner's
definition9.10- multirnedia ~roararnmin~ is amroached .
by the irnplementation and expansion of ;lass hierarchies.
However, vetydifferent types of such class hierarchies can
be built.

An application relafed class hierarchy introduces
abstractions conceived specificallv for one ap~lication or . .
a well defined set of application; and it's environment.
This is the most commonly used approach. and leads to
the actual variety of class hierarchies.

Let us now focus on ihe view of objects in a more
physical sense. Let us associate devices with objects. as

done, for example, in .the DiME projectil. ~ b m m o n
methods should be -usable in a device-independent
fashion. Synchronization methods areapplicable to rnany
devices and may be rnapped onto, for instance. startl
stop/on/ofi operations. Some devices may comprise
various media. e.g. a cornputer-controlled VCR or Laser
Disc Player (LDP) are Storage devices combining video
and audio. Within rnultirnedia Systems an abstract type
definition of devices such as carneras and monitors can be
provided. However, nothing is said about the actual
irnplernentation. It turned out t o be a ratherdifficult task
todefine a common interface across several similar audio
or video input or output devices as shown, in the
following exarnple:

c l a s s media_device
(cha r * name-
p u b l i c :

v o i d o n 0 . a f f 0 ;
I ; / . end nedia_device./

c l a s s i ed ia - in -dev ice :
p u b l i c i ed ia_dev ice

(p r i v a t e :
DATA da ta :

pub l i c : .
. , . :, .. rofOATA get:dat?(Y;' , , :

I Y/' end .idia-in_de:ice Y

c l a s s mediacoutLdevice :
pub l i c ,

v o i d putLdata(refDATA d a t) ;
I;/' end media-out-device */

: .
' c l a s s af lsuer~ng_machine : . .

p u b l i c media_d'evice . , .
l p r i v a t e :

. l i s t my- l i s t ; / / c ~ i i s f o r ADT i i s t
i ed ia - i n -dev ice reco rde r ;
media_out.device message.for_caller.

message_froi.cal ler;
rgfDATA i n f o r m a t i o n ; .// t e x t a c a l l e r hears

. . . . vp16 d i s p l a y - p o 3 ~ t i p n . O ; , ., . . ' . . .
- p d b l i c : . , . .

v o i d answer0
.. (iessage_forlcaller.onO: .' . .

nessage- fo r -ca l l e r .pu t d a t a (i n f 0 r i a t i o n) :

. m e s s a g e _ ~ r ~ a l l ~ ~ . o f f O ~
r e c o r d e r . o n 0 ;
my.list.enqueue(recorder.get_data());
recorder .o f f () : . . . ~.
I

I ; / * end ansvering-machine *!
m a i n O l l .

The concepi of devices as a class hierarchy offers the
possibility of parallelism by a simple parallel execution of
the rnethods. Synchronization is not defined in ihis

applica tions programming

'a similar notation of OCCAM i 1 3 . 1 4 (deriv&d from CSP -
Communication Sequential Processe~'~ - as the language
for progmmming transputers16) due to its simplicity and
inherent pamllelism.

a . b REAL:
1 d u . l e f t l . l d u . l e f t 2 . I d u . l e f t - m i r e d AUDIO-LDU;
. . .

UHILE ...
MBEGIN

PROCESS-1
i n p u t (m i c r a 1 . i d u . l e f t 1)

PROCESS-2
i n p u t (i i c r o 2 . idu . le f t .2)

1 d u . l e f t L m i x e d := a * 1 d u . l e f t l + b ' l d u . l e f t 2 ;
END-UHILE
. . .

For HLLs, an alternative to libraries is to consider the media
asdata types,e.g. adatatype forvideo. In the case of text,
a characterwould be the 'atomicelement' (bits and bytes
aside). A program would manipulate characters: they can
be copied, compared with others, deleted, generated,
retrieved from a file. stored somewhere, be part of a data
structure. etc. Whv not erm mit the same ooerations on

. . . . ~ . . ~

.
lnitead of extendingthe notion bf data&p&s we'coutd try . '.

to follow the approach of looking at continuous media
streamsasfires. By openingfiles we associate the physical
files with file names, and the program uses file handles. In
our case we will associate a device gene.ating or
consuming continuous media with a file name. Read and
write functions describe what will happen i f data itemsare
avilable. By a seek function we could position at
individual items. but in the following we will typically
considersequences of such items. Often such continuous
media may also be derived from a source like a
microphone or camera. in such a case aseek function will
not be applicable. This is similar to discrete data derived
from a keyboard.Thisapproach is very convenient in Unix
environments because there devices are often treated as
files at the application programming interiace. We could
then extend the notion of a device to Leung's 'active
devices"'. All file related functions are applicable. andin
addition a device could be activated and deactivated.
The activation means that the actual data transfer is
initiated, and it is stopped by issuing the deactivation
command. Less operations (than in the case of 'media as
data type') are applicable as natural extension to the file
System.

