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Abstract

“Multimedia synchronization” comprises the definition as well as the establishment of temporal
relationships among audio, video and other data. This paper discusses techniques for implement-
ing synchronization in distributed systems. As it turns out, the applied methods heavily depend on
the underlying system’s structure: “Hybrid” systems commonly make use of different approaches
than "unified” system structures do.

The work described here is being carried out as part of HeiTS project at IBM ENC. It draws also
on (unpublished) experiences with synchronization gained from the DiME project at our multimedia
communications lab. We discuss some issues pertinent to synthetic synchronization, but our main

focus is on live synchronization: Playing back data as it occurs/occurred somewhere (either locally
or remotely).

1. Introduction: Environment and Motivation

Multimedia synchronization is needed to ensure a temporal ordering of events in a multimedia
system. There are two parts {o this problem: the definition of temporal relationships among audio,
video, and other data; and the delivery of the data in accordance with these relationships.
Synchronization mechanisms are a well-studied topic in the area of operating systems, parallel
programming languages and database technology. In distributed multimedia systems we encom-
pass synchronization {o be defined and happen belween continuous media (CM) streams and dis-
crete media (DM). In the DIME and HeiTS projects (described below), much work was devoted to
defining the requirements and to analyzing “new"” problems [16; 17; 23; 25; 32]. Some work in re-
lated projects was done on how best to implement multimedia synchronization [2; 5; 238]. With this
paper we want to go further: Based on the experience in DIME and HeiTS, we document the im-
plications of the system structures on the required synchronization implementation techniques.

The DIME (Distributed Multimedia Environment) project, carried out al the IBM European Net-
working Center in Heidelberg, was based on a hybrid system structure. Continuous media (i.e..



audio and video) were routed over separate, dedicaled channels using off-the-shell hardware
technology. Continuous and discrete media were inlegrated by connecting the CM equipment (e.qg.,
CD players, VCRs) 1o a computer via an RS-232C interface. The devices can then be controlled by
software instead of manually from the devices’ control panels. For inslance the audio/video data
were processed in the workstation using IBM’s AVC and M-Motion adaplers and respective system
software [20; 19]. Further experimenls included the ActionMedia 750 (DVI) technology {8]. DIME
dealt with distributed, transparent access to multimedia resources like cameras and sfored video
sequences [27; 28; 31]. DIME aimed to provide an “easy, but rich” communication service as part
of an application programming interface, manipulating data sireams by controlling their sources
and sinks in a heterogeneous computing environment. Considerable work was devoted to dealing
with synchronization in such an environment [32].

Our follow-on project, the Heidelberg High-Speed Transport Syslem (HeiTS), is based on a unified
digital system structure: All discrete as well as continuous media are routed through the work-
station {10]. Scheduling can either be done exclusively in software or by dedicated hardware, such
as the ActionMedia Il (DVI), which also provides support for compression/decompression. But both
solutions require real-time scheduling techniques in a time-sharing environment {11] similar to
[1]. Our prototype is being developed for AIX on the RS/6000 and for OS/2 on the PS/2 simul-
taneously. The goals of HeiTS are to demonstrale the feasibility of current network technology for
multimedia applications, to explore the limitations of currenl protocols, to make appropriate
changes and/or enhancements, to prove new implementation concepts (e.g., upcalls), and to ex-
ploit and integrate upcoming broadband WANs and LANs [10]. The integration of various kinds of
media and their processing with the close relationships demanded requires “synchronization”.
Synchronization in such an inlegrated environment as HeiTS uses different techniques than were
used in DIME.

The remainder of this text is organized into three sections. Section 2 explains the concepts of
“synthetlic” and “live” synchronization and introduces the logical data unit (LDU) to express the
granularity of a medium. The final two sections concentrate on live synchronization, discussing
only some aspects of synthetic synchronization (as defined in [17]). Seclion 3 discusses synchro-
nization in the context of hybrid approaches and Section 4 outlines techniques for implementing
synchronization in unified systems structures such as HeiTS.

2. Synthetic and Live Synchronization

We understand “multimedia™ according to {13; 30; 34]: “"A mullimedia system is characterized by
the integrated pomputer—controlled generalion, manipulation, presentation, storage, and commu-
nication of independent discrete (DM) and continuous media (CM)”.

Digitalization and Synchronization are the key to the goal of “integration”. It is important to dis-
tinguish between live synchronization and synthetic synchronization.' Often authors confuse the
two modes of synchronization, and it is not clear of which type of synchronization they mean.
These two types of synchronization require separalion when an application uses both. However,
it is only recently that this basic differentiation began to appear. The following application sce-
narios illustrate the difference:

' The following exposilion is based on [17], discussions held at the Berley multimedia workshop [4], and on
ongoing joint work on multimedia synchronization between L.Ludwig, Vicor, Palo Allo, CA; and the author.



