
SOFTWARE-PRACTICE AND EXPERIENCE. VOL 26(1l. 375-398 (APRIL 1996)

Evaluation of a CPU Scheduling Mechanism
for Multimedia Systems

L A R S C . W O L F
IBM Eiiropean Neworking Center, Vangerowstraße 18, 0-69115 Heidelbrrg, Crrniany

(e -mi l : Iwolf@vneribrn.corn)

W O L F G A N G BURKE
Universirär Karlsruhe, Arn Fasanerigarlen 5, 0.76128 Karlsruhe, Gernian?

(e-niail: burke@ira.uka.de)

A N D

C A R S T E N V O G T
Fachhochschule Köln, Beizdorfer Sir 2, 0.50679 Köln, Germony

(e -mi l : vogt@jk-koeln.de)

SUMMARY

Multimedia applications handling audio and video data have to obey time characteristics of these
media types. Besides a hasic functionality to express time relations, correctness with respect to time
constraints requires meehanisms which lead to favoured pmcessing of multimedia operations. CPU
scheduling techniques hased on the experience from real-time operating systems offer a solution and
pmvide multimedia applications with the ahility to meet time-related quality of service requirements.
This paper discusses mechanisms to express time in multimedia systems and descrihes an implemen-
tation of a CPU scheduler designed to run under IBM's UNIX derivate AIX. The evaluation of the
Implementation hased on measurements shows that the scheduler is ahle to support the time require-
ments of multimedia applications and that such mechanisms are indeed necessary since otherwise
deadline violations occur.

KEY WonDs multimedia; real time; scheduling; operating System support

INTRODUCTION

Owing to the periodicity of continuous-media data, the processing of audio and video
data must occur also in this fashion. Moreover, the execution of these operations has
to be finished within certain deadlines to serve the real-time characteristics of these
media. Owing to these real-time characteristics of audio and video data. multimedia
systems have to provide mechanisms to support time-related qualip-of-senice (QoS)
guarantees.

Sometimes, multimedia systems for single-user, and especially for single-task,
machines provide only simple mechanisms to provide time-based operations, e.g. for
delaying program execution, but no real-time support. It is often argued that this
approach is sufficient for these systems since the CPU is used mostly for the multimedia

CCC 0038-0644/96/040375-24
C3 1996 by John Wiley & Sons, Ltd

Received 7 December 1994
Revised 12 July 1995

376 L. C. WOLF. W. BURKE AND C. VOGI

application dunng its mn time. In those situations where tbe User has another tiine-
consuming application mnning, it is easy for him to abandon tbat application. For miilti-
User and server systems such as video-on-demand Servers, this assumption is not valid.
Other User applications can disturb multimedia applications in such a way that the
perceived QoS is not acceptable. Real-time CPU scheduling techniques which se:rve
multimedia application processing with respect to their time-cnticality provide a sol-
ution to these problems.

This paper first discusses various methods to express time in multimedia systems.
l l e n a real-time scheduling algorithm and its implementation for IBM's AIX Vers,ion
3 operating system is descnbed. Work for OS12 bas been discussed in Referenct: 1 .
This is Part of our work on the transport system HeiTS (Heidelberg Transport System)'
which offers real-time communication Support for distnbuted multimedia applications.

Our goal is to show how a general-purpose operating system that is widely available
on the market can be used for the processing of multimedia applications without a
modification of its kerne1 strnctures. We did not intend to develop a new real-time
system that is specifically tailored to multimedia requirements.

EXPRESSING TIME IN MULTIMEDIA SYSTEMS

Various ways to express time in multimedia systems exist which place different amoiints
of burden on the application programmer and provide different kinds of real-time sup-
port. For simple programs, the mechanisms descnbed in the next two sections are isuf-
ficient. In those cases, the timely operation is either hidden in high-level function!~ or
is based on U 0 adapter characteristics.

Programs which perform more complex tasks than just moving data from an iriput
device to an output device often have to execute certain operations after some specified
time. Hence, an operating system driven control of timing is needed. Consider, for
instance, a server which reads data from a disk and sends it over a network periodicsilly.
In this Scenario. neither the input device, the disk, nor the output device, the network,
operate periodically. Therefore, the operating system must provide appropnate control
mechanisms. Such mechanisms are explained after the next two sections.

Hidden timing
Often, multimedia environments for stand-alone Computer systems offer library fiinc-

tions which allow a programmer to play audio or video data in a simple way, e.g.
consider a function such as glay-audio-file. These functions perform the si.eps
necessary to present the information to tbe User and hide the actual handling of time
in their program code. Their use is simple for the application programmer, however,
they serve only a closed Set of applications. The functions cannot be adapted to specific
application needs, e.g. to retneve continuous-media data from the system, perform somd
application-dependent processing and present the result directly to a human User. Int'ern-
ally, these functions are based on some of the methods described in the following sec-
tions.

Adapter-based timing
For some simple programs, e.g. programs playing audio data stored on disk via an

audio adapter. it may not be necessary to use explicit programming techniques to pro-

EVALUATION OF A CPU SCHEDUISNG MECHANISM 377

do (unblock

read-audio-buffero; Q T block
write-hfier

writebufferto-adaptero: I
} while (more data available); read-bufter

Figure I . Adapter bused riming

vide timely operation. Such programs can rather be based on the characteristics of the
output device, e.g. the audio adapter. This adapter provides some buffer space in form
of a FIFO queue into which the program writes data to be played. The adapter's pro-
cessor reads data from the buffer and converts it into sound waves. If the buffer is full,
the program is blocked from further processing. If the adapter's processor has removed
data from the huffer space the process can be unblocked and continue processing as
detailed in Figure 1.

The methods descnbed in the last two sections are only sufficient for simple appli-
cations. Now, mechanisms for more complex programs are discussed.

An approach often taken by application programmers for writing periodic programs
is the use of loop/delay constructs. These constructs rely on mechanisms provided
by most operating Systems to delay the execution of a program for a certain amount
of time, such as UNIX's sleep function. They are used in the following way where
f denotes some function for processing the data:

get-tirne(t);
while (read(data) != eof) (

f (data) ;
write(data);
t = t + period;
get-tirne(t1);
delay(t-tl);

1

While such constmcts avoid the influence of the actual execution time of the operations,
in a preemptive multi-tasking environment-or due to intempt processing-this
approach is not correct since the Statements are not executed atomically. Any preemp-
tion between the calculation of the length of the delay penod and its use in the delay
operation leads to time drifts since in that case the computed value is too large and the
delay too long. Using a function which delays the execulion until a specified point in
time instead of delaying a specified amount of time can solve this problern:

378 L. C. WOLF, W. BURKE AND C. VOGT

get-time(t);
while (read(data1 != eof 1 {

f (data) ;
write (data) ;
t = t + period;
delay-until(t);

1

The Same prohlem has heen recognized in Ada83, and the Ada9X revision took ihis
into account hy the introduction of the ahove-mentioned delay until p r im i t i~e .~ A func-
tionally similar primitive can also he found in Chimera II.4

Although this approach leads to correct timing, it places the hurden of time handling
and temporal state information management on the application programmer. It is hetter,
and safer, to have the underlying operating system do this work.

Asynchronous events
Notifications hy asynchronous events may he used hy programs dealing with devices

where the event indicates that some change in the device state has occurred. Simila:rly,
this may he used to indicate timer expirations. Processing these events leads to the
execution of specific program sequences, often called signals handlers or callhack func-
tions, to reflect the changed system state.

