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Abstract:

Multimedia applications demand for the processing of andio and video data such that humans
perceive these media in a natural —emror free and non-artificial- way. This continuous-media
data has its origin at sources like microphones, cameras and files. From these sources the data
is transferred to destinations like Ioudspeakers, video windows and files Jocated at the same
computer or at a remote station. On the way from source to sink the digital data is processed by
at least some type of move, copy or transmit operation. Therefore in this data manipulation
process there are always many resources which are under control of the operating system. This

resource management and the respective scheduling must be performed according to the real-
tme demands of multimedia applications.

This paper outlines the main features of the operating systems capable of handling multimedia
data, namely. resource management, scheduling and file system issues. For all these topics the
most relevant approaches and alternatives are surveyed. This survey concludes with a presen-
tation of the most well known architectures of operating system extcnsions for multimedia.



1. Introduction

The operating system is the shield of the computer hardware to all other software components.
It provides a comfortable environment for the execution of programs, and it ensures an cffec-
tive utilizadon of the computer hardware. The operation system offcrs various services related

to the essential resources of a computer: CPU, main memory, storage and all input and output
devices.

Multimedia applications demand for the processing of audio and video data such that hurnans
perceive these media in a natural —emor free and nonp-artificial- way. This continuous-media
data has its origin at sources like microphones, cameras and files. From these sources the data
is transferred to destinations like loudspeakers, video windows and files located at the same
computer or at a remote station. On the way from source to sink the digital data is processed by
at least some type of move, copy or wansmit operation. Therefore in this data manipulation
_process there are always many resources which are under control of the operating system.

The integration of discrete and continuous mmltimedia data demands for additional services

that have to be provided by many operating system components. The major aspect in this con-
text is real-time processing of continnous-media data.

The process management must take into account the timing requircmnents imposed by tﬁc
handling of mulumedia data. Appropriate scheduling methods should be applied. In contrast to

the traditional real-time operating systems, multimedia operating systems also have 10 consider
tasks without hard timing restrictions under the aspect of fairness.

To obey timing requiremeats, single components are conceived as resources that are reserved
prior to execution. This concept of resource reservation has to cover all resources on a data
path, i.e., all resources that decal with continuous media. It also may affect parts of the applica-
tion that process continuous-media data. In distributed systems, for example, the resource
management also comprises network capacity [HVWW94].

The communication and synchronization between single processes must reflect the restric-
tions through rezl-time requirements and the timing relations among different media.

The main memory is available as a shared resource to single processes. In multimedia systems,
the memory management has to provide access to data with a guaranteed timing delay and
cfficient data manipulation functions. For instance, physical data copy operations bave to be
avoided duc to their negative impact on performance; buffer management operations (such as
known from communication systemn) should be used.

The database management is an important component in multimedia systems. But, database
management abstracts from the details of storing data on secondary media storage. Therefore
the database management should rely on file management scrvices provided by the multime-
dia operating system in order to access single files and file systems. For example, the incorpo-
raton of a CD-ROM XA file system as an integral part of a multimedia file system allows
transparent and guaranteed continuous retrieval of audio and video data to any application
using the file system; the database system is one of those applications. However often database
systems implement their own access to stored data.

Since the operating system shields devices from applications programms it has to provide ser-
vices for the device management. In multimedia systems the important issue is the integration
of audio and video devices in a similar way as any other input/output device. The addressing of
a camera can be done 1n a similar way as the addressing of a keyboard in the same system,
although most of the present systems do not apply this technique.



Product information dealing with operating system extensions towards the integration of multi-
media [IBM92, Micr91, DrMu92, IBM92a, IBM92b] typically provide a detailed description
of application interfaces. In this paper we concentrate on basic concepts and internal tasks of a
multimedia operating systerm.

As the essential aspect of any multimedia operating system is the notion of "real-time", the fol-
lowing paragraph starts with a detailed study of this idea in its relationship to multimedia. Sub-
sequently the concept of resource management is discussed. The process management contains
a brief presentation of traditional real-time scheduling algorithms. Further, their suitability and
adaptability towards continuous-media processing is examined. The section of file systems
outlines disk access algorithms, data placement and structuring. The subsequent paragraphs
illustrate interprocess communication and synchronization, memory management, and device
management. We conclude this presentation of operating system issues with a discussion on
typical system architectures which comprise real-time and non real-time environments.

2. Real-Time

The notion of "real-time" has been developed independently from the discussion of continu-
ous-media processing. Therefore, the next paragraph starts with a general definition of real-
time. Later-on it shows the relevance of real-time for multimedia data and processes.

2.1 The Notion of 'Real-Time'

The German national institute for standardization DIN, similar to the American ANSI, defines
a real-time process in a computer system. "A real-time process is a process which delivers the
results of the processing in a given time-span”. Programs for the processing of the data must be
available during the entire run-time of the system. The data may require processing at an a pri-
ori known point in time, or it may be demanded without any previous knowledge [DIN8S).

The system must enforce externally defined time constrains. Internal dependencies and their
———related time limits are implicitly considered. External events occur —depending on the applica-
tion - deterministically (at a predetermined instant) or stochastically (randomly, with an
unknown timing). The real-time system has the permanent task to receive information, occur-

ring spontancously or in periodic time intervals, from the environment and/or to deliver it to
the environment in time.

The main characteristic of real-time systems is the correctness of the computation. This cor-
rectness does not only apply to an errorless computation, but it also depends on the time the
resuit is presented [ShRa89]. Hence, a real-time system can not only fail because of massive
hardware or software failures, but also because the system is unable to execute its critical
workload in time [KrLe91]. Deterministic behavior of the system refers to the adherence of, in
advanced defined, time spans for the manipulation of data, i.e. a guaranteed response time
exists. Speed and efficiency are not -as often assumed by mistake- the main characteristics of a
real-time system. In a petro-chemical plant for example, the result is not only unacceptable
when the engine of a vent responds too fast, but also when it responds with a large delay.
Another example is the playback of a video sequence in a multimedia system. The result can
only be accepted when the video is presented neither too fast nor too slow. Timing and logical
dependencies among different related tasks, processed at the same time, have also to be consid-
ered, These dependencies refer to the. internal and external restrictions. In context of multime-
dia data streams, this refers to the processing of synchronized audio and video data where the
relauon between the two media has to be considered.

Deadlines



A deadiine represents the latest time for the presentation of a processing result. It marks the

border between normal (correct) and anomalous (failing) behavior. In real-ime system we
have both, hard and soft deadlines.

The term soft deadline is often used for deadline which cannot be exactly determined and
where failing does not produce an unacceptable result. We understand a soft deadline as a
deadline which in some cases is missed and the miss may be tolerated as long as (1) not too
many deadlines are missed and/or (2) they are not missed by much. Such soft deadlines are
only reference points with a certain acceptable tolerance. For example start and arrival times of
planes or trains where the deadlines can vary about 10 minutes can be considered as soft dead-
lines.

Whereas soft deadlines may be violated, hard deadlines should never. A hard deadline viola-
tion is a system failure. Hard deadlines are determined by the physical characteristics of real-
time processes. Failing such a deadline causes costs which can be measured in terms of money
(e.g., inefficient use of raw materials in a process control system), or human and environmental
tertns (e.g. accidents due to untimely control in a nuclear power plant or fly-by-wire avionics
systems) [Jeff90].

Characteristics of Real-Time Systems

The necessity for deterministic and predictable behavior of a real-time system leads to required
processing guarantees for ime-critical tasks. Such guarantees cannot be assured for events that
occur at random intervals with unknown arrival times, processing requirements or deadlines.
Further, all given guarantees are only valid under the premise that no processing machine col-
lapses during the run-time of real-time processes. A real-time system is distinguished by the
following features (c.f. [ShRa89]):

» Predictably fast response to time-critical events and accurate timing information.
For example, in the control system of a nuclear power plant the response to a malfunc-
_tiop must occur within a well-defined period in order-to avoid a potential disaster.

+ A high degree of schedulability. Schedulability refers to the degree of resource utiliza-
tion at, or below, the deadline of each time~critical task can be taken into account.

« Stability under transient overload. Under systém overload the processing of critical
tasks must be ensured. These critical tasks are vital to the basic functionality provided by
the system.

Management of manufacturing processes and the control of military systems are the main
application areas for real-time systems. Such process control systems are responsible for real-
time monitoring and control. Real-time systems are also used as command and control systems
in fly-by-wire aircraft, autormobile anti-lock braking systems and the control of nuclear power
plants [KrLe91]. New areas for real-time systems are computer conferencing and multimedia
in general, the topic of our work.

2.2 Real-Time and Multimedia

Audio and video data streams consist of single, periodically changing values of continuous-
media data, ¢.g., audio samples or video frames. Each logical data unit (LDU) has to be pre-
sented at a well determined deadline. Jitter is only allowed before the final presentation to the
user. A piece of music, for example, has to be played back with constant speed.

To fulfill these timing requirements of continuous media, the operating system must use real-
time scheduling techniques. These techniques have to be applied to all system resources



involved in the continuous-media data processing. The entire end-to-end data path is involved.
The CPU is just one of these resources, all components have to be considered including main
memory, storage, I/O devices and networks.

Real-Time Regquirements in Multimedia Systems

Traditional real-time scheduling techniques, used for cornmand and control systems in applica-
tion areas such as factory automation or aircraft piloting, have a high demand for security and
fanlt-tolerance. The requirements derived from these demands somehow counteract to real-
time scheduling efforts applied to continuous media. Multimedia systems which are not used

in traditional real-time scenarios have different (in fact, more favorable) real-time require-
ments:

+ The fault-tolerance requirements of multimedia systems are usually less strict than of
those real-time systems that have a direct physical impact. A shorttime failure of a con-
tinuous-media system will not directly lead to the destruction of technical equipment or
constitute a threat to human life; Please note, that this is a statement which applics in

general but not always. The support of remote surgery, e.g., by video and audio has strin-
gent delay and correctness requirements.

» For many applications missing a deadline in a multimedia system is - although it should
be avoided - not a severe failure. It may even be unnoticed: If an uncompressed video
frame (or parts of it) is not available on time it can be simply omitted. The human viewer
will hardly notice it, assuming this does not happen for a contiguous sequence of frames.
For audio, requirements are more stringent because the human ear is more sensitive to
audio gaps than the human eye is to video jitter.

+ A sequence of digital continuous-media data results from periodically sampling a sound
or image signal. Hence, in processing the data units of such a data sequence, all time-crit-
ical operations are periodic. Schedulability considerations for periodic tasks are much
easier than for sporadic ones [Mok84]. '

-+ .The bandwidth demand of continuous media is not always that stringent, it must not be a
priori fixed but it may eveatually be lowered. As some compression algorithms are capa-
ble of using different compression ratios - leading to different qualities - the required
bandwidth can be necgotiated. If not enough capacity for full quality is available the
application may also accept a reduced quality (instead of no service at all). The quality
may also be adjusted dynamically to the available bandwidth, e.g., by changing encoding
parameters. This is known as scalable video.