'distinguish differentapprÖa;hes based on the'gran'ul&ity
of the media to be aädressed by the functions(e.g. pixel,
whole picture or sequence of pictures; audio sample or
audio block). So far we experienced:

'

.
.

. . .
' ' 0 Ifthese sequeiices (LDUs) ar? too small, ,ig. individual [m a i n] . .

. .
. ... aucjiosamples, real:ti,me p r o i ~ s i ~ g : b e ~ o m e ~ dif7jylt .. . ' , Q i b = - c + a t e (c . a n t - ~ r ? C e F _ a) ' >

. .(DSP algorithm? must b6 generated, changed, , d ~ i d i s e t i v o l u m e . 3)
enhanced"): If the granularity is too coarse, individual i e n d (pid;set_laudoess) .:

. ~ .
items are no longer accessible. As a practical solution. . . .
the programming capabilities should be restricted (i.e. protocols for media involve t,me.dependent
pixel manipulatio" for DCT or are not the domain processing. If we consider the lifetimeof a process to be
ofHLLs). . , equivalent t o the Jifetime of ttie respective conneqion . . -'.
The meaning of the opedors '+'; '-'. etc;;.is not oniy - berween th& sourCe arid theiinks, then another way of
media-dependent. but also application-specific: the

,, incorporating media processing in the HLL ir to look at.
additionof twoLideo pictures may be a dperpoiition cont;nuous med;a asp,ocesses. Creation of the process
(with tmnsparent cOlOur) Orjust an additiOn Of identifies and reserves the respective phy~ical devices. . .

. the lurninance values. An agreement.on. the common The interi;ce to tontinuo~s ,,,&dia is through IPC. Foi
interpretation is required. example, the transfer of continuous media-data can be
The Compiler generated heap Sire is restricted (for c,,,trolled by issuingsignals or messages. ~h~ continuous.
efficienq purposes,chaining of audioyvideo LDUs i s media process itself determines actions should be
not practical). Careful allocation and manipulation of carried So far we experienced that there is no
buffer space can be reached through a system-wide approachleading fo the solution. ~~t~ that this report
homogeneous buffer management and/or applving discusses on-going (arid not completed) research.
dedicated optimizing steps for thecode generation.

I ~ l e - h l = apen (liICROPHONt.1,)
f i l e _ h 2 = open (HlCROPHONE_2.)
f i le .h3 = open (SPEAKLR,)
. .
r e a d (l i l e - h l)
r e a d (l i l e . h 2)
n i x (i i l e n 3 l l l e ~ l ~ l , I l l e ~ i 7 2)
a c t i v a l e (l i l e . l i l , lile.112, f i l e h 3

Our first, very preliminary impression was that there exists
very little or no work in this area of HLL abstractions for
continuous media. And. too rnany different object-
oriented approaches exist. This irnpression was correcl.

Let us come back to the two questions posed within
the introduction:

applications programming
. . ~.

.. . . . - ,.
hierarchy. and rnust be provided from elsewhere. Multiple
inheritance was often required in irnplementing the
answering machine.

Initial concepts of DiME were based on a dala flow
principle with sources, sinks and interrnediate processing
cornponenis. Sirnilar approaches have recently been
discussed by Anderson and chan2 (see the comet's node
types) Cibbs et aL4 (sinks, sources and filters) and
Steinberg et al." (rnodule with variable number of input
and outputdatachannels).This 'Lego' rnodel allows us to
assernble the data flow path by chaining the object or
connecting input ports to the respective output ports of
other objects.

The rnedia class hierarchy is a special rnedia type
st~ctur ing rnethod which defines classes correspondent
to the different attributes of the individual kinds of rnedia.
The following class hierarchy is extracted from the code
(see Appendix A), and denotes only a Part of the whole
hierarchy:

media
audio

mus1c
OPUS

~ o t e
. - . . . - ,.: s a n p l e ' . . - , . :

. . ::,. :
, . speecti

. . . .

v i s u a l
v ideo

image
a n i m a t i o n

. t e x t . . .
. . .

. ~

.
.

WG defined the methods 'get'and 'put' forthese clarses.
Related to the diicussion about granularity of media, we
introduce a second kind of relationship. apart from the
'is-a',hierarchy of classes. The new relationship is the
'i$!sequence-ofl. relatlonship to . model. t h v granulahty:
This offers the chance to define synchronization in terrns
of granularity. -,~.. :.