This method separates time handling and functionaI specification. However, often
only suhsets of functions may he executed in an event handler, which means that only
state changing operations such as setting flags may he performed hut no regular appli-
cation processing. Furihermore, mutual exclusion hetween the application program and
the event handler during access to shared data structures has to he enforced to avoid
state inconsistency. Owing to the non-determinism of asynchronous events it is a gen-
eral fact that those programs are hard to analyse and to dehug hecause in suhsequent
executions the order of events can he different.

Periodic threads
Periodic threads are threads which perform their operations at fixed periodic points

in time without explicitly specified in te~en t ion hy the application programmer. Periodic
threads are descrihed for example in References 5, 6 and 7. Using periodic threads, the
programmer specifies some characteristics of the thread such as estimated pro-
cessing time, period and entry-point. In each period, a thread is created which
calls the specified entry point, executes the given functions, which take ahout the esti-
mated time and exits:

I

create-periodic-thread(entry-point,
processing-time, period);

. . .
entry-point0
1

/ ' the actual computation ' /
f0:

1

EVALUATION OF A CPU SCHEDULING MECHANISM 379

This approach separates functional and temporal specification in a similar fashion as
the asynchronous event handling approach does. However, the functionality provided
by the periodic thread and the asynchronous event handling method are different, i.e.
in the periodic approach the tasks are inherently periodic in nature and the limitations
of the event handling approach do not apply to the periodic thread model. Additionally,
the periodic thread model provides the underlying system components with information
about resource usage.

Periodic processes
Periodic processes are similar to periodic threads. Since process creation is much

more expensive than thread creation, the process does not exit after the execution of
each period's operations but calls a function schedule-me to wait for the beginning
of the next period.* Thus, the execution scheme differs slightly:

p = create-new-process () ;
inform-echeduler(p, processing-time, period);

while (TRUE) (
echedule-me () ;
/ * the actual computation * /
£ 0 ;

1

The principal characteristics of this approach are the same as of the periodic thread
model, and differentes are mostly related to operating system abstractions.

Note that the function schedule-me can be easily implemented using the
delay-until primitive. However, with echeduleme the programmer need not care
about the calculation of times; this is done by the operating system.

Evaluation
As the summary in Table I illustrates, the first three methods do not suppon a separ-

ation of temporal and functional specification and place burden on the application pro-

Table I. Methods to express time

Scheme Furictiorial and temporal Applicahility of real-time
specifieation separated methods

Hidderi timing
Adapter-based timing
Lmpldelay
Asynchrorious events
Periodic threads
Periodie processes

* Ii is, of course, possible to use this approach wiih ihreads as wcll and may. therefore. be vicwed rnore as an implemenfation
rhan a modelling deiail. Also, thread irnplernenraiion ceehniquei exirr which reduce ihe cost for rhread creation such as
'reclairning t h r e a d ~ ' . ~

380 L. C. WOLF, W. BURKE AND C. VOGT

grammer. Asynchronous events provide this separation, but the programming model is
complicated. The weakest point of these models is that they do not provide any inl'or-
mation about timing and requested resource usage to the system scheduler. This means
that no real-time scheduling mechanisms can be applied. For instance, no schedulability
tests can be performed to check whether the system is able to Support all requests, and,
thus, overload situations may occur leading to unacceptable QoS. Therefore, these mod-
els can be seen as simple ad hoc methods but are not applicable in general multimedia
systems where mechanisms for reliable QoS provision have to be available.

As a result, only the last two methods, i.e. periodic threads and tasks, are general
enough to be used in multimedia systems supporting reliable QoS. In particular, tliey
provide timing information about the tasks to the system scheduler by their initialization
calls. This information enables the scheduler to check the schedulability of the tasks
and schedule them accordingly so that their QoS can be guaranteed. Methods for sched-
uling periodic tasks have been devised and implemented within the realm of real-time
systems as discussed in the subsequent chapter.

The second advantage of periodic threads and processes is that their functionality is
not limited as is the case with asynchronous event handlers. Hence, they can execute
all the functions required to process a multimedia stream.

Aside from research operating systems, most commercially available systems do not
offer the needed periodic thread or process model, but only provide basic real-time
mechanisms to implement these models. The Posix threads exten~ion,~ for example,
provides the possibility to associate scheduling attributes with each thread defining the
scheduling policy and the thread's fixed priority, e.g. prionties assigned based on rate
monotonic scheduling. The timing of the thread's operations, e.g. suspending a ready
thread till its next penod, has to be implemented by the programmer. The timer opler-
ations offered by the Posix real time extension1° can be used for that purpose, in a
similar way as is done in the rest of this Paper. SunOS 5.0" offers the ability to preernpt
a thread after its time quantum has expired, but the preempted thread is put back on
the dispatch queue. Therefore this approach implements some kind of round-robin
scheduling but no real-time scheduling. Since the preempted thread has missed its dead-
line, rather some exceptional operations should be performed.

SCHEDULING ALGORITHM

As the discussion in the previous section illustrated, mechanisms to express periodic:ity
in the multimedia systems require real-time CPU scheduling mechanisms in form of
periodic threads or processes. These have to be provided by the operating system. This
section discusses the model used in HeiTS to specify the system workload of periodic
data streams, shows how the various processes are prioritized and describes the schedul-
ing algorithm used.

QoS and workload model

QoS management in multimedia systems is based on two models. The workloadl
model is used to describe the load an application will place onto the system. The CloS'
model is used by an application to define its performance requirements and by the
system to retum corresponding performance guarantees. Of Course, the workload model
can be regarded as being a part of the QoS model since one important QoS requirement
of applications is that the system is able to process their workloads.

EVALUATION OF A CPU SCHEDULING MECHANISM 38 1

The QoS model used in HeiTS has three Parts:

1. The throughput part describes the bandwidth required for or granted to a multime-
dia connection. It consists of the three parameters of the workload model
descnbed below.

2. The delay part defines the maximum delay a multimedia packet can experience
on its way from the source to the sink of the connection.

3. The reliability part describes how packet losses and bit errors within packets are
handled. They can be ignored, indicated or corrected.

The workioad for multimedia Systems is penodic by nature-consider for instance an
application presenting audio or video data where data packets must be transmitted at
certain instants. To describe the load induced into the System, HeiTS uses the linear
bounded arrival process (LBAP)12 as its workload model. The LBAP model assumes
data to be processed as a stream of discrete units (packets) charactenzed by three para-
meters: S, the maximum packet size, R, the maximum packet rate, i.e. the maximum
number of packets per time unit, and W, the maximum workahead.

The workahead Parameter W allows for short-term violations of the rate R: According
to the LBAP definition in any time interval of duration t at most W + tR packets may
amve. This is necessary to model input devices that generate shon bursts of packets,
e.g. disk blocks that contain several continuous-media data frames. Furthermore, the
notion of workahead is needed to account for any clustering of packets dunng the
vanous processing stages before they are finally presented to the User. A useful concept
of the LBAP is that of the logical arrival time [(m,), which is defined as:

[(m,) = a, = actual anival time of the first packet
l (m,+,) = max [a , , , , [(m,) + 1/R}

The concept of logical amval time essentially acts as a smoothing filter for the traffic
streams. It ensures that no particular stream hogs a resource at the expense of other
streams given their declared workload characteristics. A packet whose logical anival
time has passed is called critical. othenvise it is referred to as workahead.