In a traditional real-time system, timing requirements result from the physical characteristics
of the technical process to be controlled, i.e., they are provided externally. Some applications
must meet external requirements, too. A distributed music rehearsal is a futuristic example:
Music played by one musician on an instrument connected to his workstation has to be made
available to all other members of the orchestra within a few milliseconds, otherwise the under-
lying knowledge of a global unique time is disturbed. If human users are involved just in the
input or only the output of continuous media, delay bounds are more flexible. Consider the
playback of a video from a remote disk. The actual delay of a single video frame to be trans-
ferred from the disk to the monitor is unimportant. Frames must only arrive in a regular fash-

ion. The user will notice any difference in delay only as start delay (i.e., for the first video
frame to be displayed).



3. Resource Management

Multimedia systems with integrated audio and video processing will be at the limit of their
capacity, even with data compression and utilization of new technologies. Current computers
do not allow "processing” of these data according to their deadlines without any reservation
and real-time process management. "Processing” in this context refers to any kind of manipu-
lation and communication of data.

. reguirements

file access
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Figure 1: Window of insufficient resources

This stage of development is known in [ATWGS90] as "the window of insufficient resources”
{see Figure 1). With CD-DA (Compact Disc Digital Audio) quality highest audio requirements
are satisfied. In video technology the required data transfer rate will ascend with the develop-
ment of digital HDTV and larger TV-screens. Therefore, no redundancy of resource capacity
can be expected in the near future, In a multimedia system the given timing guarantees for the
processing of continuous media must be adhered at every system component, ie., at every
bardware and software component on the data path. The actual requirements depend upon the
type of media and the nature of the supported applications [StMe92]. Avides image should not
be presented late because the communication system has been busy with a transaction from a
database management system. In any realistic scenario we encounter several multimedia appli-
cations which concurrently make use of shared resources. Hence, even high band width net-
works and huge processing capabilities require the use of real time mechanisms in order to
provide guaranteed data delivery. The concept of integration does, on the other hand, not allow
to solve this problem by rendering the system for traditional applications.

Thus, in an integrated distributed multimedia system several applications compete for system
resources. This shortage of resources requires their careful allocation. The systemn management
must employ adequate scheduling algorithms to serve the requirements of the applications.
Thereby the resource is first allocated and then managed.

The "resource management” in distributed multimedia systermns covers several computers
including the involved communication networks. It allocates all resources involved in the data
transfer process between sources and sinks. For instance, a CD-ROM XA device has to be allo-
cated exclusively, each CPU on the data path has to provide 20% of its capacity, the network
has to allocate a certain amount of 1is bandwidth and the graphic processor has to be reserved
up to 50% for such a process. The required throughput and a certain delay is guaranteed. At the
connection establishment phase the resource management ensures that the new “connection”
docs not violate performance guarantees already provided to existing connections.

Applied to operating systems, this model covers the CPU (ncluding process management),
memory management, the file system and device management. Therefore we chose to detail

0



this issues for all resources in a generic notion of resources in the following paragraphs. The
. resource reservation is identical for all resources whereas the management is different for each.

3.1 Resources

A resource is a system entity required by tasks for manipulating data. Each resource has a set
of distinguishing characteristics classified using the following scheme:

» A resource can be active or passive, An active resource is the CPU or a network adapter
for protocol processing, it provides a service. A passive resource is the main memory,
bandwidth of communication 77?77 or a file system (Whenever we do not take care of the

processing of the adapter); it denotes some system capability required by active
resources.

= A resource can be cither used exclusively by one process at the time or shared between

various processes. Active resources are often exclusive, passive resources can usually be
shared among processes.

» A resource that exists only once in the system is known as a single , otherwise it is a
multiple resource. In a transputer based multiprocessor system the individual CPU is a
multiple resource.

Each resource has a capacity which results from the ability of a certain task to perform using
the resource in a given time-span. In this context capacity refers to CPU capacity, frequency
range or, for example, the amount of storage. For real-time scheduling only the temporal divi-
sion of resource capacity among real-time processes is of interest.

Process management belongs to the category of active, shared, and most often to single

resources. A file system on an optical disc with CD-ROM XA format is a passive, shared, sin-
gle resource.

The requirements of multimedia applications and data streams have to be served by the single

components of a multimedia system. The resource management maps these requirements onto

the respective capacity. The transmission and processing requirements of local and distributed
multimedia applications can be specified according to the following characteristics:

1. The throughput is determined by the needed data rate a connection needs in order to sat-
isfy the application requirements. It also depends on the size of the data units.

1. We distinguish between local and global (end-to-end) delay:

a, The delay "at the resource” is the maximum time span for the completion of a certain
task at this resource.

b. The end-to-end delay is the total delay for a data unit to be transmitted from the
source to its destination. For example, the source of a video telephone is the camera
the destination is the video window on the screen of the partner.

3. The jitter (or delay jitter) determines the maximum allowed variance in the arrival of
data at the destination.

4. The reliability defines error detection and correction mechanisms used for the transmis-
sion and processing of multimedia tasks. Errors can be ignored, indicated and/for cor-
rected. It is important to notice that error correction through re-transmission is rarely
appropriate for time-critical data because the re-transmitted data will usually arrive late.




Forward error correction mechanism are more useful. In terms of reliability, we also
mean the CPU errors due to wawanted delays in processing a task which exceed the
demanded deadlines.

In accordance with communication systems these requirements are also known as “quality of
service parameters” (QoS). '

3.3 Components and Phases

One possible realization of resource allocation and management is based on the interaction
between clients and the respective resource managers. The client selects the resource and
requests a resource allocation by specifying its requirements through a QoS specification. This
is equivalent to a warkload request. First the resource manager checks its own resource utili-
zation, and decides if the reservation request can be served or not. All existing reservations are
stored, this way their share in terms of the respective resource capacity is guaranteed. More-
over, this component negotiates the reservation request with other resource managers if neces-
sary.

The following example of a distributed multimedia systern illustrates this generic scheme.
During the connection establishment phasc the QoS parameters are usually negotiated between
the requester (client application) and the addressed resource manager. The negotiation starts in
the simplest case with specification of the QoS parameters by the application. The resource
manager checks whether these requests can be guaranteed or not. A more elaborate method is
to optimize single parameters. In this case two parameters are determined by the application
(e.g., throughput and reliability), the resource manager then calculates the best achievable
value for the third parameter (e.g., delay). To negotiate the parameters for end-to-end connec-
tions over one or more computer networks, resource reservation protocols like ST-II are
employed [Topa90]. Here, the resource managers of the single components of the distributed
system allocate the necessary resources.

COmpression

communication
transport &
network layer

data link
&
network adapter network(s)

Figure 2: Components grouped for the purpose of video data transmission



In the following case shown in Figure 2 two computers are connected over a LAN. The trans-
mission of video data between a camera connected to a computer Server and the screen of the
computer User involves for all depicted components a resource manager.

This example illustrates that in addition to the individual resource managers there must exist a
protocol for coordination between these services is necessary , such as ST-IL

Phases of the Resource Reservation and Management Process

A resource manager provides componeats for the different phases of the allocation and man-
agement process:

1. Schedulability Test: The resource manager checks with the given QoS parameters (e.g-

throughput and reliability) if there is enough remaining resource capacity available to
handle this additional request.

2. Quality of Service Calculation: After the schedulability test the resource manager calcu-

lates the best possible performance (e.g. delay) the resource can guarantee for the new
request.

3. Resource Reservation: The resource manager allocates the required capacity in order to
meet the QoS guarantees for each request.

4. Resource Scheduling: Incoming messages from connections are scheduled according to
the given QoS guarantees. For process management , for instance, the allocation of the
resource is done by the scheduler at the moment the data arrives for processing.

With respect to the last phase for each resource a scheduling algorithm is defined. The schedu-

lability test, QoS calculation and resource reservation depend upon this algorithm used by the
scheduler.

3.4 Allocation Scheme e s _
Reservation of resources can be made either in a pessimistic or in an optimistic way:

» The pessimistic approach avoids resource conflicts by making reservations for the worst
case, i.e. resource bandwidth for the longest processing time and the highest rate which
might ever be needed by a task is reserved. Resource conflicts are therefore avoided.
This leads potentially to an underutilization of resources. In a multimedia system the
remaining processor time (i.e. the time reserved for traffic but not used) can be used by
discrete media tasks. This method results in a guaranteed quality of service.

» With the gptimistic approach resources are reserved according to an average workload
only. This means that the CPU is only reserved for the average processing time. This
approach may overbook resources with the possibility of unpredictable packet delays.
QoS parameters are met as far as possible. Resources are highly utilized, though an over-
load situation may result in failure. To detect an overload situation tohandle it accord-
ingly an monitor can be implemented. The monitor may, for instance, preempt processes
according to their importance.

The optimistic approach is considered to be an extension of the pessimistic approach. It
requires that additional mechanism to detect and solve resource conflicts are implemented.



3.5 Continuous Media Resource Model

This section specifies a model frequently adopted to define QoS paramcters and hence the
characteristics of the data stream. It is based on the model of Linear Bounded Arrival Pro-
cesses (LBAP) as described in [Ande93 1. In this model a distributed system is decomposed
into a chain of resources traversed by the messages on their end-to-end path. Examples of such
resources are single schedulable devices (such as CPU) or combined entities (such as net-
works).

The data stream consists of LDUs. In this context, we call them messages. In a first step the
data stream itself is characterized as strictly periodic, irregular with a definite maximum mes-
sage size. Various data streams are independent of each other.

A closer inspection shows a possible variance of the message rate, the maximum rate is well-
defined. This variance of the data rate results in an accumulation of messages (burs?) where the
maximal range is defined by the maximum allowed number of messages.

In the LBAP model a burst of messages consists of messages amrived akead of schedule.
LBAP is a message arrival process at a resource defined by three parameters.

» M =Maximum message size (byte/message)
» R = Maximum message rate {(message/second)
» B =Maximum Burstiness (message)

Example
The LBAP mode! is discussed in terms of a specific example:

Two workstations are interconnected by a LAN. A CD-player is attached to one workstation, Sin-
gle channel audio data is transferred from the CD-player of this workstation over the network to
the other cormputer. At this remote station, the audio data is defiverad to a speaker. The audio
signal is sampled with the trequency of 44.1 kHz. Each sample is coded with 16 bit. This results
in a data rate of . . ’

16 bit

Rbyte = 44100 Hz"ﬁ'ﬁ"'—" Tovie

= 88200 bytes/s

The samples on a CD are assembled to frames. These frames are the audio messages to be
transmitted. 75 of these audio messages are transmitted per second (R) according to the CD-for-
mat standard. Therefore we encounter a maximum message size of.

_ 88200 bytes/s

Up to 12000 bytes are assembled into one packet and transmitted over the LAN. In a packet of
12000 byte transmitted over the LAN we will never encourtter more messages than

12000 bytes
1176 bytes/message

210 messages = B

it cbviously follows:

+ M= 1176 bytes/message
* R = 75 messages’s

+ B= 10 messages

Burst
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In the calculation below it is assumed that, because of lower adjacent data rate, a burst never
exceeds a maximum data rate. Hence, bursts do not succeed one another. During a time inter-
val of length t, the maximal number of messages arriving at a resource must not exceed

M = B+ Rxt(message)
eg.assumet=1s
M = (10 messages + 75 messages/s x 1 s =85 messages)

The introduction of Burstiness B allows for short time violations of the rate constraint. This
way programs and devices that generate burst of messages can be modelled. Bursts are, e.g.,
generated when data is transferred from disks in a bulk transfer mode or in our example when
messages are assernbled to larger packets.