A unique property of multirnedia objects is their
. . Iifetime, as discussed bysteinrnetz et al.''.and denoted

by Cibbs et aL4 as aclive objects. The processing i s
performed for as long as the connection exists or data is

. transferred;even i f no method (apartfrom a'new'mdlor
'init') is invoked. Typical rnethods are 'play' and 'stop'.
Cibbs' rnultimedia programrningenvironment is extended
towards the user-oriented interface by a 'scripting'
language with constructs for parallel. sequential and, for
exarnple, repetitive processing Ca > > b', 'a&b'. 'n'a').

Comrnunication-oriented approaches incorporate
objecls indislribuledenvironmenls by ex licitly definin 8 classes and objects for cornmunicationPO. Blakowsky
distinguishes information. presentation and transport
classes. Information encapsulated by the information
objects can generate presentation objects to be played or
displayed. Information objects can also be converted into
transport objects for the purpose of communication, and
transformed into presentation objects aftewards (See

.
~lakowsky' for the complete state transition graph). We
could irnagine this rnodel extended by a storage class as
inforrnation is processed/coded differently for communi-
cation, presentation as well as storage purposes. And
storage forrnats are essential as they rely on, for exarnple,
database. CD- and compression-specific coding (plain
CD-ROM ISO 9660, CD-ROM XA. DVI, CD-I. formats).

Another approach we studied i s known as application
modeb. Applications are derived from a generic appli-
calion class hierarchy. We can eitherderive rnodels frorn
the basic functions of the applications7 or understand
media as perception. storage, transmission and presen-
tation rnedia. There are three fundamental cornbinations
of these rnedia: the first we call 'live presentation'. which
rneans that a live Scene is perceived, the data are
transrnitted and then presented, e.g. a live W broadcast
that you watch on your W at home. The second is a
'recording medium': a cornbination of perception and
storage media. The third combination is a (re-)play
medium that presents stored data. From these three
classes more specialized classes can be derived, e.g.
video observation. video recorder. audio player. and
projectors for film or slides.

Relatedto the inheritance within all theabove
.: mentio~d,wncepts ye.'e advaotageg of polymorphis@, , ~ : '

i:B.'th& Same fun'ction Call 6r'hettiod can' beapplied to
different objects. ' ~ e rnay use 'play' with, for exarnple,
audio and video data, there will be different implernen-
tations to perform this command. The data may bea file in
the local file System or some audio/video sequenceon a .
.remote fi4e seryer. Within thebbjecf-oriented framework

~ 'play' may be defined i n various classep. Acceding to.the , . .
object to perfom this operation, the respective rnethod is ' .
selected. Apart 'from cgde reuse,. this concept is very~.. .~
useful considering the ease of the systern's use reducing
the tomplexity of the various underlyingsysterns and
approaching uniqueness.

Our examples and the actual implementation were
done in Ct.+, but.the resulis are not at all.dependenton
this specific 1ariguage:Fbr the future we seeicoexistence' . .,

of various cl+s tiierarchies with cornplex interrelation-. . . .

ships: Since this complexity is not easily rnanageable, let
us shift our focus to conventional HLLs.

. ~ ,:. ~ ' . . .

PROGRAMMING ABSTRACTIONS WlTH I N
HIGH-LEVEL LANGUAGES

In procedural HLLs, multimedia functions may be issued
by a Set of uniform, i.e. relatively device-independent
function calls. This leads to a certain desirableabstraction,
and assures better programrning style and productivity.
However, programs must be able to rnanipulate multi-
rnedia data very efficiently. Thus, in a procedural HLL the
program will typicaily directly access multimedia data
structures or control the attached processing engines via
device-dependent System calls. In Appendix B w r
included some of the C-Code (it is C with C + + notation)
of the answering machine. In the following exarnple, w r
just show typical prograrnrning Statements making use of

vol 15 no 6 julylaugust 1992 199

applications programming
. .

i j ichritzis (ed.) Active Object Environments (June
1988) pp 121-128

22 S t e i n m e t z , R and Meyer, T 'Modelling distnbuted
multimedia applications' /FEE InL Workshop on
Advanced Cornmunications and Applications for
High-Speed Networks Munich, Germany (March
1992)

APPENDIX A: PART OF THE ANSWERING
MACHINE'S C++-CODE WlTH MEDIA AS
CLASS HIERARCHY

c l a s s media
(p r i v a t e :