1. A muilimedia call: A camera and a microphone are attached {o a workstation and the audio
and video data are presenied simultaneously at a remote workstation. A telepointer or screen
sharing may be used in real-time to discuss a spreadsheet or edit a business report.

2. Surrogate travel through a planned building: The user performs actions like “turn right and
open door” by pressing appropriate buttons on a graphical user interface. The sound of the
door opening and an appropriate video are presented. Supplementary information appears
as overlay text.

The first example deals with some information that should be presented in the same (or nearly the
same) order as it was originally collected. It is therefore an example of live synchronization. Here
this involves synchronization of audio, video, and application events (for example, the movement
of the remote telepointer in time with the verbal comments of the person controlling the pointer).
With the current interest in real-time, point-to-point connections with audio and video channels, live
synchronization has become an important research area {3; 36]. .

The second example illustrates the use of synchronization in a retrieval scenario. We call this
synthetic synchronization. At presentation time, the various pieces of information (segments) must
be properly ordered and synchronized in time. One way to do this is through absolute synchroni-
zation operations, for example, “present segment A now/at time T." Allernatively, relative syn-
chronization operations such as “present segment A after/simultaneously with/etc. segment B,”
can be used [24]. These operations can apply either to the information as a whole or 1o individual
informalion entities, identified by “event stamps” [32]. in some cases, either absolute or relative
synchronization could be used. For example to synchronize a mouse event with other information,
we use an absolute synchronization operation: “present picture now”. The second possibility is
to view it as an event establishing a relationship to other information and requiring a relative op-
eration for synchronization: “present mouse pointer (at position) during frame X.” In any case, in
order to schedule presentations, the system must internally translate relative synchronization op-
erations to absolute operations. In the example above, the system knows the time for presenting
frame X, and can use an absolute synchronization operation to present the mouse pointer at this
time. Languages and programming interfaces for describing the synthetic synchronization of
multimedia events are just now under study, development or available in first versions [8; 20; 23].
In both synchronization modes, the system needs support for absotute synchronization. The usage
of relative or absolute synchronization is determined by the systemjs synchronization support and
the applicationijs context.

S

Clip

Frame

LLLLLLELRLRERLRELRLRLL]

Raster

FPERSTITISITLTRALITINNY

Pixel

Figure 1. Granularity of Media: LDUs

In either live or synlhetic synchronization, relationships belween units of information must be
specified. To go beyond abstract theory, these "“units™ must be identified. Let us therefore intro-



duce the concept of the “granularity” of a media stream. For inslance, synchronization could be
performed between pixels of a video stream or between complete images (see Figure 1). For the
following discussion, iet us view CM streams as a sequence of logical data units (LDUs). Each kind
of medium has an associated LDU. The LDU of a video stream c~n eilher be a single image or a
well-defined sequence of images. An audio sample or an audio biock (1/75 sec. duration) are two
possible LDUs for audio streams. In the following, the single image is the video LDU and the audio
block is the audio LDU.

3. Synchronization in Hybrid Distributed Multimedia Systems

Early prototypes of distributed and local multimedia systems, such as the Integrated Media Archi-
fecture Laboratory (IMAL), conceived at Bell Communications Research in Red Bank [18]; or the
Muse and Pygmalion system of MIT’s Project Athena [15; 6; 21], were based on a "hybrid” system
structure [12]. In this structure, CM is not only processed by the devices used by workstations for
general display, sound output, communication, etc. Most of real-time processing is kept out of the
main CPU and host operating system. For instance, instead of sending video data to a workstation
via a LAN for presentation in a window on the display, video data are sent over special cables di-
rectly to a separate video monitor. These devices are, however, attached to the workstation and
controlled only by the workstation’s software.

Live synchronization between various CM streams is directly performed by the dedicated proc-
essing devices, e.g. audio and video being transmitted as analog TV-signals over MIT’s campus
net in Project Athena. No furlher action is necessary.

The correlation belween various DM streams, objects or information units in the live synchroniza-
tion mode occurs very rarely in these hybrid environments. A rough implementation can be
achieved by time-stamping DM objects and playing them back on cue from timer events at the re-
mote workstation. Difficulties with establishing a global time can be solved by various techniques
using software, hardware, or a combination of the two [26]. An example of a hardware solution is
for each workstation to derive its local time from a master time signal. This time signal could be
broadcast over WANs, or be received by radio (e.g., from WWYV in the US or from the DCF 77 AM
sender in Germany).