Maximum Average Data Rate

The maximum average data rate of the LBAP is:
R = M xR (bytes/s)

eg.
R = (1176 bytes/message x 75 messages/s = 88200 bytes/s)
Maximum Buffer Size

It is guaranteed that messages are processed according to their rate. Messages which amrive
"ahead of schedule” have to be queuved. For delay < period the buffer size is:

S =Mx(B+1) (byte)
e.g.
S = 1176 byte/message x 11 message = 12936 byte
Logical Backlog

The function b{m) represents the logical backlog of meséages. This is the number of messages
which already have arrived "ahead of schedule” at the arrival of message m. Let g; be the actual
amival time of message my;0 <i < n: then b(i) is defined by:

b(mo) =0 message
b(m,) = max (0 messages,b(m, ,)-(a;-3;_;)R+1message)

eg.:
a,_;=1.00s;a=1013s;b(m,_,) =4 messages

b(mi) = max (0 message .4 message - (1.013 $-1.00 5) x 75 messages/s + 1 message)

= 4 messages

Logical Arrival Time

H



The logical arrival time defines the earliest time a message rn; can arrive at a resource when all

messages arrive according to their rate. The logical arrival time of a message can then be
defined as:

b(m,)

I(mi) = a(ni) +

eg.

- 4 messages =
Itm) = 1013 s+ ———=_—__=1.
(mp s 75 messages/s 106s

Equivalently it can be computed as:

eg.
I(mia‘l) =1.053 s
= = 1 message =
) = 013 s, 1. e} =1,
I(m‘) max(1.013s,1.053s+ 55 messagesfs) 1.06s
Guaranteed Logical Delay

The guaranteed logical delay of a message m-denotes the maximum time between the logical
arrival time of m and its latest valid completion time. It results from the processing time of the
messages and the competition among different sessions for resources, Le. the waiting time of
the message. If 2 message arrives "ahead of schedule” the actual delay is the sum of the logical
delay and the time by which it arrives too early, it is then larger than the guaranteed logical
delay. & can also be smaller than the logical delay when it is completed "ahead of schedule”.
The deadline d(m) is derived from the delay for the processing of a message m at a resource.
The deadline is the sumn of the logical arrival time and its logical delay.

Workahead Messages

If a message arrives "ahead of schedule™ and the resource is in an idle state, the message can be
processed immediately. The message is then called a workahead message, the process is a
workahead process. A maximum workahead time A can be specified (e.g., from the applica-
tion) for each process. This results in a maximum workahead limit W

W=AxR

eg.

A=004s
0.04 s x 75 messages/s = 3 messages

12



If a message is processed "ahead of schedule" the logical backlog is greater than the actual
backlog. A message is critical if its logical arrival time has passed. Throughout the rest of the
chapter the LBAP-model is assumed to apply to the arrival processes at each resource. The

Tesource must ensure that the arrival processes at the output interface obeys the LBAP-param-
eters. ,

4. Process Management

The process management deals with the resource miaqin processor. The capacity of this
resource is specified as processor capacity. The process manager maps single processes onto

resources according to a specified scheduling policy such that all processes meet their require-
ments.

In most systems a process under control of the process manager can adopt one of the following
states:

+ In the initial state no process is assigued to the program. The process is in the idle state.

» If a process is waiting for an event, i.e. the process lacks one of the necessary resources
for processing, it is in the blocked state.

« If all necessary resources are assigned to the process, it is ready to run. The process only
needs the processor for the execution of the program.

» A process is running as long as the system processor is assigned to it.

The process manager is the scheduler. This component transfers process into the ready-to-run
state by assigumeat of a position in the respective queue of the dispatcher, it is the essential
part of the operating system kernel, The dispatcher manages the transition from ready fo run
to run. In most operating systerns the next process to run is chosen according to a priority pol-
icy. Between processes with the same priority the one with the longest ready fime is chosen.

Today and in the near future existing operating systems must be considered to be the base of
- -——ﬂconunuousmcdm processing on workstations and personal computers. I the next years there
will be certainly no new developed multimedia operating systems which will be accepted in
the market, therefore already existing mulfitasking systems must cope with muitimedia data
handling. The next paragraph provides a brief description-of real-time support typically avail-
able in such systems.

4.1 Real-Time Process Management in Conventiona] Operating Systems: An Example

UNIX with the various variants, Windows-NT, Apple's System 7 and OS/2 are, respectively
will be, the most widely installed operating systems with multitasking capabilities on Personal
Computers (including the Power PC) and workstations. Although some of them are enhanced
with special priority classes for real-time processes, this is not sufficient for multimedia appli-
cations. In [NHNW93], for example, the SVR4 UNIX scheduler which provides a real-time
static priority scheduler in addition to a standard UNIX timesharing scheduler is analyzed. For
this investigation three applications have been chosen to run concurrently; "typing" as an inter-
active application, "video" as continuous-media application and a batch program. The result
was that only through trial and error a particular combination of prioritics and scheduling class
assignments might be found that works for a specific application set, i.e. additional features
have to be provided for the scheduling of multimedia data processing. In order to be more spe-
cific let us have a deeper look into real-time capabilities of one of thesc systems, namely OS/2.
On basis of this system the available real-time support is demonstrated.
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Threads

085/2 was designed as a time-sharing operating system without taking serious real-time appli-
cations into account. An OS/2 thread can be considered as a light weight process: It is the dis-
patchable unit of exccution in the operating system A thread belongs to exactly one address
space (called process in the OS/2 terminology). All threads sharc the resources allocated by the
respective address space. Each thread has its own execution stack, register values and dispatch

state {either executing or ready to run). Each thread belongs to one of the following priority
classes.

« The time-critical class is reserved for threads that require immediate attention.

« The fixed-high class is intended for applications that require good responsivencss with-
out being time critical.

» The regular class is used for the executing of normal tasks.

= The idle-fime class contains threads with the lowest prioritics. Any thread in this class is
only dispatched if no thread of any other class is ready to execute.

Priorities
Within each class 32 different priorities (0, ... , 31) exist. Through time-slicing threads of
equal priority have equal chances to execute. A context switch occurs whenever a thread tries
to access an already otherwise allocated resource. The thread with the highest priority is dis-
patched and the time-slice is started again. At the expiration of the time slice, OS/2 can pre-
empt the dispatched thread if other threads of equal or higher priority are ready to execute. The
tithe slice can be varied between 32 msec and 65536 msec. The goal at the determination of the
time slice duration is to keep the number of context switches low and to get a fair and efficient
schedule for the whole run-time of the system. Threads of the regular class may be subject of a
dynamic rise of priority as a function of the waiting time.

_Threads are precruptive, ie. if a hxghcr-pnomythrcad becomes ready to execute, the scheduler
preempts the lower-priority thread and assigns the CPU to the higher-priority thread. The state
of the preempted thread is recorded so that execution can be resumed later.

Physical Device Driver as Process Manager

In OS/2 applications with real-time requirements can run as physical device drvers (PDD) at
ring 0 (kernel mode). These PDDs can be made non-preemptable. An interrupt that occurs on a
device (e.g., packets arriving at the network adapter) can be serviced from the PDD immedi-
ately. As soon as an interrupt happens on a device, the PDD gets control and does ali the work
to handle the interrupt. This may also include tasks which could be done by application pro-

cesses running in ring 3 (user mode). The task running at ring 0 should (but must not) leave the
kernel mode after 4 msec.

PDD programming is complicated mainly due to difficult testing and debugging. PDD is
bound to its device; it only handles requests from its device regardless to any other events hap-
pening in the system. Different streams that request real-time scheduling can only be served by
their PDDs. They run in competition with each other without the possibility to coordinate or
manage them by any higher instance. This is insufficient for a multimedia system where mes-
sages can amive at different adapter cards. Internal time-critical system activities can not be
controlled and managed through PDD's. Therefore they can not be considered and accounted
for during scheduling decisions. The execution of real-time processes with PDD's is only a rea-
sonable solution for a system where streams artive at only one device and no other activity in
the system has to be considered.
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Operating system extensions for continuous-media pracessing can be implemented as PDD's:
In this approach a real-time scheduler and the process management run as PDD being activated
by a high resolution timer. In principle, this is the implementation scheme of the OS/2 Mult-
media Presentation Manager which represents the multimedia extension to OS/2.

Enhanced System Scheduler as Process Manager

Time-critical tasks can also be processed together with normal applications running in ring 3,
the user level. The critical tasks can be implemented by threads runnping in the priority class
time-critical with one of the 32 prioritics within this class. Each real-time task is assigned to
one thread. A thread is interrupted if another thread with higher priority requires processing.
Non time-critical applications run as threads in the regular class. They are dispatched by the
operating system scheduler according to their priority.

The main advantage of this approach is the control and coordination of all time-critical threads
through a higher instance, the system scheduler. This instance, running with a higher priority
than all other threads, controls and coordinates threads according to the adapted scheduling
algorithm and the respective processing requirements. It can observe the run-time behavior of
single threads. Another entity, the resource manager, determines feasible schedules, takes care
of quality of service calculating and resource reservation. The competition for the CPU is reg-
ulated. The employment of an internal scheduling strategy and resource management allows
the provision of processing guarantees. Yet it requires that the native scheduler is enhanced.

Meta-Scheduler as Process Manager

The normal priority driven system scheduler is used to schedule all tasks. A meta-scheduler is
employed to assign priorities to real-time tasks. Le., this meta-scheduler considers only tasks
with real-time requirements. Non time-critical tasks are processed when no time-critical task is
ready for execution. In an integrated system the process management of continuous data pro-
cesses will not be realized as a meta-scheduler it rather will be part of the system process man-
ager itself. 'I'hls meta- scheduler appmach is also apphed in many UNIX systmls.

4., 2 Real-ume Proeessmg Requirements

Continuous-media data processing has to occur in exactly predetermined - usually periodic -
intervals. Operations on this data recurs over and over and have to be completed at certain
deadlines. The real-time process manager determines a schedule for the resource CPU that
allows to make reservations and to give processing guaraatees. The problem is to find a feasi-
ble schedule which schedules all time-critical continuous-media tasks in a way that each of
them can meet its deadlines. This must be guaranteed for all tasks in every period for the whole

run time of the system. In a multimedia system, continuous and discrete media data are pro-
cessed concurrently,

For scheduling of multimedia tasks two conflicting goals have to be considered:

+ An uncritical process should not suffer from starvation because time-critical processes
are executed. Multimedia applications rely s much on text and graphics as on audio and
video. Therefore not all resources should be occupied by the time-critical processes and
their management processes.