// A t t r i b u t e Set
p u b l i c :

refDATA e e t 0 : - . . .
v o i d put(refDATA da t) ;
r e f A t t r i b u t e s i n f o r n a t i a n () ;

I ; / ' end ned ia '/

c l a s s audio :

. .
c l a s s sentence : .

p u b l i c d i scourse
(p r i v a t e :

sequence-af uord;
/ / p u b l i c :

I ;
c l a s s u o r d

. . .
c l a s s phanen

...

c l a s s v i s u a l :
p u b l i c ned ia
(p r i v a t e :

//,>X- l o c a l A t t r i b u t e s
/ / p u b l i c :
1;

APPENDIX B: EXTRACT OF C-CODE (IN
C++ NOTATION1 OF THE ANSWERING

p u b l i c media / /Ansuer ine i lach ine
. . . . --

(p r i v a t e : . . ' # i ? c l u d e :~!r ing.?, . : . ' . . .
. :.

. . :.
' - . //>.??~,',lotal A t t r i b u t e s ' . -. . '. . . .: . ' . # inc l t i de -stredm:h>.'

c l a s s aus ic :
' publ . ic .audio . ' . . .

. . . l p r i v a t e ! . . ,

I/>>>> l o c a l ' ~ t t r i b u t e s . . .
, . p u b l i c :

/ h > >) , p u b l i c methods . . .
.I; . .

c l a s s opus :
p u b l i c i u s i c
(p r i v a t e :

. . . sequence:of, .not!;- ,
/ / D „ LoCal A t t r i b u t e s ': : '

p u b l i c :
. . .

//,>>Y p u b l i c aethods:
. .

. . . .

I ;
. c l a s s no te ' '

. . .
c l a s s s a i p l e

. . .

Class Speech :
p u b l i c media
[p r i v a t e :

l o c a l A t t r i b u t e s
p u b l i c :
/ / = n p u b l i c i e t h o d s

I;
c l a s s d i scourse .

p u b l i c Speech
(p r i v a t e :

sequence-ol s e n t e n c e :
l o c a l A t t r i b u t e s

/ / p v b l i c : . . .

I :

s t a t e s e l e c t - s t a t e 0
(/' ca1lect;calls o r report.calls'/
char s e l e c l i o n f f l l 4 " :

cio,., s e l e c t i o n , . .
w h i l e ($ e l e c t i o n f f l i + + ") ;
cout<<"your. c h o i ~ e : " i ~ s e l e c t i o n ~ ~ . " < < i i ~ ~ \ n " ;

r e t u r n (s e l e c t i o n i i i 0 " == ' r ' / . epo r t_ca l l s " ' I) ; 1 ;
i n t vo lume_cantra l :

s t a t e sele;.
.

. / / o p e r a t i i g :
m a i n 0
I . .

s e l e = s e l e c t L s t a t e 0 ;
su i t ch (se1e)
I :
case c o l l e c t _ c a l l s .

I / ' accep tLca l l .
play_lnfonation_message,
reco rd . .determines awerage volume l e v e l . .
enqueue_cal l ;
d iscannecte/
cout<< " c o l l e c t i n g \ n " ;
break;
I

case r e p o r t L c a l l s :
l / / p l a y _ v o i c e _ m a i l . . a d j u s t s volume.. and
/ / d i s p l a y r e l a t i v e p o s i t i a n i n p a r a l l e l
cout<<"repor t ing\n" .
break;

I

Computer coininunicaiions

.
applica tions programming

1. Why are multimedia applications so hardware
dependent?
The novelry and the diversiry of device-specific
rnultirnedia functions are the rnain reasons for the
insufficiency of actual prograrnming abstractions for
continuous media. Receiving data from a multimedia
device and controlling the device (which rnay be a
camera) is different to sirnply receiving chamcters
from a keyboard. There is an increase in complexity
Also, different devices (a cameraand a microphone, or
just two different CD-based storage devices) differ in
their functions.

2. How can this problem be overcome?
With proper rnultimedia-specific operating System
extension and programming abstractions, this insuf-
ficiency a n be tackled. In this paperwe discussed and
proposed some approaches for continuous media
abstmctions. Nevertheless. we doubt that there is one
single solution. HLb, for example, require enhance-
ments, and we are presently experimenting with sorne
of these abstractions.

Sumrnarizing our view of programming rnultimedia
systems: applications may directly invoke libmries oreven
call device drivers. A more.convenient approach is to use

; toolkits or even HLLs or object-oriented environments.
We see a coexistence b f these various approaches witha
lack of research and developrnent in some of them (e.g.
HLLs). We are cuneritly investigating the integration into
H L b in rnore detail.