In hybrid structures, it is very difficult to achieve tight synchronization between DM and CM. DM
and CM data are transmitted over different networks and processing nodes having different end-
to-end delay characteristics. End-to-end delay over CM paths is typically shorter than that for DM.
As it turns oul, it is difficult and expensive (in terms of buffer capacity) to delay CM data delivered
from devices like cameras or microphones. If DM is faster than CM, buffering and time stamping
as described above could be used to slow down the data stream, but this situation very rarely oc-
curs.

in the DIME project, everything was presented as soon as it arrived. When CM had a smaller delay
than DM, no buffering was performed. DM LDUs never arrived sooner than the related CM LDUs.

In synthetic synchronization, where data is retrieved from external storage devices, one must
conlend with another type of delay, that of the control signals to he storage devices. The physical
control paths of the atlached devices range from slow RS-232 C interfaces to relatively fast SCSI
interconnections. Between the issuing of a “start” command by a workstation applicalion until the
commencement of physical delivery of a video sequence, we experienced a maximal delay of
about 500 msec. If positioning must be done by, say a VCR, this could take considerably longer.



The main reasons for this delay are:

. The system software is in principle not designed to cope with the real-time demands of
physical interfaces such as the RS-232.

. The same device driver is often used for controiling many devices al the same time. A shared
RS-232 C inlerface? may introduce access conflicts between the various devices. We found
this to be negligible.

. Most of the external devices process queued work requests in an “as fast as possible” mode.
The control interfaces do not include options to specify when information is to be presented
(via commands like “play at time T").

Decoupling the seek time and the playback delay (e.g., with separate interface commands) allows
for a nearly deterministic behavior of the whole system. More interesting is the decomposition of
the end-to-end delay d,, into a fixed component dy;, and a variable part d,.,.:

dlol= d!ix + dvar

The variable part with its distribution originates from the above mentioned phenomena. Fortu-
nately, the variance is not considerable and we can assume system- and device-specific values for
dy. lo derive di,: (we experienced typically about 500 msec). In multimedia retrieval applications
such a delay can easily be tolerated. Note, in a distributed environment, additional delay is intro-
duced by system and communication software.

Synchronization in hybrid approaches is most commonly presented at the AP! as a device-
dependent set of library functions. Some libraries just map the direct control functions of the at-
tached device onto functions in a high-level language. More sophisticated interfaces are based on
client/server functionality, but introduce another component of the variable delay d,,,. However,
this is typically relatively minor. The same applies to any object-oriented interface: Such a pres-
entation of data and control introduces some additional processing to dispatch any command to
an external device. As most of the object-oriented APIls in hybrid system structures are not imple-
mented in a real-time environment, additional (often significantly variable) delay may be intro-
duced.

4. Synchronization in Unified Digital Distributed Multimedia Systems

Achieving live synchronization belween CM streams is generally more challenging in a “unified”
system structure, where CM and DM are routed through the same network and workstation. To the
user, or even at a high-level programming interface, all data appear to be processed under full
control of the application. CM should be handled similar to DM. It is a very common goal of the
system designers to suggest this unified impression at the user interfaces in order to reduce the
view of the system’s complexity.

On the other hand, in most of the application scenarios, audio and video processing demands a
well-defined end-10-end delay and imposes bandwidth requirements [35]. Real-time coding, mixing,
and compression (like JPEG, MPEG, DVI) oflen requires dedicated hardware and software. There-
fore, we encompass unified multimedia workstations to include stich specialized components along

2 The “port expander” of DIME, a software-controlled, bidirectional, stand-alone one-in-to-many-out RS-232
C switch is one type of shared interface.



wilh general-purpose components. Note, such a component can be a DSP within a workstation or,
even a chip comprising four CPUs and, e.g, a DVI coding/decoding special purpose DSP. We do
not foresee the need (or the technology) for one cost-effective, general-purpose engine to do all
types of CM and DM processing in real-time.

In a traditional DM environment, software makes use of system support for time-sharing. Similarly,
in CM processing, scheduling and reservation can be performed by an operating system that pro-
vides a RTE (real-time environment). Processes or threads running in such an environment are, in
general scheduled according to real-time scheduling techniques (earliest deadline first, rate
monotonic, etc.). With this approach, LDUs can be used as data types, abstract data types or ob-
jects (to hide time constraints from the user) [33].
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Figure 2. Interleaved data streams

Let us now focus on synchronization between data streams. In a distributed muitimedia system
where multiple, related streams originate in the same workstation, a very common and straight-
forward approach is to interleave the different LDU streams (e.g. audio and video) into one com-
posite LDU stream. These combined LDUs are, e.g, time stamped (logether) at the source and
separated at the sink and presented according to the time stamp. In our first (PS/2-based) HeiTS
prototype we make use of the ActionMedia il audio visual attachment (DVI) and apply this method
(see Figure 2) to cope with lip synchronization. Synchronization was easy to implement using to-
day’s operating systems and networks. This system was shown at CeBIT'92 (the European
COMDEX) in Hannover, Germany.