On the other hand a time-critical process must never be subject to priority inversion. The
scheduler has to ensure that any priority inversion (also between time-critical processes
with different priorities) is avoided or reduced as far as possible. -

15



Apart of the overhead caused by the schedulability test and the connection establishment, the
costs for the scheduling of every message has to be minimized. They arc more critical because
they occur periodically with every message during the processing of real-time tasks. The over-
head generated by the scheduling and the operating sysiem is part of the processing time and
therefore has to be added to the processing time of the real-time tasks. Thus, it is favorable to
keep them low. It is particularly difficult to observe the timing behavior of the operating system
and its influence on the scheduling and the processing of time-critical data. It can lead to time
garbling of application programs. Therefore, operating systems in real-time systems can not be
viewed detached from the application programs and vice-a-versa.

4.3 Traditional Real-Time Scheduling

The problem of real-ime processing is widely known in computer science [HaSh89, Oper89,
ShGo%0, TiKo91]. Some real-time scheduling methods are employed in operations research.
They differ from computer science real-time scheduling because they operate in a static eovi-
ronment where no adaptation to changes of the workload is necessery [WoCr87].

The goal of traditional scheduling on time sharing computers is optimal throughput, optimal
resource utilization, and fair queueing. In contrast, the main goal of real-time tasks is to pro-
vide a schedule that allows all, respectively as many time-critical processes as possible to be
processed in time, according to their deadline. The scheduling algorithm has to map tasks onto
resources such that all tasks meet their ime requirements, Therefore, it must be possible to
show, or to proof, that a scheduling algorithm applied to real-time systerns fulfills the timing
requirements of the task.

There are several attempts to solve real-time scheduling problems. Many of them are just vari-
ations of basic algorithms. In order to find the best solutions for multimedia systems, first two
basic algorithms are analyzed "Earliest Deadline First Algorithm" and "Rate Monotonic
Scheduling”, and their advantages and disadvantages are claborated. In the next section a sys-
tem model is introduced, the relevant expressions are explained in their context.

4.4 Real-Time Scheduling: System Model

All scheduling algorithms to be introduced are based on the following system model for the
scheduling of real-time tasks. Their essential components are the resources (as discussed previ-
ously), the tasks and the scheduling goals.

A task is a schedulable entity of the system, and it corresponds to the notion of a thread in the
previous description. In a hard real-time system, a task is characterized by its timing con-
straints as well as by its resource requirements. In the considered case, only periedic tasks
without precedence constraints are discussed, i.e. the processing of two tasks is mutually inde-

16



pendent. For multimedia systems this can be assumed without any major restriction. Synchro-
. nized data, for example, can be processed by a single process.

Figure 3: Characterization of periodic tasks

The time constraints of the periodic task T are characterized by the following parameters (s, ¢,
d, p) as described in [LeMe80]:

+ s: Starting point

» e¢: Processing time of T
* d: Deadline of T

» p:Periodof T

» rRateof T(r=1/p)

Whereby 0 < e <d < p (see Figure 3). The starting point 5 is the first time where the periodic
task requires processing. Afterwards, it requires processing in every period with a processing
time of e. At s+(k-1)p the task T is ready for the k-processing. The processing of T in period £
has to be finished at 5+(k-1 jp+d. For continuous-media tasks it is assumed that the deadline of
———the perivd (k-1 ) is the ready time of period k, this is known as congestion gvoiding deadlines:
The deadline for each message (d) coincides with the period of the respective periodic task (p).

Tasks can be preemptive or non-preemptive. A preemptive task can be interrupted by the
request of any task with a higher priority. Processing is tontinued in the same state later on. A
non-preemptive task can not be interrupted until it volunterily yields the processor. Any high-
priority task has to wait until the low priority task is finished. The high-priority task is then
subject to priority inversion. In the following all tasks processed on the CPU are counsidered as
preemptive unless otherwise stated.

In 2 real-time system the scheduling algorithm must determine a schedule for an exclusive,
limited resource that is used by different processes concurrently such that all of them can be
processed without violating any deadlines. This notion can be extended to a model with multi-
ple resources (e.g. CPU) of the same type. It can also be extended to cover different resources
such as memory and bandwidth for communication, i.e., the function of a scheduling algorithm
is to determine, for a given task set, whether or not a schedule for executing the tasks on an
exclusive bounded resource exists, such that the timing and the resource constraints of all tasks
are satisfied (planing goal). Further, it has to calculate a schedule if one exists. A scheduling
algorithm is said to guaranice a newly arrived task if the algorithm can find a schedule where
the new task and all previously guaranteed tasks can finish processing in every period over the
whole run-time to their deadlines. If a scheduling algorithm guarantecs a task, it cnsures that
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the task finishes processing prior to its deadline [CSRa88]. To guarantee tasks it must be possi-
ble to check the schedulability of the newly arrived tasks.

A major performance metric for a real-time scheduling algorithm is the puarantee rafio. The
guarantee ratio is the total number of guaranteed tasks versus the number of tasks which could
be processed.

Another performance metric is the processor utilization. This is the amount of processing time
used by guaranteed tasks versus the total amount of proccssing time [LilLa73]:

uz_

i=1 I

4.5 Earliest Deadline First Algoritbm

The Earliest Deadline First (EDF) algorithm is one of the best known algorithms for real-time
processing. At every new ready state, the scheduler selects among the tasks that are ready and
not fully processed that one with the earliest deadline. The requested resource is assigned to
the selected task. At any arrival of 2 new task (according to the LBAP model), EDF must be
computed immediately leading to a new order - i.e. the running task is preempted and the new
task is scheduled according to its deadline. The new task is processed immediately if its dead-
Iine is earlier than the onc of the interrupted task. The processing of the interrupted task is con-
tinued according to the EDF algorithm later on. EDF is not only an algorithm for periodic tasks
but also for tasks with arbitrary requests, deadlines and service execution times [Dert74]. In
this case, no guarantee about the processing of any task can be given.

EDF is an eptimal, dynamic algorithm: Le., it produces a valid schedule whenever one exist. A
dynamic algorithm schedules every instance of each incoming task acconding to its specific
demands. Tasks of periodic processes have to be scheduled in each period again. With » tasks,
which have arbitrary ready-times and deadlines, the complexity is ©(r°).

For a dynamic algorithm like EDF, the upper bound of the processor utilization is 100%. Com-
pared with any static priority assignment EDF is optimal in a sense that if a set of tasks that can
be scheduled by any static priority assignment it also can be scheduled by EDE With a priority
driven system scheduler, each task is assigned a priority according to its deadline. The highest
priority is assigned to the task with the earliest deadline, the lowest to the one with the furthest.
With every arriving task, priorities might have to be adjusted.

Applying EDF to the scheduling of continuous-media data on a single processor machine with
priority scheduling, process priorities are likely to be rearranged quit often. A priority is
assigned to each task ready for processing according to its deadline. Common systems usoally
provide only a restricted number of priorities. If the computed prionity of a new process is not
available, the priorities of other processes have to be rearranged until the required priority is
free. In the worst case, the prioritics of all processes have to be rearranged. This may causc a
considerable overhead. The EDF scheduling algorithm itself makes no use of the previously
known occurrence of periodic tasks.

EDF is used by different models as basic algorithm. An extension of EDF is the fime-driven
scheduler (TDS). Tasks are scheduled according to their deadline. Further, the TDS is able to
handle overload situations. If an overload situation occurs the scheduler aborts tasks which can
not meet their deadlines any more. If there still is an overload situation the scheduler removes

tasks which have a low "value density”. The value density corresponds to the importance of a
task for the system.
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In [LLSYS1 another priority driven EDF scheduling algorithm is introduced. Here every task
is divided in to a mandatory and an eptional part. A task is terminated according to the dead-
line of the mandatory part even if it is not completed at this time. Tasks are scheduled with
respect to the deadline of the mandatory parts. A set of task is said to be schedulable if all tasks
can meet the deadlines of their mandatory parts. The optional parts are processed if the
resource capacity is not fully utilized. Applying this to continuous-media data the method can
be used in combination with the encoding of data according to their importance. Take, e.g., a
single uncompressed picture in a bitmap format. Each pixel of this monochrome picture is
coded with 16 bit. The processing of the 8 most significant bits is mandatory whereas the pro-
cessing of the least significant bits can be considered as optional. With this method more pro-
cesses can be scheduled. In an overload situation the optional parts are aborted. This
implementation leads to a decreased quality by media scaling. During QoS requirement speci-
fication the tasks accepted or were informed that scaling may occur. In such a case scaling QoS
parameter(s) can be introduced which reflects the respective implementation. Therefore this
approach avoids errors and improves system performance at the expense of media quality.

4.6 Rate Monotonic Algorithm

The Rate Monotonic scheduling principle was introduced by Liu and Layland in 1973
[LilLa73]. It is an optimal, static, priority-driven algorithm for preemptive, periodic jobs. Opti-
mal in this context means that there is no other sratic algorithm that is able to schedule a task
set which can not be scheduled by the rate monotonic algorithm. A process is scheduled by a
static algorithm at the beginning of the processing. Subsequently, each task is processed with
the priority calculated at the beginning. No further scheduling is required. The following five
assumptions are necessary prerequisites to apply the rate-monotonic algorithm:

1. The requests for all tasks with deadlines are periodic. Le. with constant intervals between

consecutive requests.

2. The processing of a single task has to be finished before the next task of the same data
stream becomes ready for execution. Deadlines consist of run-ability constrains only. Le.
each task must be completed before the next request occurs.

3. All tasks are independent, Le., the requests for a certain task do not depend on the initia-
tion or completion of requests for any other task.

4. Run-time for each request of a task is constant. Run-time denotes the maximum time
which is required by a processor to execute the task without interruption.

S. Any non-periodic task in the system has no required deadline. Typically they initiate
periodic task or are tasks for failure recovery. They usually displace periodic tasks.

Further work has shown that not all of these assumptions are mandatory to employ the rate-
monotonic algorithm {L.SST91, SKGo91].

Static priorities are assigned to tasks once at connection set up phase according to their request
rates. The priority corresponds to the importance of a task relatively to other tasks. Tasks with
higher request rates will have higher priorities. The task with the shortest period gets the high-
est priority and the task with the longest period the lowest priority.

The rate-monotonic algorithm is a simple method to schedule time critical, periodic tasks on
the respective resource. A task will always mect its deadline if this can be proven to be true for
the longest response time. The response time is the time span between the request and the end
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Figure 4: An Exar;zple of critical instants

of processing of a task. This time span is maximal when all processes with a higher priority
request to be processed at the same time. This case knows as critical instant (see Figure 4). In
this figure the priority of a is, according to the rate-monotonic algorithm, higher than the one
of b, and the one of b is higher than the one of c. The critical time zone is the time interval
between the critical instant and the completion of a task.

4.7 EDF and Rate Monotonic: Context switches

Consider an audio and a video streamn scheduled according te the rate monotonic algorithm.
Let the audio stream have a rate of 1/75 s/sample and the video stream a rate of 1/25 s/frame.
The priority assigned to the audio stream is then higher than the priority assigned to the video
stream. The arrival of messages from the audio stream will interrupt the processing of the
video stream, If it is possible to complete the processing of a video message that requests pro-
cessing at the critical instant before its deadline, the processing of all video mcssagcs to their
deadlines is ensured, thus a feasible schedule exists. n e

deadlines: dA dB dC
di a2 d3 a4 ds da
high rate .
NN NN NN . NN
low rate

EDF

Y

rate mouotonic

S ORI

Figure 5: Rate monotonic versus EDF: Context swilches in preempltive systems

If more than one stream is processed concurrently in a system it is very likely that there might
be more context switches with a scheduler using the rate monotonic algorithm than one using
EDF. Figure 5 shows an example.