The output stream of a resource or the processing Stage serving an input LBAP, e.g.
CPU or intermediate network, is itself an LBAP. Its parameters depend on the para-
meters of the input LBAP and the maximum and minimum delay within the resource.
Their computation has been described in Reference 13. For an end-to-end connection
passing a periodic stream through various processing stages, e.g. input device + CPU
on sending host + intermediate network + . . ., this enables one to 'push' the LBAP
workioad model from the origin to the destination through all stages.

In addition to the three LBAP parameters defined above, the User must also specify
for each resource the maximum processing time per packet to ensure that resource
capacities can be correspondingly reserved.

The QoS and workioad models described above were chosen because they are con-
ceptually simple. though they descnbe the requirements of a multimedia stream in suf-
ficient detail, and can be directly used as a basis for QoS management. However,
research has brought up a nurnber of other QoS models that can be used in multimedia
and real-time processing and communication Systems. Examples for alternative models
can be found in References 14. 15, 16 or 17. Some of them define the workioad by
stochastic processes rather than by processes with fixed periods. This is done to reflect

382 L. C. WOLF, W. BURKE AND C. VOGT

die requirements of streams with a variable bit-rate; although these can also be handled
in a periodic framework, as shown in Reference 18. Some models account for the packet
loss rate and others quantify the jitter of a stream, i.e. the variance of the interamval
times of the stream packets.

Ordering of priorities

Not all users need the same degree of QoS. For some users it is important 10 get the
specified quality all of the time without any degradation. others niay accept some tem-
porary quality degradation, especially if the cost for using this service decreases accord-
ingly. The first degree of QoS ('guaranteed' QoS) is necessary for production-level
applications. e.g. in a movie studio. The second degree of QoS ('statistical' QoS:) is
especially useful for playback consumer applications or video conferences, provided
that degradations do not occur too ofien. Based on these QoS classes, different methods
for resource reservation can be used.

For guaranteed QoS pes.simistic resource reservation has to be done. The resource
capacities reserved are those needed in the worst possible case, and the QoS require-
ments will be satisfied under all circumstances. Reserving such large amounts of
resources, however, can be rather costly. A cheaper alternative is statistical QoS using
an opfimistic approach. Here, less resources are reserved, for example those needecl in
the average case. This implies that the QoS requirements will be met in general, but
temporary QoS violations may occur. Figure 2 illustrates these different approaches.

In addition to the differentiation between processes serving applications with guaran-
teed and statistical QoS, Reference 19 suggests a method of deadli~ie-workahead sched-
uling which dynamically classifies messages with respect to whether they are curreiitly
critical or workahead. Within the workahead class guaranteed and statistical streams
may be separated, however, for simplicity they are combined into one class. This yields
the following multi-level priority scheduling scheme:

1. Critical guaranteed processes.
2. Critical statistical processes.
3. Processes not performing multimedia operations (e.g. application processes).

guaranteed
QoS:

application 1

reserved for
application 2

statistical reserved fw
00s: application 1

resewed fw
application 2

Figirre 2. Guaranreed W. sfatistical QoS

EVALUATION OF A CPU SCHEDULING MECHANISM 383

4. Workahead processes (both guaranteed and statistical).

$he scheduling within these priority classes is (preemptive) deadline based (except for
class 3 where any strategy can be used). The logical anival time of a packet plus the
guaranteed (or statistical) delay bound calculated for this connection serves as its dead-
line. A process moves from priority class 4 to 1 or 2, respectively, as soon as it becomes
critical, which possibly entails the preemption of the currently executing process.

Because guaranteed processes are in priority class 1 and statistical processes in class
2, this scheme has the drawback that it prefers a guaranteed connection over a statistical
konnection even if the statistical connection has a closer deadline than the guaranteed
connection. Hence, even a statistical connection that does not exceed the specified work-
load bounds might experience delays larger than those calculated by the QoS optimiz-
ation f u n ~ t i o n . ~ ~ Although the notion of statistical connections allows such a behavior-
because they may temporarily suffer from QoS violations-it is questionable whetber
this distinction is fair. To avoid this problem, a variant of the algorithm could be con-
sidered where priority classes 1 and 2 are combined and a new priority class for statisti-
cal processes, which have consumed their specified processing time, is introduced. This
leads to the following priority scheme:

I . Critical processes (guaranteed and statistical).
2. Critical processes that have used up their processing times as specified by their

workload descriptions, but require further processing.
3. Processes not perfonning multimedia-operations.
4. Workahead processes.

Within this scheme, a statistical process executes in priority class 1 until it has con-
sumed its specified processing time. Then it is moved to priority class 2, which may
lead to a preemption in favor of a different process from class 1. The detection that a
process has consumed its processing time requires the supervision of execution times,
which is not possible in the cbosen operating System (AIX). An efficient implementation
of such a mechanism would require a kemel modification which is not possible by the
kernel modification facilities in AIX. Additionally, assume the case of communication
processing where packets of one connection may be served by different processes. In
this case, the above scheme would require special attention on proper sequencing of
packets, i.e. a newly arriving packet is not allowed to be processed in priority class I
while an older packet of the Same stream is waiting in class 2. Owing to these reasons
the iirst priority scheme is used, despite its described drawback.

Another item is the trade-off between the gain of processing workahead packets prior
to their logical amval times and the overhead of changing the priorities between critical
and workahead Status. Since this overhead can be significant, the 'standard' version of
the scheduler used in HeiTS does not perfom processing of workahead packets but
leaves workahead packets unprocessed till their logical anival time; yet, it is possible
to compile a version including workahead processing.

Note that the scheduling approach described here is rather simple: The partitioning
of priorities into a four-level scheme could be regarded as somewhat rigid. Also, more
sophisticated approaches to Support the scheduling of aperiodic requests, e.g. data
stream management and non-multimedia computations, are possible. There exist sol-
utions to reserve a specified capacity of the bandwith to those aperiodic tasks, e.g. the
sporadic server2' or the slack stealing a l g ~ r i t h m . ~ ~

However, an efficient implementation of such schemes requires a modification of

384 L. C. WOLF, W. BURKE AND C. VOGT

kerne1 data sttuctures and the ability to supervise and stop the execution of a process.
See, for instance, the implementation of the sporadic server in Reference 23. As our
intention was to build a scheduler on top of a general-purpose operating system. we
had to refrain from using those elaborate approaches.

Schedulability test and priority assignment scheme

The target operating system for the implementation is AM, IBM's UNIX derivate.
In addition to the well-known multi-level-feedback2' (MLFB) scheduling it providcs a
Set of frred prionties at the highest priority levels (priorities &15), which are even
higher than the AIX scheduler's prionty. Unlike the other (MLFB) pnorities these ~pn-
orities are not modified by the AIX scheduler and can be used for real-time processing.

Assigning prionties to processes produces a considerable overhead that cannot be
neglected. Therefore, we do not use a dynamic scheme such as earliest deadline first
(EDF) but use a static priority assignment scheme according to the rate monotonic
(RM) algorithmZ5 where a process with a short period (i.e. a high rate) receives a high
prionty. Prionties are computed at application establishment time and are not changed
dynamically during application lifetime. Only when a newly established application
needs a pnority level that is already in use are the existing prionties shifted to m,ake
room for the new application handling process. With the priority scheme descnbecl in
the previous section, the priorities are ordered in such a way that guaranteed processes
possess the highest priorities and statistical processes use the lower part of the real-
time pnorities. All processes not subject to real-time constraints are handled by the
AIX system scheduler and use priorities below the real-time priorities.