ACKNOWLEDGEMENTS

Martin Zimmermann supported our practical work with
rnany valuableadvices concerpingobject-orientation and
C++, and Manny Farber devoted considerable time for
commenting and improving the quality of the whole
wqrk. Thank youi . . .

REFERENCES

1 Hehmann, D, ~err tw ich, R C and Sleinmelz, R
Creating HeiTS: Objectives of the Heidelberg High-
Speed Transport System CI-Jahrestagung. Darmstadt
(October 1991)

2 Anderson, 0 and Chan, P 'Toolkit Support for

Nehvork and Operating System Support for Digital
Audio and Video-Heidelberg. Cerrnany (November
18-19 1991)

5 Ruston, L, Blair, C, Coulson, C and Davies N 'A tale
of two architectures' 2nd In t Workshop on Nehvork
and Operating System Support for Digital Audio and
Video Heidelberg. Cerrnany (November 18-19
1991)

6 2nd International Workshop on Nehvorkand Operating
Srjtem Support for Digital Audio and Video Heidel-
berg. Cermany (November 18-19 1991) Lecture
Notes in Computer Science Springer-Verlag. Berlin
(1992)

7 Anderson, D, Covindan, R and Homsy, C Abstrac-
tions for Continuous Media in a Nehvork Window
System Technical Report UCBICSD 901596. UC
Berkeley (September 1990)

8 Herrtwich, R C 'Time capsules: an abstraction for
access to continuous-rnedia data' IEEE Real-Time
Systems Symposium Orlando. FL (Decernber 5-7
1990) pp 11 -20

9 Wegner, P 'Dimensions of object-based language
design' Proc. OOPSLA '87 (October 4-8 1987)

10 Nierstra, 0 M 'A survey of object oriented concepts'
SICMOD Record Vol 18 No 1 (March 1989) . .

1.1 Sleinmelz,-R, Heile, R, Rückert, J and Schoner, B - '

'Cornpound multimedia'objects - Integration into
network and operating systems' In t Workshop on
Network and Operating System Support for Digital
Audio and Video Berkeley, CA (November 8-9

. 1990) . .
12 Steinberg, D, Sirota, J and Berry, D 'A rnultirnedia

application prograrnmingintedace paradigrn'2nd InL
Workshop on ~e tworkand Operating System Support
for Digital Audio and Video Heidelberg, Cerrnany .
(November 18-19 1991)

13 lnrnos Limited Occam Programming Manual Prentice-
Hall, NI (1988)

14 .Steinmetz, R Occam 2: Thg Progarnming Language . .

lor Parallel ProCessing Hilthig-Verlag, .~e ide lbe rg~
.

(1988) (in German)
15 Hoare, C A R Commuriication Sequential-Processes

Prentice-Hall, NJ (1985)
16 Whilby-Slrevens, C 'Transputers - Past, present, and

future' IEEE Micro Vol 10 No 6 (Decernber 1990) pp
16-19178-82

17 Rabiner, L R and Schafer, L W Digital Processing of
Speech Signals Prentice Hall. NJ (1978)

18 Leung, W H, Luderer, C W R, Morgan, MJ, Roberts,
multiuser~udio/video applications'2ndInt Workshop P ~ a n d ~ u , S-C'Aset of operatingsGtem mechanisrns
on Network and Ooeratine Svstern Suo~or t for Dieital to S U D D O ~ ~ multi-media ao~lications' Proc. Int. ~~ ~- - , ~ - ~ , , . "
Audio and Video Heidelberg, Cermany (November
18-19 1991)

3 Blakowski, C 'Concepts of a language for the
description of transport and (re-)presentation
praperties 01 multimedia objects' Inlormatik
Fachberichte No 293 (1991) pp 465-474 (in
Cerman)

4 Cibbs, S, Breileneder, C, Dami, L, de May, V and
Tschichritzis, D 'A prograrnming environrnent for
rnultimedia applications' 2nd Int. Workshop on

~erninai on Digital ~omrn"n'. Zurich, Switzerland
(March 1988) pp 71-76

19 Litlle, T D C and Chafoor, A 'Synchronization and
storage rnodels for multimedia objects' IEEESelected
Areas in Commun. Vol 8 No 3 (April 1990) pp
41 3-427

20 Feldhoffer, H 'Cornrnunication supportfordistributed
afif~licaiions' 1111. IFlP Workshop on Open Dislributed
Processing Berlin. Cermany (October 1991)

21 Fiumr, E andTsichriizis, D'Multirnediaobjects'in D

vol 15 i io 6 july/augusl 1992 401