4.8 EDF and Rate Monotonic: Processor Utilizations

The processor utilization of the rate monotonic algorithm is upper bounded. It depends on the

number of tasks which arc scheduled, their processing times, and their periods. There are two
issues to be considered:

1. The upper bound of the processor utilization which is determined by the critical instant.

2. For each number n of independent tasks #(j) a constellation can be found where the max-
imum possible processor utilization is minimal. The least upper bound of the processor
utilization is the minimum of all processor utilizations over all sets of tasks #(j); je (1, ...,
n). that fully utilize the CPU. A task set fully utilizes the CPU when it is not possible to
raise the processing time of one task without violating the schedule.

Following this assumptions, [Lil.a73] gives an estimation of the maximal processor utilization
where the processing of each task to its deadline is guaranteed for any constellation. A set of
m independent, periodic tasks with fixed priority order will always meet its deadline if:

1
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According t {LeSh86] and [LiLa73] for jarge = the least upper bound of the processor utiliza-
tion is U=In2. Hence it is sufficient to check if the processor utilization is less or equal to the
given upper bound to find out if a task set is schedulable or not. Most existing systems check
this by simply comparing the processor utilization with the value of in 2.
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Figure 6. Rate monotonic versus EDF: Processor utilization

With EDF, a processor utilization of 100% can be achieved because all task are scheduled
dynamically according to their deadlines. Figure 6 shows an example where the CPU can be
utilized to 100% with EDF but where rate monotonic scheduling fails.






The problem of underutilizing the processor is aggregated by the fact that in most cases the
average task execution time is considerably lower than the worst case execution time. There-
fore scheduling algorithims should be able to handle transient processor overload. The rate
monotonic algorithm on average eusures that all deadlines will be met even if the bottleneck
utilization is well above 80%. With one deadline postponement, the deadlines on average are
met when the utilization is over 90%. [SSLe89] mentions an dchieved utilization bound for the
Nowy's Insertial Navigation System of 88%.

As described above, a static algorithm schedules a process once at the beginning of the pro-
cessing, single tasks are not explicitly scheduled afterwards. Whereas a dynamic algorithm
schedules cvery incoming task according to its specific demands. Since the rate monotonic

algorithm is an optimal static algorithm no other static algorithm can achieve a higher proces-
sor utilization.

4.9 Extensions to the Rate Monotonic Scheduling

There are several extensions to this algorithm. One of them divides a task in to a mandatory
and an optional part. The processing of the mandatory part delivers a result which can be
accepted by the user. The optional part only refines the result. The mandatory part is scheduled
according to the rate monotonic algorithm. For the scheduling of the optional part, other, dif-
ferent policies are suggested {ChLi88, LLNa87, ChLig9].

In some systems there are aperiodic tasks next to periodic ones. To meet the requirements of
periodic tasks and the response time requirements of aperiodic requests, it must be possible to
schedule both, aperiodic and periodic tasks. If the aperiodic request is an aperiodic continuous
sueam (e.g. video images as part of a slide show), we have the possibility to transform itinto a
periodic stream. Every timed data item can be substituted by nitems, The new items have the
duration of the minimal life span. The number of streams is increased but since the life span is
decreased the semantic remains unchanged. The stream is now periodical because every item

.-has the same life span [Herr90). If the stream-is not continuous, we-can apply a sporadicserver
to respond to aperiodic requests. The serveris provided with a computation budget. This bud-
get is refreshed f units of time after it has been exhausted, Earlier refreshing is also possﬂalc.
The budget represents the computation time reserved for aperiodic tasks. The server is oaly
allowed to preempt the execution of periodic tasks as long as the computation budget is not
exhausted. Afterwards it can only continue the execution with a background priority. After
refreshing the budget, the execution can resume at the servers assigned priority. The sporadic
server is especially suitable for events that occur rarely but must be handled quickly (e.g. a
telepointer in a CSCW-application) [ShGo90, SSLe89, Spru9d].

The rate monotonic algorithm is, for example, applied in real-time systems and real-time oper-
ating systems by the NASA and the European Space Agency [ShRa89]. It is particularly suit-
able for continuous-media data processing because it makes optimal use of their periodicity.
Since it is a static algorithm there is nearly no rearrangement of priorities and hence -in con-
trast to EDF- no scheduyling overhead to determine the next task with the highest priority. Prob-
lems emerge with data streams which have no constant processing time per message as
specified in MPEG-2 (e.g. a compressed video stream where one of five pictures is a full pic-
ture and all others are up-dates of a reference picture). The simplest solution is to schedule this
tasks according to their maximum data rate. In this case the processor utilization is decreasing.

The idle time of the CPU can be used to process non-time-critical tasks. In multimedia sys-
tems, for example, this is the processing of discrete media.
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4.10 Other Approaches for In-Time Scheduling

Apart of the two in detail discussed methods, further scheduling algorithms have been evatu-
ated towards their suitability for the processing of continuous-media data. In the following
paragraphs the most significant approaches are briefly described and the reasons for their "non
suitability, compared to EDF and rate-monotonic, towards their employmcnt in multimedia
systems are enumerated.

Least Laxity First (LLF): The task with the shortest remaining laxity is scheduled first
[CrWo90, LeSh86]. The laxity is the time between the actual time ¢ and the deadline minus the
remaining processing time. The laxity in period kis:

Ik= (s+(k-Np+cd) - (t+8)

LLF is an optimal, dynamic algorithm for exclusive resources. Furthermore it is also an opti-
mal algorithm for multiple resources if the ready-times of the real-time tasks are the same. The
laxity is 2 function of deadline, processing-time and the current time. Thereby the processing-
time can not be exactly specified in advance. At the calculation of the laxity the worst-case is
assumed. Therefore the determination of the laxity is inexact. The laxity of waiting processes
is dynamically changing over time. During run-time of a task, another task may get a lower
laxity. This task has then to preempt the running task. Consequeatly, tasks can preempt cach
other several times without dispatchbing a new task. This may cause numerous context
switches. At each scheduling point (when a process becomes ready to run or at the end of a
time slice) the laxity of each task has to be newly deterrnined. This leads to an additional over-
head compared with EDE. Since we have only 2 single resource to schedule there is no advan-
tage in the employment of LLF compared with EDE Future multimedia systermns might be
multi-processor systems; here LLF might be of advantage.

Deadline Monotone Algorithm: If the deadline of tasks are less than their period (d;< py, the
prerequisites of the rate monotonic algorithm are violated. In this case, a fixed priority assign-
ment according to the deadlines of the tasks is optimal.

A task T; gets a higher priority than a task T; if 4; < d;. No effective schedulability test for the
deadline monotone algorithm exists. In ordcr to determine the schedulability of a task set, it
has to be checked for each task if it meets its deadline in the worst case. In this case, all tasks
require execution to their critical instant [LeWh82, LSST91]. Tasks with a deadline shorter
than their period, for example, arise during the measurements of temperature or pressure in
control systems. In muitimedia systems deadlines equal to period lengths can be assumed.

Shortest Job First (SJF): The task with the shortest remaining computation time is chosen for
execution [CrWo90, Fren82). This algorithm guarantees that as many tasks as possible meet
their deadlines under an overload situation if all of them have the same deadline. In multimedia
systems, where the resource management allows overload situations, this might be a suitable
algorithm.

Aparnt of the most important real-time scheduling methods discussed above other might be
employed for the processing of continuous-media data (an on-line scheduler for tasks with
unknown ready times is introduced by [HoLe88]); in {HaSh89] a real-tirne monitoring system is
presented where all necessary data to calculate an optimal schedule is available). In most mul-
timedia systems with preemptive tasks, the rate-monotonic algorithm in different variations is
employed. So far, no other scheduling technique has been praven to be at least as suitable for
multimedia data handling as the EDF and rate monotonic approaches.
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4.11 Preemptive versus Non-Preemptive Task Scheduling

Real-time tasks can be distinguished into preemptive and non-preemptive tasks. If a task is
non-preemptive, it is processed and not interrupted untl it is finished or requires further
resources. The contrary of non preemptive tasks are preemptive tasks. The processing of a pre-
emptive task is interrupted immediately by a request of any higher priority task. In most cases,
where tasks are treated as non-preemptive, the arrival times, processing times, and deadlines
are arbitrary and unknown to the scheduler uatil the task actually arrives. The best algorithm is
the one which maximizes the number of completed tasks. In this case it is not possible to pro-
vide any processing guarantees or to do resource management.

To guarantee the processing of periodic processes and to get a feasible schedule for a periodic
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Figure 7: Preemptive versus non-preemptive scheduling

task set, tasks are usually treated as preemptive. One reason is that high preemptability mini-
mizes priority inversion. Another reason is that for some non-preemptive task sets no feasible
schedule can be found, whercas for preemptive scheduling it is possible. Figure 7 shows an
example where the scheduling of preemptive tasks is possible but non-preemptive tasks can
not be scheduled.

In [LiLa73] Liu and Layland show that a task set of m periodic, preemptive tasks with process-
ing times ¢; and request periods p; Vi€ ¢/, ..., m) is schedulable

» with fixed priority assignment if
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Here the preemptiveness of tasks is a necessary prerequisite to check their schedulability.



The first schedulability test for the scheduling of non-preemptive tasks was introduced by
Nagarajan and Vogt in {[NaVo92]. Assume, witbout loss of generality, that task m has highest
priority and task 1 lowest. They proof that a set of m periodic streams with periods p;, dead-
lines dj, processing times ¢; and d; < p; Vi e (1, ..., m) is schedulable with the non-preemptive
fixed priority scheme if

dmz 8+ max

1 sismjei
m
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where F(x y) = ceil(f() +1.

This means that the time between the logical arrival time and the deadline of a task ¢; has to be
laxger, or equal to the sum of the own processing time ¢; and the processing time of any higher
priority task that requires exccution during that time interval plus the longest processing time
of all lower and higher priority tasks (max(j<jcm) ¢;) that might be serviced at the arrival of the
task L.
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Figure 8: Deadline requirements for non-preemptive scheduling
The schedulability test is an extension of Liu's and Layland's. Given m periodic tasks with peri-

ods p; and the same processing time E per message. Let dj = p; + E be the deadline for task t;.
Then the streams are schedulable
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Consequently, non-preemptive continuous-media tasks can also be scheduled. However, the
scheduling of non-preemptive tasks is less favorable because the number of schedulable task
sets is smaller compared to preemptive tasks.

4.12 Scheduling of Continuous Media Tasks: Prototype Operating Systems

Most multimedia operating systems apply one of the above discussed methods. In some sys-
tems the scheduler is replaced by a real-time scheduler. Therefore, these systems can be
viewed as new operating systems. They are usually not compatible to existing systems and
applications. Other systems apply a meta-scheduler based on an existing process manager.
Only these systems will have a commercial impact in short and medium term because they
allow to run already existing applications.