RM scheduling has also the advantage that a simple schedulability test exists. A set
of real-time applications can be accepted with respect to the CPU load. i.e. no overload
condition occurs, if the following inequality hold^:'^

The Parameters of this inequality and their meanings are as follows: index i tuns throiigh
all n real-time application handling processes [T,, . . . ,T,], R, denotes the maximum rate
of T;, and P, specifies the processing time per packet of T,. U„ is a non-negative real
number of value at most ln(2) (~ 0 . 6 9) for RM scheduling of processes with arbitrary
rates. The limit of U,, (for n approaching infinity) is U = ln(2) (-0.69).

If the sum on the left hand side, i.e. the load generated by all real-time processes,
does not exceed U: the processing of all packets is guaranteed to terminate within their
respective deadlines UR,. If the sum is greater, this may still be the case, but no guaran-
tees can be given with this test.

The processing times Pi include the scheduling overhead, i.e. the overhead for
inserting, choosing and removing a process from the tun queue, and the overhead for
bIocking and awakening a workahead packet. A t o 0 1 ~ ~ has been developed to measure
these times. The total of the overheads can be incorporated into the processing time: P,
in a similar way as is described in Reference 27.
Of the descnbed time handling methods, only the last two, periodic threads or pro-

cesses, can provide the necessary information to the scheduler. Thus, the other methods
are not usable if timing guarantees have to be given.

EVALUATION OF A CPU SCHEDULING MECHANISM 385

It should be noticed bere that the schedulability boundary U can be relaxed in certain
cases. If the penods of the processes have a certain ratio, U can be larger than ln(2).
For instance. if the periods are (integer) multiples of the smallest penod in the process
set, then U = 1 can be chosen. Also, Reference 28 showed that the maximum CPU
load which can be accepted for RM scheduling is, in the average case, notably larger
than ln(2).

However, the restnction of the maximum CPU utilization U for multimedia pro-
cessing to a value smaller than I is not such a strong limitation as it might seem. In
any case, some CPU capacity has to be reserved to processes other than multimedia
related processes. Owing to this reason and the simplicity and efficiency of the
LiuLayland schedulability test we do not use tbe more advanced analysis from Refer-
ence 28. Although the latter would enable the system to accept a greater number of real-
time applications simultaneously, the LiuLayland scheduling bound usually suffices for
our purposes.

The L i d a y l a n d schedulability test can be applied not only to a static task Set but
also to dynamically amving tasks, as was shown in Reference 29. More advanced tests,
for instance those as described in Reference 30, are not used due to the above reasons.

Buffer space

One issue tbat has to be considered in multimedia QoS management is the reservation
of buffer space for the packets waiting to be processed. The longer packets must wait
for a resource, the more memory space must be available to avoid losses. A detailed
discussion of this problem is beyond the scope of this Paper. For a stream defined by
the LBAP model, the amount of buffer space to be reserved on a node can be calculated
from tbe LBAP parameters and tbe maximum delay of packets on the node, for details
See Reference 3 1. Reference 18 shows tbat even the requirements of VBR streams can
be satisfied with a moderate amount of Storage space, because the maximum delay
bound to be enforced for multimedia streams is ratber small.

IMPLEMENTATION

The functionality of the real-time CPU scheduler in HeiTS consists mainly of two
Parts, the management of the information needed for proper scheduling and the actual
scheduling of processes.

Management of scheduling information

A 'scheduling cache' is used to store all information needed for scheduling the pro-
cessing of the individual streams.* Several functions for management of cacbe entries
are provided. During the creation of an application the information wbich characterizes
the stream is inserted in the scheduling cache by means of the function
ms-cpu-create-entry and can be freed during connection release by the function
rms-cpu-release-entru. Since QoS Parameters may be changed during the life-
time of an application, e.g. the rate is lowered, there must be a possibility to repon this

* Each eniry in ihis cache is ossoc ia td with one process and can be compared 10 the attributes objeci associated with a
rhread in the Posir lhreads ertenrion~

386 L. C. WOLF, W. BURKE AND C. VOGT

change to the scheduler. This can be achieved by calling the function
ms-cpu-change-entry.

Scheduling of processes

The actual scheduling is perfonned through a set of kerne1 functions (AIX provides
mechanisms for adding such system calls) that must be called by the process that wants
to be scheduled. This is more efficient than implementing the scheduler as a separate
process (like the AIX system scheduler) because it saves the context switch between
the process to be scheduled and the scheduler process itself.

Requiring that the process calls the scheduler function explicitly leads to 'voluniary
scheduling' and may seem dangerous. However, all code allowed to run in an environ-
ment where it is possible to use real-time priorities has to be established by an author-
iaed user. Thus, only approved code will be subject to real-time scheduling and, there-
fore, especially with reflection on the perfonnance gain. this approach can be regarded
as secure.

Process structure

To achieve proper scheduling of real-time processes some assumptions about the
sttucture of the processes huve to be made. As shown in Figure 3, it is assumed that
after creating an application the process responsible for handling the data of this appli-
cation is perfonning a program loop and processes one data packet (e.g. a video frame)
in every iteration. This continues until the application is finished and the process is not
subject to real-time scheduling any more.

................... , 1 user level priority processing
j Start of real-time scheduling i
: rms-cpucreate-entiy0 j
L..

LBAPgoll OILBAP-enforceo

real-time priority processing

continue. -
I

i end of real-time scheduling
j ms-cpu-release-enntry : .______............ + User level priority processing

Figure 3. Procrsring srructure

EVALUATION OF A CPU SCHEDULING MECHANISM 387
I

$rzforcing LBAP property

Before processing a newly arrived data packet the scheduler must check whether
accepting this packet would violate the LBAP charactenstic (i.e. the workload
~pecification) of the data stream. This check can be done in a blocking or a non-blocking
huay. The blocking test is performed by the function LBAP-enforce and enforces the
pbservance of the LBAP property of the data stream: the process is left in a wait state
bntil the logical arrival time of the packet is reached.*
I In the non-blocking test implemented in the function LBAP-pol1 the scheduler sim-
ply retums the calculated logical arrival time of the data packet and the information
whether accepting this packet violates the LBAP properties of the data stream or not.?
For all non-blocking tests of the LBAP property, it is the process' responsibility to take
proper action if the packet violates the LBAP properties of the application (one possi-
biliry would be to call LBAP-enforce).

Non-blocking functions are provided to Support the usage of monotonic computations
where the quality of intermediate results does not decrease as it executes longer, e.g.
compression algorithms as JPEG32 or MPEG-11." Such algonthms produce a prelimi-
nary result after a certain time which can be improved through further computations.
Therefore, after an intermediate result has been reached, it has to be checked in a non-
blocking way whether there is enough time left for further operations. If there is time
available. the result will be improved othenvise the current result will be used, e.g.
transferred to the consumer.

This is comparable to the milestone method mentioned in Reference 34. It should
be iioted that the used schedulability test further Supports this type of algorithms since
it leaves a portion of the processor capacity that can be used for the improvement of
intermediate results.

The watchdog mechanism of the scheduler is especially useful for program develop-
ment. It provides a method to get the system under conuol if some real-time process
hangs in an endless loop. The watchdog also checks whether a process does not call
the scheduling functions. Calling with a higher rate than specified is not possible since
the scheduler code blocks the process until the logical arrival time. Calling never or
with a much lower rate than specified is an indication that either the specification was
substantially wrong (and should be changed, e.g. via ma -cpu -change -en t ry) or
the process does not behave correctly and some management action has to be taken.