We found that any audio glitch is perceived immediately and can not be tolerated, whereas a smaill
variance in the video rate leading to, e.g., display of same picture twice, is difficult to perceive.
Audio imposes more stringent requirements than video.does. In the design of HeiTS and subse-
quent prototypes we take this into account as follows: ’

1. We define different quality of service (QOS) at connection set-up for audio, video and other
CM streams. and choose the QOS parameters to ensure that there are no audio faults and
either no or very few video glitches. We can thus assure that whenever a shortage of re-
sources occurs, it will first affect the video connections.

2. In HeiTS we experiment with rate monotonic scheduling where audio LDUs occur with higher
frequency than video LDUs and the processing of audio LDUs is scheduled with higher priority
than that of video LDU processing. Even with an additional segmenting of video L.DUs (original
size 5 kByte) into 2 data unils (about 4 kByte is the largest size 1o be processed as one packet
in all layers of our mullimedia communication system) audio is prioritized over video.

3. We use resource management during call establishment {o help prevent glilches [14].
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Figure 3. Live synchronization over various connections

The evolving HeiTS prototype (on the PS/2 and on the RS/6000) has the ability to either (1) combine
audio and video, or (2) use separate connections for different CM (or DM) streams, as shown in
Figure 3. By imposing the same end-to-end delay on related CM streams {by choosing an absolute
end-to-end delay and limiting the jitter of the LDUs to 0 msec), live synchronization can be guar-
anteed. In practice, it is neilher possible nor necessary to guarantee service with such tight toler-
ances. Audio can be played ahead of video for about 120 msec, and video can be displayed ahead
of audio for about 240 msec. Both temporal skews will sometimes be noticed, but can easily be
tolerated without any inconvenience by the user [22].3 This asymmelry is very plausible: In a con-
versation where two people are located 20 m apart, the visual impression will always be about
60 msec ahead of the acoustics due to the fast light propagation compared to the acoustic wave
propagation.

Another (very elaborate) implementation of live synchronization allows these effects to be used to
advantage and even guarantees synchronization between various sources: A logical time system
(LTS) is introduced. Presentation of the data is performed based on a comparison of the LTS with
the real-time clock of the destination workstation ([2] introduces and uses LTS in the ACME client
server approach). All LDUs are time-stamped at the sources explicitly or implicitly (by the block
or sample number). Sinks and sources interacting in a logical group are tied to the same LTS. The
RTE provides the presentation of LDUs according to the LTS and the current real time. Scheduling
techniques as discussed above are capable of providing this in-time playback. For synthetic syn-
chronization, the application defines an interaction time and an event to happen. From the imple-
mentation point of view, application code can be linked into the RTE, or time-sharing code can be
called from the RTE (upcatl).

Note that we need and have isochronous data streams at the sink devices. It is not necessary to
have isochronous communication in all of the components involved in a communication path. For
instance, it is sufficient to have upper bounds on delay for each individual component. With this
assumption, buffering can be used to achieve isochronism, but this can lead to a waste of storage,
especially for video. Restricting jitter (“jitter control”) at intermediate gateways drastically reduces
total buffer requirements. Ferrari’s approach [7] can also be applied to system components in the
end-systems, leading to what we call "weak isochronous” behavior.

3 These values are taken from of a graph showing “annoyance” with different audio/video time skews.



5. Conclusion

Our work on synchronization is being performed as part of the HeiTS project, the high-speed
multimedia transport system at IBM ENC. All the experience {o data indicates that synchronization
requirements should not be viewed as an isolated issue. The system structure, the hardware ca-
pabilities, the operating system capabilities, the communication subsystem and its protocols, the
kind of media, the coding techniques, and even the envisaged types of applications, all influence
the best synchronization techniques to use.

Synchronization is part of many system components (operating and communication systems,
multimedia documents, databases, presentation techniques, etc.). Nevertheless it is not compul-
sory to solve the same problem in each component; a system-wide solution shouid be attempted.
By “system-wide™ we mean the various local components as well as distributed solutions. In HeiTS
we drive and are driven by two different platforms: 0OS/2 and AlX, and we are working on a common
strategy for the implementation.
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