ARTS

The “Advanced Real-Time Technology Operating System" is a real-time operating system for a
distributed eavironment with one real-time process manager. It was developed on SUN3 work-
stations, connected with a real-time network based on the IEEE.802.5 Token Ring and Ether-
net, by the computer science department of the Camegie Mellon University. To solve the
scheduling problems the time-driven scheduler (TDS) with a priority inheritance protocol was
adopted. This priority inheritance protocol was used to prevent unbounded priority inversion
among communication tasks. Tasks with hard deadlines are scheduled according to the rate-

monotonic algorithm. The system is also provided with other scheduling methods for experi-
mental reasons [MeTo90].

YARTOS

“Yet Another Real-Time Operating System" was developed at the University of North Carolina
at Chapel Hill as an operating system kernel to support conferencing applications [JSPo91].
An optimal, preemptive algorithm to schedule tasks on a single processor was developed. The
scheduling algorithm results from the integration of a synchronization scheme to access shared
resources with the EDF algorithm. Here, a task has two notions of deadline, one for the initial
acquisition of the processor, and one for execution of operations on resources. To avoid prior-
ity inversion, tasks are provided with scparate deadlines for performing operations on shared
resources. It is guaranteed that no shared resource is accessed simultaneously by more than one
task. Further, a shared resource is not longer occupied by a single task than absolutely neces-
sary.

Split-Level Scheduling

The split level scheduler was developed within the DASH-project at the University of Califor-
nia at Berkeley. Its main goal is to provide a better support for multimedia applications
[Ande93]. The applied scheduling policy is deadline/workahead scheduling. The LBAP-model
is used to describe the amrival processes. Critical processes have priority over all other pro-
cesses and they are scheduled according to the EDF algorithm preemptively. Interactive pro-
cesses have priority over workahead processes as long as they do not become critical. The
scheduling policy for workahead processes is unspecified but may be chosen to minimize con-
text switching. For non real-time processes, a scheduling strategy like UNIX time-slicing is
chosen.

Three Class Scheduler

This scheduler was developed as part of a video-on-demand file servicer at DEC, Littleton. The
design of the scheduler is based on a combination of weighted round-robin and rate monotonic
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scheduling [RVG*93]. Three classes of schedulable tasks are supported. The isochronous class
with the highest priority applies the ratc-monotonic algorithm, the real-time and the general-
purpose class are using the weighted round-robin scheme. A general-purpose task is preemp-
tive and runs with a low priority. The real-time class is suitable for tasks that require guaran-
teed throughput and bounded delay. The isochronous class supports real-time periodic tasks
that require performance guarantees for throughput, bounded latency and low jitter. Real-time
and isochronous tasks can only be preempted in "preemption windows". The scheduler exe-
cutes tasks from a ready queue in which all isochronous tasks are arranged according to their
priority. At the arrival of the task the scheduler determines whether the currently ranning task
has to be preempted. General-purpose tasks are immediately preempted, real-time tasks are
preempted in the next preemption window, isochronous tasks are preempted in the next pre-
emption window if their priority is lower than the one of the new task. Whenever the queue is
empty the scheduler alternates between the real-time and general purpose classes using a
weighted round-robin scheme.

Meta-Scheduler

To support real-time processing of continuous-media meta-scheduler for the operating systems
AIX [WBV094] and OS/2 [MSS192] was developed at the Enropean Networking Center of
IBM in Heidelberg. Both are based on the LBAP-model. According to the rate-monotonic
algorithm rates are mapped onto system priorities.

Experience with the Meta-Scheduler Approach

In this paragraph the employment of the OS/2 meta-scheduler is discussed [MSSt92]. The
experiences show the limits of this approach. For example, each single process in the system is
able to run with a priority initially intended for real-time tasks. These processes are not sched-
uled by the resource manager and therefore violate the calculated schedule. A malicious pro-
cess can block the whole system simply by running with the highest priority without giving up

__confrol.  _

The management of scheduling algorithms requires exact time measurement. In OS/2, for
example, it is not possible to measure the exact time a thread is using the CPU. Any measure-
ment of the processing time includes interrupts. If a process is interrupted by another process it
also includes the time needed for the context switch. The granularity of the OS/2 system timers
are insufficient for the processing of real-ime tasks. Hence the rate control is inaccurate
because it is determined by the granularity of the system timer.

To achieve full real-time capabilitics at least the native scheduler of the operating system
would have to be extended. The operating system should be enhanced by a class of fast non-
preemptive threads and the ability to mask interrupts for a short period of time. Priorities in
this thread class should only be assigned to threads that are already registered by the resource
manager. This class should be reserved exclusively for selected threads and monitored by a
system component with extensive control facilitics. Performance enhancement of the sched-
uler itself incorporating some mechanisms of real-time scheduling like earliest deadline first
would be another solution. The operating system should in any case provide a time measure-
ment tool that allows the measurement of pure CPU-time and a timer with a finer granularity.
This may be achieved through a timer chip.

5. File Systems

The file system is said to be the most visible part of an operating system. Most programs write
or read on files, their program code as well as user data stored in files. The organization of the
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file system is an important factor for the usability and convenience of the operating system. A
file is a sequence of information held as unit for storage and use in computer systems [Krak88].
Files are stored in secondary storage, they can be used by different applications. The lifespan
of files is usually longer than the execution of a program. In traditional file systems, the infor-
mation types stored in files are sources, objects, libraries and executables of programs, numeric
data, text, payroll records etc. [PeSi83]. In multimedia systems, the stored information also
covers digitized video and audio with their related real-time "read" and "write” demands.
Therefore, additional requirements in the design and implementation of file systems have to be
considered.

The file system provides access and control functions for the storage and retrieval of files.
From the user's viewpoint, it is important how the filesystem allows to organize and structure
files. The internals, which are more important in our context, i.e., the organization of the file
system deal with the representation of information in files, their structure and organization in

secondary storage. Because of its importance for multimedia, disk scheduling is also presented
in this context.

The next section starts with a brief characterization of traditional file systems and disk schedul-
ing algorithms. Subsequently, different approaches to organize multimedia files and disk
scheduling algorithms for the use in multimedia systems are discussed.

S.1 Traditional File Systems

The two main goals of traditional files systems are: (1) to provide a comfortable interface for
file access to the user, and (2) to make efficient use of storage media. Whereas the first goal is
still an area of interest for research (e.g. indexing for file systems [Salz91] and intelligent file
systems for the content-based associative access to file system data [GiTo91]), the structure,
organization and access of data stored on disk, have been extensively discussed and investi-
gated over the last decades. In order to understand the specific multimedia developments in

this area this paragraph gives a brief overview on files, file systems organizations and file
access mechanisms. Later, disk scheduling algorithms for file retrieval are discussed.

File Structure:
We commonly distinguish between two ways of file organization:

In sequential storage, each file is organized as a simple sequence of bytes or records. Files are
stored consecutively on the secondary storage media as shown in Figure 9 . They are separated
from each other by a well defined "end of file" bit pattern, character, or character sequence. A
file descriptor is usually placed at the beginning of the file and is, in some systems, repeated at
the end of the file. Sequential storage is the only possible way to organize the storage on tape,
but it can also be used on disks. The main advantage is its efficiency for sequential access as
well as for direct access [Krak88]. Disk access time for reading and writing is minimized.

Additionally, for further improvement of performance with caching the file can be read ahead
of the user program [Jans85]. In systems where file creation, deletion, and size modification
occur frequently, sequential storage has major disadvantages. Secondary storage is splitted,
fragmented, through creation and deletion operations, and files can not be extended without

copying the whole files into a larger space. By a process the files may be copied such that all
files are located adjecently, i.e., without any “holes" between them.

In non-sequential storage the data items are stored in a non-contiguous order.
There exist mainly two approaches:
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Figure 9: Contiguous and non-contiguous storage

« One way is to use linked blocks, where physical blocks, containing consecutive logical
locations, are linked using pointers. The file descriptor must contain the number of
blocks occupied by the file, the pointer to the first block, and it may also have the pointer
to the last block. A serious disadvantage of this method is the cost of the implementation
for random access because all prior data has to be read. In MS-DOS a similar method is
applied. A file allocation table (FAT) is associated with each disk. One entry in the table
represents one disk block. The directory entry of each file holds the block number of the
first block. The number in the slot of an entry refers to the next block of a file. The slot of
the last block of a file contains an end-of-file mark [Tane87].

« Another approach is to store block information in mapping tables. Each file is associated
with a table where, apart from the block numbers, information like owner, file size, cre-
ation time, last access time etc. are stored. Those tables usually have a fixed size which
means that the number of block references is bounded. Files with more blocks are refer-
enced indirectly by additional tables assigned to the files. In UNIX, with each file a small
table (on disk) called an i-node is associated (see Figure 10). The indexed sequential
approach is an example for multi-level mapping; here logical and physical organization

-~ is not clearly separated [Krak88].
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Figure 10: The UNIX i-node [Tane87]



Directory Structure:

Files are usually organized in directories. Most of today’s operating systems provide tree struc-
tured directories where the user can organize the files according to his personal needs. In mul-
timedia systems, it is important to organize the files in a way that allows an easy, fast, and
contiguous data access

Disk Management:

Disk access is a slow and costly transaction. In traditional systems, a common technique to
reduce disk access are block caches. Using a block cache, blocks are kept in memory because it
is expected that future read or write operations access this data again, thus, performance
increased due to shorter access time. Another way to increase performance is to reduce disk
arm motion. Blocks, that are likely to be accessed in sequence, are placed together on one cyl-
inder. To refine this method, the rotational positioning can be taken into account. Consecutive
blocks are placed on the same cylinder but in an interleaved way as shown in Figure 11.
Another important issue is the placement of the mapping tables (e.g. I-nodes in UNIX) on the
disk. If they are placed near the beginning of the disk then the distance between them and the
blocks will be, on average, half the number of cylinders. To improve this, they can be placed in
the middle of the disk. Hence the average seek time is roughly reduced by a factor of two. In
the same way, consecutive blocks should be placed on the same cylinder. The use of the same

cylinder for the storage of the mapping tables and the referred blocks also improves the perfor-
mance.

interleaved storage
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Figure 11: Interleaved and non-interleaved storage

Disk Scheduling:

Whereas strictly sequential storage devices (e.g. tapes) do not have a scheduling problem, for
random access storage devices every file operation may require movements of the read/write
head. This operation, known as ’to seek’ is very time consuming, i.e., a seck time in the order
of 250 ms for CD's is still state of the art. The actual time to read or write a disk block is deter-
mined by

* the seek time (the time required for the movement of the read/write head).