EVALUATION

To show the effect of using the scheduler for different multimedia applications a senes
of measurements were performed. They should answer the following question: in which
way does the use of the scheduler influence the behavior of the application and the
system as a whole, i.e. are deadline violations indeed avoided and to what extent?
Qualitative aspects such as expressing time characteristics are not considered in this
section since they have been discussed already before.

* This is tme for the standard version where the schedulrr does nor process workahead packets. If workahead is allowed
Uie pmcers is blocked till it can accepr another workahead packet, i . c Uie time till the logical arrival time is equal to or less
Uian ihe rimc nceded to process the maximum allowed workahead minus one penod (needed to prwess this newly -ved
data packet).

t B workahead packets are not processed the pnarity is left unchangd bccausc 11 is the goal to avoid ihc overhead of
prionty changcs If workahead processing is pertomed the pnoriiy of thr process ir Set io Uie workahead prionty until thc
logical amival time of the packet is reached.

388 L. C. WOLF, W. BURKE AND C. VOGT

Measurement setup
The CPU scheduler function LBAP-enforce was instrumented in such a way that

it generates events descnbing the laxity of the calling process, i.e. the time until the
process reaches its deadline. Positive values indicate that the process still has time
before the deadline is reached; therefore. it is operating correctly. Negative values iridi-
cate that the process violated its deadline; it is not able to perform its function in ti:me.

In those cases where several real-time processes were mnning concurrently the events
are given in generation-time order, i.e. they are not ordered by processes unless other-
wise stated. The charts shown in Figures 4-9 below are extracts from much loniger
measurement series to increase readability. Each of them shows 200 values which have
heen taken from the middle of the sequence of values, the generation of measurement
values having started later than the processes under consideration to reduce stad-up
effects. Each point in a graph represents a Single event. The measurement values are
given in seconds.

All measurements were perfonned on a mostly idle workstation, an IBM R:lSC
Systeml6000, Model 360 with AIX 3.2.4, which was not modified during the measilre-
ments, e.g. simple applications such as mail, etc. were mnning as usual. However, none
of these programs used much CPU processing time. These types of applications are
mnning during normal workstation operation periods as well, thus, disabling them dur-
ing the measurements might lead to slightly more regular measurement results but not
to results which are better applicable to real-world sceiiarios.

The measurements were performed with a varying system load. The systern load
was generated artificially by synthetic. non real-time, cornputation processes perfomiing
simple integer calculations. Hence, in principle these processes were always ready to
run, which also led to low priority due to UNIX scheduler character is t ic~.~~ Therefore,
normal, user-created system load might be even harder than this synthetic load. Ci, I ,
2, 3 , 4 , or 16 of these load processes have been used dunng the measurements. Runriing
16 processes leads to a heavily loaded system, the other loads resemble loads ea.sily
created dunng normal workstation operation.

The measurements were performed with programs using the CPU scheduler's real-
time characteristics followed by measurements with the Same programs without per-
forrning real-time scheduling using the time provision rnechanisms of the schediiler,
i.e. executing with the specified rate. The load generated by the programs is the siame
in both cases-since the static RM scheduling algorithm without workahead scheduling
is used, no additional costs for the real-time processes during run time occur.

Considered scenarios
Two basic application scenarios with different setups were investigated:

I . an endsystem application,
2. a video-on-demand Server application.

In the first Scenario, usually relatively few processes are mnning, performing operationb
such as software compression and decompr~.ssion. For instance, in a video conferenc
one participant has to compress its own image before this is transmitted to the Fieer 1
and it has to decompress the irnages received from the other Peers. Hence, for a coiifef-
ence with n participants n processes for software compression and decompression exi$
on each workstation. Since compression algonthms for video conferencing such as

EVALUATION OF A CPU SCHEDULING MECHANlSM 389

H.261" usually possess symmetnc processing requirements, in the following it is not
distinguished between compression and decompression processes. Another example of
the endsystem scenario is a playback application presenting a video decompressed in
software to the user; there only one process exists.

Within the second scenario, a video-on-demand server, several processes are active
in the system, one for each data stream served. However. the processing requirement
of such a process is lower than for a software decompression process.

In the following the results for the endsystem scenario are described first, then the
measurements for the video-on-demand server scenano are discussed.

End-system scenario

For the end-system scenario, a video playback program and a synthetic program have
been examined. The video playback program reads compressed video data, decom-
presses the data in software, and presents the video frames via the X server to the user.
The synthetic program performs simple calculations and data movements on arrays to
resemble a playback program. The reason for using the synthetic program is that this
has a more repeatable charactenstic and allows for arbitrary modifications of processing
time requirements. Hence, it provides a more stable environment and a broader range
to study the behavior of the scheduler.

Video plavback

The video playback program uses one process for its operations, i.e. n = 1. The
chosen video consists of 15 framesls, i.e. 66.6 mslframe, which was also set as the
processing rate of the program. The processing time needed per period is on the average
approximately 28 ms, which results in a total CPU usage of about 0.42.

The compressed daia read by the program was stored in a local file which was cached
into main memory by mnning the program first without measuring it. The file was
small enough to fit into the cache.

Figure 4 shows the results for measurements with varying loads. If no load except
the measured process exists in the system, no deadline violations occur even without
using real-time scheduling.

If a load of medium size, i.e. three or more processes, is introduced into the system,
the considered application is not able to provide acceptable service to the user. The last
graph in the Figure illustrates thai by using real-time scheduling, the application does
not suffer from any deadline violations, even if a high load-up to 16 processes-has
been introduced into the system.

Synrhetic end-systern program-one process

The synthetic program operates with the same rate of 15 11s as the video playback
program; its processing time requirement of about 21 ms per iteration is lower ihan
that of the video playback program. The reason is that the generated load of
21 rns X 15 11s = 0.315 is lower and allows more concurrent processes to be measured,
thus creating a heavier load.

The different CPU requirements have no major impact on ihe results, since the CPU
utilization of the video playback program could be lowered to that of the synthetic

390 L. C. WOLF, W. BURKE AND C. VOGT

0 Load Processes
w l o u t real-iime sraeduling r

Mth real4ime scbeduling c

I O . M Z , ,

4 Load Processes

3 Load Processes
wiihout real-ttme scheduling .

with real-time scheduling c-

4.04 b 4

4 05
0 20 40 60 80 100120140160180200

+evuit numhi-r

0 ,4 , and 16 Load Processes
uirh mal-lime~rhduling - 0 load pmarles .

wilhout mal-lime uheduling r wiih real.iime scheduling - 4 load p m o c s ~ -
wirh mal-time schedulinp, c wlih real-iimc sdiedulnnn - 16 losd ~ - s s r

F i p r e 4 Vrdeo pln>hack npplrcation I 1
program. e.g. by reducing the frame size or using a different compression algorithm. To
reduce the influence of other programs and systeni components the program perforrns no
VO. The synthetic program has been used since it has a niore regular CPU utilization
per iteration which increases the comparability of the values.