« the latency time or rotational ‘delay (thc timé during which the transfer can not be pro-
ceed until the right block or sector rotates under the read/write head),

* the actual data transfer time needed for the data copy from disk into main memory,



Usually the seek time is the largest factor of the actual transfer time. Most systems try to kesp
the cost of secking low by applying special algorithms for the scheduling of disk read/write
operations. The access of the storage device is a problem greatly influenced by the file alloca-
tion method. For instance, a program, reading a contiguously allocated file, generates requests
which are located close together on a disk, thus head movement is limited. Linked or indexed
files with blocks, which are widely scattered, cause many head movements. In multiprogram-
ming systems, where the disk queue may often be non-empty, fairness is also a criterion for
scheduling. Most systems apply one of the following scheduling algorithms:

order of requests

Figure 12: FCFS disk scheduling

« First-Come-First-Served (FCFS): With this algorithm the disk driver accepts requests
one at the time, and it serves them in the incoming order. This is an easy to program and
an intrinsically fair algorithm. However, it is not optimal with respect to head move-
ments because it does not consider the location of the other queued requests. This results
in a high average seck time. Figure 12 shows an example of the application of FCFS to a
request of 3 queued blocks.

» Shortest-Seek-Time First (SSTF): At every point in time when a data transfer is
requested, SSTF selects among all requests that one with the minimum seek time from
the current head position, therefore the head is moved to the closest track in the request
queue. This algorithm was developed to minimize seek time and it is in this sense opt-
mal. SSTF is a modification of Shortest Job First (SJF), and like SJF, it may cause starva-
tion of some requests. Request targets in the middle of the disk will get immediate
service on the expense of requests in the innermost and outermost disk areas. Figure 13
demonstrates the operation of the SSTF algorithm.

» SCAN: Like SSTEF, scan orders the requests to minimize seek time. In contrast to SSTF,
- it takes the direction of the current disk movement into account. It first serves all requests
in one direction until it does not have any request in this direction anymore. The head
movement is then reversed and service is continued. SCAN provides a very good seck
time, because the edge tracks get better service times. Note, that middle tracks still get a
better service then edge tracks. When the head movement is reversed it first serves tracks
that have recently been serviced, where the heaviest density of requests, assuming a uni-
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Figure 14: SCAN disk scheduling

form distribution, is at the other end of the disk. Figure 14 shows an example of the
SCAN algorithm.

C-SCAN: C-SCAN also moves the head in one direction, but it offers fairer service with
more uniform waiting times. It does not alter the direction as in SCAN, instead it scans in
cycles, always increasing or decreasing, with one idle head movement from one edge to
the other between two consecutive scans. The performance of C-SCAN is somewhat less
than the one of SCAN. Figure 15 shows the operation of the C-SCAN algorithm.

Traditional file systems are not designed for their employment in multimedia systems.
They do, for example, not consider requirements like real-time which are important to
the retrieval of stored audio and video. To serve this requirements, ncw polices in the
structure and organization of files, and in the retrieval of data from the disk have to be
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Figure 15: C-SCAN disk scheduling

applied. The next section outlines the most important developments in this area.

5.2 Multimedia File Systems

Compared to the increased performance of processors and networks, storage devices have
become only marginally "faster" [Mull91]. The effect of this increasing speed mismatch is the

search for new storage structures, and storage and retrieval mechanisms with respect to the file
system. Continuous-media data is different to discrete data in:

* Real-Time Characteristics: As mentioned above, the retrieval, computation, and presen-
tation of continuous media is time dependent. The data has to be presented (read) before
a well defined deadline with small jitter only. Thus, algorithms for the storage and
retrieval of such data have to consider time constraints, and additional buffers to smooth
the data stream, have to be provided.

 File Size: Compared to text and graphics, video and audio have very large storage space
requirements. Since the file system has to store information ranging from small unstruc-
tured units like text files to large, highly structured data units like video and associated
audio. It has to organize the data on disk in a way that efficiently uses the limited storage.
For example, the storage requirements of uncompressed CD quality stereo audio are 1.4

Mbits/s, low but acceptable quality compressed video still requires about 1Mbit/s using,
e.g., MPEG-1.

* Multiple Data Streams: A multimedia system has to support different media at a time. It
does not only have to ensure that all of them get a sufficient share on the resources, it also
has to consider tight relations between different streams arriving from different sources.

The retrieval of a movie, for example, requires the processing and synchronization of
audio and video.

There are different ways to support continuous media in file systems. Basically it can be distin-
guished between two approaches. With the first approach, the organization of files on disk
remains as it is. The necessary real-time support is provided through special disk scheduling
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algorithms and sufficient buffer to avoid jitter. In the second approach, the organization of
audio and video files on disk is optimized for their use in multimedia systems. Especially
scheduling of multiple data streams still remains an issue of research.

In this section, the different approaches are discussed and examples of existing prototypes are
introduced. First, a brief introduction of the different storage devices employed in multimedia
systems is given. Then the organization of files on disks is discussed. Subsequently different
disk scheduling algorithms for the retrieval of continuous media are introduced.

5.2.1 Storage Devices

The storage subsystem is a major component of any information system. Due to the immense
storage space requirements of continuous media, conventional magnetic storage devices are
often not sufficient anymore. Tapes, still in use in some traditional systems, are inadequate for

multimedia systems because they can not provide independent accessible streams, and random
access 1s slow and expensive.

Apart from common disks with large capacity, some multimedia applications, such as kiosk

systems, use CD-ROMs to store data. In general, disks can be characterized in two different
ways.

< First, how information is stored on them. There are rewriteable (magnetic and optical)
disks, write-once (WORM) disks and read-only disks like CD-ROMSs.

« The second distinctive feature is the way of recording. It is distinguished between mag-
netic and optical disks. The main difference between them is the access time and their
track capacity. The seek time on magnetic disks is typically above 10 ms whereas on
optical disks 200 ms is a common lower bound. Magnetic disks have a constant rotation
speed (constant angular velocity, CAV). Thus, while the densitz varies the storage capac-
ity is the same on inner and outer tracks. Optical disks have varying rotation speed (con-
stant linear velocity, CLV) and hence, the storage density is the same on the whole disk.

" Therefore different algorithms for magnetic and optical disks are necessary. File systems on

CD-ROMs are defined at ISO 9660, it is considered to be closely related to CD-ROMs and
CD-ROM-XA. Very few variations are possible. Hence, we will focus the description on algo-
rithms applicable to magnetic storage devices.

5.2.2 File Structure and Placement on Disk

Whereas in conventional file systems the main goal of the file organization is to make efficient
use of the storage capacity (Le. to reduce internal and external fragmentation) and to allow
arbitrary deletion and extension of files, in multimedia systems the main goal is to provide a
constant and timely retrieval of data. Internal fragmentation occurs when blocks of data are not
entirely filled. On average the last block of a file is only half utilized. The use of large blocks
leads to a larger waste of storage due to this internal fragmentation. External fragmentation
mainly occurs when files are stored in a contiguous way. After the deletion of a file the gap can
only be filled by a file with the same or a smaller size. Therefore there are usually small frac-
tions between two files that are not used, storage space for continuous media is wasted.

As mentioned above, the goals for multimedia file systems can be achieved through providing
enough buffer for each data stream and the employment of disk scheduling algorithms, espe-
cially optimized for real-time storage and retrieval of data. The advantage of this approach
(where data blocks of single files are scattered) is flexibility. External fragmentation is avoided
and the same data can be used by several streams (via references). Even using only one stream
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this might be of advantage, for instance, it is possible to access one block twice, e.g. when a
phrase in a sonata is repeated. However, due to the large seek operations during playback, even
with optimized disk scheduling, large buffers have to be provided to smooth jitter at the data
retrieval phase. Therefore, there are also long initial delays at the retricval of continuous
media,

Another problem in this context is the restricted transfer rate. With upcoming disk arrays,
which might have 100 and more parallel heads, the projected seek and latency times of less
than 10 ms, and a block size of 4 Kbytes at a transfer rate of 0.32 Gigabit/s will be achieved.
But this is, for example, not sufficient for the simultaneous retrieval of four or more production

level MPEG-2 videos compressed in HDTV-quality that may require transfer rates of up to 100
Mbit/s. [Stei94a, Stei94b]

Approaches, which use specific disk layout, take the specialized nature of continuous-media
data into account to minimize the cost of retrieving and storing streams. The much greater size
of continuous-media files and the fact that they will usually be retrieved sequentially, because
of the nature of operation performed on them (such as play, pause, fast forward etc.), are rea-
sons for an optimization of the disk layout. The own application related experience has shown
that continuous-media streams predominantly belong to the write-once-read-many nature and
streams that are recorded at the same time are likely to be played back at the same time (e.g.
audio and video of a movie) [LoSh93]. Hence, it scems to be reasonable to store continuous-
media data in large data blocks contiguously on disk. Files that are likely to be retrieved
together are grouped together on the disk. Thus, interference due to concurrent access of these

files are minimized. With such a disk layout the buffer requirements and the seck times
decrease.

The disadvantage of the contiguous approach is external fragmentation, and copying overhead
during insertion and deletion. To avoid this without scattering blocks in 2 random manor over
the disk, a multimedia file system can provide constrained block allocation of the continuous
media, In [GeCh92] different placement strategies were compared. The size of the blocks (M)
and the size of the gaps (G) between them can be derived from the requirement of continuity.
The size is measured in terms of sectors. We assume that the data transfer rate rg, is the same as
the disk rotation rate (sectors/s). The continuity requirement in this case is met if the time to
skip over a gap and to read the next media block does not exceed the duration of its playback
Toay(s) [RKVi92]. ‘

- 08 2M(sectorS) + G(sectors)
play ry¢(sectorsls)

Since there are two variables in the equation, the storage pattern (M, G) is not unique. There
are several combinations possible to satisfy the above equation. Problems occur if the disk is
not sufficiently empty, so that single data streams can not be stored exactly according to their
storage pattern. In this case the continuity requirements for cach block are not strictly main-
tained. To serve the continuity requirements, read-ahead and buffering of a determined number
of blocks has to be introduced. See, e.g., [RaVi91, RKVi92, ViRa93] for a detailed description
of this storage method.

Some systems using scattered storage make use of a special disk space allocation mechanism
to allow fast and efficient access. Abbott performed the pioneer work in this field [Abbo84].
He was cspecially concerned about the size of single blocks and their positions on disk.
Another topic to be considered is the placement of different streams. With interleaved place-



ment all n'th block of each stream are in close physical proximity on disk. A contiguous inter-
leaved placement is possible as well as a scattered interleaved placement. With interleaved
data streams synchronization is much easier to handle. On the other hand, the insertion and
deletion of single parts of data streams become more complicated.

In [KWYe94] a layout algorithm was developed and analyzed which provides a uniform distri-
bution of media blocks on the disk after copying or writing audio and video files. It takes into
account that further files will be merged. Therefore a set of non-filled gaps is left. This uniform
distribution is achieved by storing new blocks at the center of existing - so far - non-filled gaps.
With this *central merging method’ gaps are successively split into two new equal gaps. It was

shown that the mean efficiency of the secondary storage usage with this algorithm is about 75
% without violation of any real-time constraint [KWYe94].