The achieved results are similar to the results for the video playback measurementb
as can be seen in Figure 5. The workstation can cope with the non-real-time progra i if the system is otherwise idle. Introducing an artificial load of three or more proce:sse,
leads to deadline violations. The real-tinie program mns without any problem for all
system loads; the Iaxity varies within tight bounds, all values except one are contained
in an interval with a width of about 1 ms, the single value is outside of this i n t e~a / l
by about 1 ms. I

Reasons for the vanations include intempts and functions inside the operating sy:;teT
kerne1 which block timer interrupts leading to a delayed switch to the real-time procesd.

EVALUATION OF A CPU SCHEDULING MECHANISM 391

3 Load Processes 4 and 16 Load Processes
With Real-Time Scheduling

vtlhout real-Ilme scheduling r with real-time scheduling - 4 Iod puccsses .
mth real-time scheduling c vnih real-time whedulins - 16 Iod -es .

Figure 5. Syrzfhetir 'derompression' program, oize procesr

Sarnpling complete system traces including kemel functions introduces too much over-
head for the measurements and modifies the behavior. Thus, we cannot give a complete
explanation for the measured deviation. Many aspects in a general purpose Computer
system are difficult to predict; for instance, context switches influence cache perform-
a n ~ e . ~ ~ However, we consider the reached accuracy as fully sufficient, for instance the
synchronization requirement for audio and video, e.g. lipsynch, has been found to be
80 ms.?'

Synihetic end-system program-two and three processes

Multimedia applications may use more than one decompression process, e.g. in a
video conference between two persons one compression and one decompression process
is running per system; for a conference with three participants on each system already
a total of three (de)compression processes are mnning. Therefore, measurements for a
system running two or three concurrent processes have been performed, each executing
the synthetic program descnbed above running with a rate of 15 11s and a CPU utiliz-
ation of about 0.315. The results are shown in Figures 6 and 7; since the processes are
ninning at the same rate, the maximum acceptable CPU load under RM scheduling is 1.

As Figure 6 shows, the workstation can handle two non-real-time (de)compression
processes as long as either no load is introduced or only one other process is ninning.
With only two load generating processes, the non-real-time decompression processes
are no longer able to keep within their deadlines. As can be seen in Figure 6 the real-
time processes perform their operations in time even for medium and high loads.

The reason for the regular patterns is that the plots show the laxity of all processes
ordered by generation time. This way, events of processes with large laxity and with
small laxity are mixed and, since the execution of the processes is ordered, the lines
connecting single points lead to the patterns; see also the discussion for Figure 7. below,
of the measurement of three processes.

If three non-real-time (de)compression processes are executed, already one load-gen-

392 L. C. WOLF, W. BURKE AND C. VOGT

0 Load Processes 1 Load Process
withoul real-time scheduling + without mal-time scheduling r

with real-time xheduling c with real-iime xheduling -- - -
1 0.05, 2 0 . 0 5 ~ I

0.02) . I
0 W 40 60 80 100 120 140 160 180 2M

event nvmber

2 Load Processes
without real-time scheduling r

with real-time scheduling c
1 0 0 6 1 ,

".V- .
0.015 '1

0 W 40 60 80 100 120 L40 160 180 Zia)
-event number

4 and 16 Load Processes
with ~al - t ime scheduling - 4 load procer~er +

- with real-time xheduling - 16 load prxesser +-
3 0.051 1

. 6.061 J
0 20 40 60 @I 100 l W 140 160 180 200 0 20 40 60 80 100 120 140 160 180200

+eveni number +wen1 number

Figure 6. Syniheiir. 'derninprrssion' prograrn, hvo processer

erating process is sufficient that the System cannot provide its Service in time, as can
be Seen in Figure 7. Since starting a process is a common Operation in UNIX worksta-
tions it cannot be assumed to be avoidable, hence, it can be expected that Users would
not accept the offered presentation because deadline violations occur which lower the
Overall quality. Again, using real-time processes, the workstation provides correct ser-
vice even for high loads. i

The plot of the measurements for the three real-time processes running dulind
medium and high additional workstation load without lines connecting the point:; in
Figure 7 an the left side, bottom row, shows that the laxity of the processes is either 45.6
ms, 24.5 ms or 3.5 ms. The reason is that the real-time processes execute altemately and
without interruption by each other. This is illustrated by Figure 7 on the nght side,
bottom row where the measurement for high load is plotted using a different pattem
for each process.

From this graph it can be Seen that in each iteration, the laxity of the first process
is about 45.5 ms and those of the second and third processes are 24.5 ms and 3.5 ms,

EVALUATION OF A CPU SCHEDULING MECHANISM 393

0 Load Processes 1 Load Process
wilhaut -1-time sdisduling wiUiout mal-time scbeduling -..

wilh resl-time smeduling c wiVi real-time scheduliag c
C: 0.05. - 0 . 0 6 ,

I 4 and 16 Load Processes 16 Load Processes

with real-time scheduling - 4 load p-se~ +
wilh real-timexhsduling- 16 load pm-s r

with mal-tune srheduling - p<- I r
wilh real-time s r h e d u l i q - po- 2 -
wllh real.time pchedvl tq - pocew 3 .

I F i ~ u r e 7. Syniheric 'decomprrsriori' progrunt. rhree processes

respectively. The last 'segment' of 3.5 ms is not used by any real-time process, which
means that 3.5 ms X 15 11s = 0.0525 CPU time has been left.

This is in accordance with a per process CPU utilization of 0.315. which yields a
total CPU utilization of 0.945. If the laxity of a process would altemate, the plot lines
would Cross the graph and yield a pattem as, for instance in the first graph seen on the
left side, upper row.

Server scenario

In a video-on-demand scenario two different interest areas exist. The client, typically
using the system for playback, wants a reliable service from the server just as in the
end-system scenario described above. The service provider, i.e. the owner of the server,
wants to be able to serve as rnany streains as possible from one system without degra-
dation of QoS since otherwise customers will be dissatisfied.

394 L. C. WOLF, W. BURKE AND C. VOGT

The measurements presented in the following show that using real-time procerises
instead of non-real-time processes enables a guaranteed service and a larger number of
concurrent streams and, hence, lowers the costs per stream.

Slow sen'er

First, a scenario where a single stream used up about 0.05 of the total CPU time has
been examined. Each stream was served by a process operating with a rate of 30 11s.
Hence, at most 19 streams can be mnning, which means that the CPU utilizatiori is
19 X 0.05 = 0.95. With 20 streams the system is overloaded and cannot provide any
timely service. For the measurements a synthetic program similar to the one descnlbed
above has been used.

As the graphs in Figure 8 demonstrate, with non-real-time processes the system can-
not serve 17 streams. Using real-time processes, all 19 streams can be served even if
high additional load is introduced into the System.*

Fast server

Finally, the behavior of a server which is able to serve more streams, i.e. with a
lower CPU utilization per stream, has been studied. The same workstation has been
used for the measurements but the test program was changed to use less CPU time.

One stream was served by a process which executed with a rate of 30 11s and required
about 0.027 CPU time. The results are shown in Figure 9. Dunng the tests, 30 streams
were the maximum executable without deadline violations if real-time scheduling was
not used. For 3 1 streams and more an increasing number of missed deadlines have b~een
found even if the system was idle and no load was introduced. As the right side of

0 Load Processes 0, 4, and 16 Load Processes
17 Streams 19 Streams

with real-time scbeduling-0 I o d pmuses +-
wilhout renl-time deduling + with renl-time sch-dulfflg-4 I o d pmerses +-

with mal-time achaduling - 16 I o d pese +-
T 0.032
P 0.03
B - 0.028

t ::E
0.022
0.M

0.018
0.016
0.014
0.012
0.01

0 20 40 M 80 100120 140 1M 180 2M 0 7.0 40 60 80 100 120 140 IM 180 :2Dl
-wen1 numba -+wen1 numba

Figure 8. Syrheric 'server' program, 17 and 19 streams

* The erecuiion sequence of the processes in not ordered, since the 19 processes musi be rnapped to fewer priocitiea.
leading to switches between pmcesaes.

!
~
i

1
~
I

~
I
!

EVALUATION OF A CPU SCHEDULING MECHANISM 395

0 Load Processes
31 Streams

wiUiou1 real-time sehaduling -31 atreama +
wilhaut ml-limeschaduling- 32 streams r

4 . 0 3 M
0 20 40 60 80 100 120 140 160 180 200

-evenl number

F i g u r ~ 9. Synthetic 'server' program on

0, 4, and 16 Load Processes
36 Streams

w h renl.tirne rrheduling - 0 bad po- -
wiUi ml-llrne scheduling - 4 load pousse -

wiih real-tim scbedulsng - 16 load pvceroea -

+event number

:faster' yen3Pr. 31. 32 and 36 srreams

Figure 9 demonstrates, using the real-time scheduler it was possible to execute 36 stre-
ams, yielding a total CPU utilization introduced through these real-time processes of
0.972, even if high load were introduced.

RELATED WORK

Real-time mechanisms for multimedia systems are provided by several research sys-
tems. In most cases, these are based on a newly developed operating system kernel,
and hence the problems of integrating the mechanisms into an existing kernel and the
corresponding restrictions do not occur.

IIASHl9 uses a deadline driven scheduling algorithm. As described before, due to
the period-based process dispatching and the considerable overhead for priority changes,
this approach is not useful for our scenario.

Sun's High Resolution Video (HRV) workstation project assumes that no determin-
istic bounds can be provided; thus, no guaranteed processing is a~ai lable . '~ For several
'production-level' applications, we consider guaranteed processing to be so important
that neglecting them is not acceptable.

In YARTOS (Yet Another Real-Time Operating S y ~ t e m) ~ ~ . ~ ~ a new operating system
kernel is designed. The task model is based on sporadic (instead of periodic) tasks. The
schedulability test considers all accesses to shared resources, which are only availahle
via kernel mechanisms, and avoids contention Situations. Hence, the mechanisms are
not usable in conjunction with standard kernels.

Reference 41 describes a system similar to ours which yields comparable results.
Thcir work is based on Real-Time Mach.4? hence, due to the micro-kerne1 their
approach is not usable in our operating system environment.

Other work from the field of real-time systems has already been quoted in the sections
describing the scheduling algorithm and its implementation.

396 L. C. WOLF, W. BURKE AND C. VOGT

POSSIBLE CLIENT SYSTEM ENHANCEMENTS

Using another process to present images to the User can lead to problems if this process
is not under the control of the multimedia system. This is, for instance, the case in X
Windows; here, the X server process displays the images. Even if shared memory
between server and client is used, a non-real-time X server can introduce deadline
violations, especially if it is singIe threaded and several requests from other prograims
have to be executed.

Increasing the priority of the X server slightly, e.g. via U N E 'nice' mechanism, was
sufficient in the test scenarios. Better solutions are either the provision of a real-time
X server, whicb allows the specification of processing requirements or the 'transfer' of
CPU reservation and the according priority to the server process as suggested in Refer-
ence 41, or a mechanism which allows a User program to bypass the X server by writing
directly to a specific area on the screen. i.e. the display adapter memory.

For the latter, the window managet allows the User program to write to that airea
where its window is mapped by attaching the memory to the program's address space
via a special system call; other memory areas may still be protected. Any change in
the visibility, size, or location of the window is known inside the window manager
which can change or withdraw the memory from the program's address space accord-
ingly.

CONCLUSIONS

The inherent periodicity of continuous-media data requires operating system provicled
mechanisms for timely operation. Simple methods, e.g. functions which only delay the
execution of ceriain functions, are not suitable for general-purpose multimedia Systems.
Information about the programs' time characteristics are needed to apply real-time
scheduling techniques which are a prerequisite for reliable QoS provision.

This paper discussed several approaches for time handling and described a real-time
scheduling rnethod and its implementation for a Standard operating system kemel. S~ev-
eral multimedia applications (e.g. a video server) have been implemented successf~illy
using the described scheduler.

The experimental evaluation shows that real-time scheduling is indeed necessary for
end-system and video-on-demand server applications. The measurements demonstrate
that the scheduler is able to provide QoS guarantees even for highly loaded systenis.

ACKNOWLEEGEMENTS

The authors would like to thank the anonymous referees for their comments and sugg;es-
tions.

REFERENCES

1. Andmas Mauthe. Werner Schult and Ralf Steinmetz. 'Inside the Heidelberg multimedia operating sy!item:
suppon: real-time prmessing of conrinuous media in OS/?'. Tcchnicril Reporr 43.9214. IBM Europeanl
Networking Center, Heidelberg. Germany. 1992.

2. Lars C. Wolf and Ralf C. Herrtwich, 'The system architecture of the Heidelberg Transport System', A ~ J
Operating Sysfcnis Reviex,. 28(2), 51-64 (1 994).

3. lohn Bames, 'Iniroducing AdagX', ACM Adn Lerierr, 13(6), 61-13? (1993).
4. David B. Stewan, Donald E. Schmitz and Pradeep K. Kosla. 'The Chimera I1 rcal-time operating system

for advanced sensor-based control applications', lEEE Trans. on Sysrems, Man ond Cybernetics. 2:!(6),
1282-1295 (1992).

EVALUATION O F A CPU SCHEDULING MECHANISM 397

5. Karsten Schwan and Hongyi Zhou, 'Real-time threads', ACM Operating Systems Review, 25(4). 3 5 4 6
(1991).

6. Hideyuki Tokuda and Clifford W. Merccr, 'ARTS: A distributed real-time kernel'. ACM Operaring Sys tem
Review, 23(3), 29-53 (1989).

7. Jun Nakajima, Masatomo Yazaki and Hitoshi Matsurnoto, 'Multimedialrealtinie exiensions for the Mach
operating system'. Proceeditigs of the Summer 1991 Usenix Conference, Nashville. Tenn., 1991.
pp. 183-198.

8. Brian N. Benhad, Edward D. Lazowska and Henry M. Levy. 'PRESTO: A system for objecl-oriented
parallel programming', Sofware-Pracrice and Experience, 18(8), 713-732 (1988).

9. IEEE Standards Project P1003.4a, 'Threads Extension for Portable Operating Systems. Draft 6'. Febni-
ary 1992.

10. IEEE Standard for Information Technology, Std 1003.1b-1993, 'System application program interface
(APIbamendment 1: realtime extension', September 1993.

11. Sandeep Khanna. Michael Sebree and John Zolnowsky, 'Realtime scheduling in SunOS 5.V. USENIX,
Winter 1992.

12. R. L. Cmz, 'A calculus for network delay, pan I: network elements in isolation', IEEE Trans. Ir!fornzoliorz
Theorv, 37(1) (1991).

13. Martin Andrews, 'Guaranteed performance for continuous media in a general purpose distribuied sysiem'.
Masters Projecl Reporl, University of California, Berkeley, October 1989.

14. American National Standards Institute. 'Integrated services digital network (1SDN)Aigital subscrikr sig-
naling system No.] (DSSI)-signaling specification for frame relay bearer service', ANS1 T1.617-1991.
June 1991.

15. Israel Cidon. Inder Gopal and Roch Guerin, 'Bandwidth management and congestion control in plaNET'.
IEEE Communicnrions Magazine. 28(10). 5 4 4 3 (1991).

16. Domenico Ferrari, Anindo Banejea and Hui Zhang, 'Network support for multimedia: A discussion of ihe
Tenet approach', TR-92472 , Inteinational Computer Science Institute, Berkeley, CA, USA, 1992.

17. Mark Moran and Bernd Wolfinger, 'Design of a continuous media data transport service and proiocol'.
TR-92419 . International Computer Science Institute, Berkeley. CA, USA. 1992.

18. Carsten Vogt, 'Quality-of-seivice management for multimedia streams with fixed arrival periods and vari-
able frame sizes', ACM Mirlrimedin Sysrerns. 3(2), 66-75 (1995).

19. David P. Anderson, 'Metascheduling for continuous media', ACM Trans. Compuier System. 11(3), 226-
252 (1993).

20. Carsten Vogt, Ralf Guido Hemwich and Ramesh Nagarajan. 'HeiRAT: the Heidelberg Resource Adminis-
tration TechniqueAesign philosophy and goals', Kvmmuniknrion in Verreilien Systemen. Munich, Germ-
any, March 1991.

21. Brinklev Sorunt. Lui Sha and John Lehoczkv. 'Aoeriodic task scheduline for hard-real-time svstems'. Reul- , .
Twne sisteLs, 1, 27-60 (1989).

U

22. lohn P. Lehoczkv and Sandra Ramos-Thuel. 'An ootimal aleorithm for scheduline soft-aoeriodic tasks in
U

fixed-priority pieemptive systems'. Proceedings of the IEEE Real-Time Svsrems Svmposium, 1992,
pp. 11C-123.

23. Brinkley Spiunt and Lui Sha. 'Implementing spoiadic Servers in Ada'. Technicnl Report CMU/SEI-90-TR-
6, Camegie-Mellon University. Software Engineering Institute. Pittsburgh. PA. USA. Mriy 1990.

24. Samuel J. LefAer. Marshall Kirk McKusick. Michael J. Karels and John S. Quancrrnan. The Design nnd
I~nplemenlalion q f rlie 4.3-BSD UNIX Operating Syrrern. Addison-Wesley. Reading. Mass., 1989.

25. C. L. Liu and James W. Layland. 'Scheduling algorithms for multiprograniming in a hrird-realtime environ-
ment', Jourrzol " f 11ie ACM, 20(1). 47-61 (1973).

26. Hartmut Wittig. Lars C . Wolf and Carsten Vogt, 'CPU utilirarion of multimcdia processes: thc HciPOET
measurement tool'. Proceedirigs " f rlre Secoiid international Wo,lsltop oii Advunced Teieservicer nnd High-
Speed Commr,nicoriorz Arcli i l~~c~ures. Heidelkrg. Germany, September 1994.

27. Daniel 1. Katcher. Hiroshi Arakawa and lay K. Strosnider, 'Engineering and analysis of fixed priority
schedulen', IEEE Trans. on Sofwore Engineering. 19(9). 92CLY3.1 (1993).

28. John Lehoczky. Lui Sha and Ye Ding. 'The rate monotonic scheduling algorithm: exact characteriration
and average case hehavior', Pmreedings q f rlre Tenrh IEEE Real-Tinte Svsrenis Svniposiiim. Santa Monica,
CA, USA, 1989. pp. lh&171.

29. Lui Sha, Ragunathan Rajkumar. lohn Lehoczky and Krithi Ramanirithrini. 'Mode change prorocols for
priority-drivcn preemptive scheduling'. Reol Time Sysiems, l(3). 243-263 (1989).

398 L. C. WOLF, W. BURKE AND C. VOGT

30. Ken Tindell, Alan Bums and Rob Davis, 'Fixed priority scheduling of hard real-time multi~media disk
traffic'. Proceedings o j rhe IEEE Workrhop on Real~Time Issurs in Multi-Media, November 1993.

31. Drivid P. Andersen, Ralf G. Hemwich. Carl Schacfer. 'SRP: a resource reservation protocol for guarantt,ed-
performance communication in the Internct'. T R ~ m 0 6 . International Computer Science Inirirute. Berke-
ley, CA, USA, Febniray 1990.

32. Gregoiy K. Wallace, 'The IPEG still picture compression standard', CACM, 34(4), 3 0 4 4 (1991).
31. ISO IEC ITCIISCZ~IWGI I, 'Generic coding of moving pirtures and associated audio (MPEG-2)'. Inrur-

narional Srandurd ISO/IEC IS 13818, November 1994.
34. lane W. S . Liu. Kwei-lay Lin, Wei-Kuan Shih, Albert Chuang-shi Yu. len-Yao Chung and Wei Zliao,

'Algorith~ns for scheduling imprecise computations', IEEE Compurrr. 245). 58-68 (1991).
35. Ming Liou, 'Overview of the p X M kbitls video coding standard', CACM, 34(4), 59-63 (1991).
36. Jeffrey C. Mogul and Anira Borg, 'The effect OS context switches on cache performance', Proceeding,~ o j

ihr Fourrh Iniernnrk~nal Conjerence on Archirecrural Supporr jor Progrommin~ Languagrs and Oprra,ting
Systrmr, Santa Clara. Califomia, April 1991. Also in Oprraring Sysiems Review, 25 (Special Issue), 75-
84 11991).

37. Ralf Steinmetz and Clemens Engler, 'Human perception of mediri-synchroniratiun', Technical Reporf
43.9310, IBM European Networking Center. Heidelberg, Germany, 1993.

38. James G. Hanko, Eugene M. Kuerner. 1. Duane Northcutt and Gerard A. Wall, 'Workstation support for
time-critical applications', Proceedingr o j tlzr 2nd lnrernarional Work.sliop on Nehvork and Operating Sys-
rem Supporr jor Digiial Audio und Video. Heidelberg, Germany, 18-19 Novernber 1991

39. Kevin leffay, Daniel E. Poirier. F. Donelson Smith and Donald L. Stone, 'Kerne1 suppon for live digital
audio and video', Proceedin~s o j rhe 2nd lnrernarionul Workshop on Nrmork and Operafing Sysrrm !;"P-
porr jor Digllal Audio ond Video. Hcidelbcrg, Gemany, 18-19 November 1991.

40. Kevin leffay, Donald. L. Stone and Dnniel E. Poiiier, 'YARTOS: kerne1 support for efficient. predicr;ible
real-riine systems', Proc. IFAC, Worksl~op on Real-Time Progra,n,ning, Pergarnon Press, Atlanta, May
1991

41. Clifford W. Mercer. Stefan Savage and Hideyuki Tokuda, 'Pmcessor capacity reserves: opcrnting System
suppon for multimedia applications', Proc. Firsr Inlernriiionul Conjerencr on Multimediu Compuring ond
Sysretns, Boston. MA, USA, 17-19 May 1994.

42. Hideyuki Tokuda, Tatsuo Nakajima and Prithvi Rao, 'Real-time Mach: toward a predictable real-time rys-
tem', Proc. USENIX Mach Workshop, Burlington, VT, U S A . 4-5 October 1990, pp. 73-82.