S5.2.3 Disk Scheduling Algorithms

The main goal of traditional disk scheduling algorithms is to reduce the cost of seck opera-
tions, to achieve a high throughput, and to provide fair disk access for every process. The addi-
tional real-time requirements, introduced by multimedia systems, make traditional disk
scheduling algorithms, such as described before, inconvenient for multimedia systems. Sys-
tems without any optimized disk layout for the storage of continuous media depend far more
on reliable and efficient disk scheduling algorithms than others. In case of contiguous storage,
scheduling is only needed to serve requests from multiple streams concurrently. In [LoSh93], a
round robin scheduler is employed that is able to serve hard real-time tasks. Here, additional

optimization is provided through the close physical placement of streams that are likely to be
accessed together.

The overall goal of disk scheduling in multimedia systems is to meet the deadlines of all time-
critical tasks. Closely related is the goal to keep the necessary buffer space requirements low.
As many streams as possible should be served concurrently, but aperiodic requests should also
be schedulable without delaying their service for an-infinite amount of time. The scheduling
algorithm has to find a balance between time constrains and efficiency.

Earliest Deadline First

Let us first look at the EDF scheduling strategy as described above for CPU scheduling but
used for the file system issue as well. Here the block of the stream with the nearest deadline
would be read first. The employment of EDF as shown in Figure 16 in the strict sense results in
poor throughput and an excessive seck time. Further, as EDF is most often applied as a pre-
emptive scheduling scheme the costs for preemption of a task and scheduling another task are
considerably high. The overhead caused by this is in the same order of magnitude as at least
one disk seek. Hence EDF has to be adapted or combined with file system strategies.

SCAN-Eaeliest Deadline First

The SCAN-EDF strategy is a combination of the SCAN and the EDF mechanisms [ReWy93].
The seek optimization of SCAN and the real-time guarantees of EDF are combined in the fol-
lowing way: Like in EDF, the request with the earliest deadline is always served first. Among
requests with the same deadline the specific one, that is first according to the scan direction, is

served first. Among the remaining requests this principle is repeated until no request with this
deadline is left.
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Figure 16: EDF disk scheduling

Since the optimization only applies for requests with the same deadline, its efficiency depends
on how often it can be applied (i.c., how many requests have the same or a similar deadline).
To increase this probability the following tricky technique can be used: All requests have
release times that are multiples of the period p. Hence, all requests have deadlines that are mul-
tiples of the period p. Therefore the requests can be grouped together and be served accord-
ingly. For requests with different data rate requirements, in addition to SCAN-EDF, the

--employment-of a periodic fill policy is proposed [YeVa92] to let all requests have the same
deadline. With this policy, all requests are served in cycles. In every cycle each request gets an
amount of service time that is proportional to its required data rate. The cycle length is equal to
the sum of the service times of all requests. Thus, in every cycle all requests can be given a
deadline at the end of the cycle.

SCAN-EDF can easily be implemented. Therefore EDF has to be modified slightly. If D; is the
deadline of task i and N; is the track position, then the deadline can be modified to be D; +
JIN;). Thus the deadline is deferred. The function f{) converts the track number of i into a small
perturbation of the deadline as shown in the example of Figure 17. It has to be small enough so
that D; + f(V;) < D; + f{N;) holds for all D; < D;. For i)} it was proposed to choose the follow-
ing function [ReWy93]:
N;
Nmax

f(N) =

where Np,x is the maximum track number on disk. Other functions might also be appropriate.

We enhanced this'mechanism by proposing a more accurate perturbation of the deadline which
takes into account the actual position of the head (N). This position is measured in terms of

block numbers and the current direction of the head movement (see also Figure 18 and Figure
19):

1. If the head moves toward Np,,, i.e., upwards, then
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Figure 17: SCAN-EDF disk scheduling with Np,,x=100 and f(N;)=N;/Nmax
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Figure 18: Accurate EDF-SCAN algorithm, head moves upwards

1A: for all blocks N; located between the actual position N and N5y the perturbation of
the deadline is

N.-N
f(N) = N

for all Niz N
max

1B: for all blocks N; located between the actual position and the first block (no. 0)

N__ —N.
f(N) = ‘:Ll for all N; <N
max
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2: If the head moves downwards towards the first blocks then

if (Ni 2 N): f(Nl)

-
N;
|
|

| ] |
L | | 1
0 Nj -«N Wosaz

-
if (N; < N): £(Np)

Figure 19: Accurate EDF-SCAN algorithm, head moves downwards

2A: for all blocks located between the actual position and Np,¢

N,
f(Ni) = N for all Ni>N
max

2B: for all blocks located between this first block with the block number O and the actual
position.

N

for all Nis N
max

Our algorithm is more computing intensive than those with the simple calculation of
[ReWy93]. In cases with only a few equal deadlines our algorithm provides improvements and
the expenses of the calculations can be tolerated. In situations with many, i.e., typically more

than 5) equal deadlines the simple calculation provides sufficient optimization and additional
calculations should be avoided.

SCAN-EDF was compared with pure EDF and different variations of SCAN. It was shown

that SCAN-EDF with deferred deadlines performs well in multimedia environments
[ReWy93].

Group Sweeping Scheduling

With Group Sweeping Scheduling (GSS) requests are served in cycles, in round-robin manor
{CKYu93]. To reduce disk arm movements, the set of n streams is divided is into g groups.
Groups are served in fixed order. Individual streams within a group are served according to
SCAN; therefore it is not fixed at which time or order individual streams within a group are
served. In one cycle a specific stream may be the first to be served, in another cycle it may be
the last in the same group. A smoothing buffer which is sized according to the cycle time and
data rate of the stream assures continuity. If the SCAN scheduling strategy is applied to all
streams of a cycle without any grouping then the playout of a stream can not be started until
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Figure 20: Group sweeping scheduling as disk access strategy

the end of the cycle of its first retrieval (where all requests are served once) because the next
service may be in the last slot of the following cycle. As the data must be buffered in GSS the
playout can be started at the end of the group in which the first retrieval takes place. Whereas
—. —SCAN requires buffers for all streams, in GSS the buffer ¢an be reused for each group. Further
optimizations of this scheme are proposed in [CKYu93]. In this method it is ensured that each
stream is served once in each cycle. GSS is a trade-off between the optimization of buffer
space and arm movements. In order to provide the requested guarantees for continuous-media
data we propose here to introduce a “joint deadline" mechanism: We assign to each group of
streams one deadline, the “joint deadline”. This deadline is specified as being the earliest one
out of the deadline of all streams in the respective group. Streams are grouped in a way that all

of them comprise similar deadlines. Figure 20 shows an example of group sweeping schedul-
ing.

Mixed Strategy

In [Abbo84] a mixed strategy was introduced based on the shortest seek (also called greedy
strategy) and the balanced strategy. As shown in Figure 21 every time data is retrieved from
disk it is transferred into buffer memory allocated for the respective data stream. From there
the application process removes it once at a time. The goal of the scheduling algorithm is

= to maximize transfer efficiency by minimizing seek time and latency, and
= to serve process requirements with a limited number of buffer space.

With shortest seek the first goal is served, i.e., the process which data block is closest is served
first. The balanced strategy chooses the process which has the least amount of buffered data
for service, because this process is likely to run out of data. The crucial part of this algorithm is
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Figure 21: Mixed disk scheduling strategy

the decision which of the two strategies has to be applied (shortest seek or balanced strategy).
For the employment of shortest seek two criteria must be fulfilled: The number of buffers for
all processes should be balanced (i.e. all processes should nearly have the same number of
buffered data) and the overall required bandwidth should be sufficient for the number of active
processes, so that none of them will try to read immediately data out of an empty buffer. In
[Abbo84] the urgency is introduced as an attempt to measure both. The urgency is the sum of
the reciprocals of the current "fullness" (amount of buffered data). This number measures both,
the relative balance of all read processes and the number of them. If the urgency is large then
the balance strategy will be used, if it is small it is safe to apply the shortest seck algorithm.

Continuous Media File System

The CMFS Disk Scheduling is a non preemptive disk scheduling scheme designed-for-the-- -

Continuous Media File System (CMFS) at UC-Berkeley [AOGo91]. Different policies can be
applied in this scheme. Here the notion of the slack time H is introduced. The slack time is the
time during which CMES is free to do non-real-time operations or workahead for real-time
processes, because the current workahead of each process’is sufficient so that no process would

starve even if it would not be served for H seconds. The considered real-time scheduling poli-
cies are:

« The Static/Minimal Policy is based on the minimal workahead-augmenting set (WAS). A
process p; reads a file at a determined rate R;. To each process a positive integer M; is
assigned which denotes to the time overhead required to read a block covering, e.g., the
seek time. The CMFES performs a set of operations (i.e. disk operations required by all
processes) by seeking the next block of a file and reading M; blocks of this file. Note, we
consider only read operations; the same also holds with minor modifications for write
operations. This seek is done for every process in the system. The data read by a process
during this operation "lasts"

MixA
R.

!

where A is the block size in byte. The WAS is a set of operations where the data read for
each process "lasts longer" than the worst-case time to perform the operations (i.e. the
sum of the read operations of all processes is less than the time read data lasts for a pro-
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cess). A schedule is derived from the set that is workahead-augmenting and feasible (i.e.
the requests are served in the order given by the WAS). The “Minimal Policy", the mini-
mal WAS, is the schedule where the worst-case elapsed time needed to serve an opera-
tion set is the least (i.c. the set is ordered in a way that reduces time needed to perform
the operations, e.g. by reducing seek times). The Minimal Policy does not consider
buffer requirements. If there is not enough buffer this algorithm causes an buffer over-
flow. The "Static Policy" modifies this schedule such that no block is read if this would
cause a buffer overflow for that process. With this approach starvation is avoided but its
use of short operations causes high seek overhead.

» With the Greedy Policy a process is served as long as possible. Therefore it computes at
each iteration the slack time H. The process with the smallest workahead is served. The
maximum number # of blocks for this process is read; » is determined by H (the time

needed to read n blocks has to be less or equal than H) and the currently available buffer
space.

e The Cyclical Plan Policy distributes the slack time among processes in order to maxi-
mize the slack time. It calculates H and increases the minimal WAS with A milliscconds
of additional reads; an additional read for each process is done immediately after the reg-
ular read determined by the minimal WAS. This policy distributes workahead by identi-
fying the process with the smallest slack time and schedules an extra block for it; it is
done until H is exhausted. The number of block reads for the least-workahead is deter-
mined. This procedure is repeated every time the read has completed.

The Aggressive version of the Greedy and the Cyclical Plan Policy calculates H of all pro-
cesses except the least-workahead process that is by both policies immediately served. If the
buffer size limit of a process is reached all policies skip to the next process. Non-real-time
operations are served if there is enough slack time. First performance measurements of the
above introduced strategy showed that Cyclical Plan increases system slack faster at low val-
ues of the slack time (which is likely to be the case at system set up). With a higher system
slack time, apart of the Static/Minimal Policy, all policies perform about the same. '

All of the disk scheduling strategies described above have been implemented and tested in pro-
totype file systems for continuous media. Their efficiency depends on the design of the entire
file system, the disk layout, tightness of deadlines, and ldst not least on the application behav-
ing. It is not yet common sense, which algorithm is the "best" method for the storage and
retrieval of continuous-media files. Further research must show which algorithm serves the

timing requirements of continuous media best and ensures that aperiodic and non-real-time
requests are efficiently served.

5.2.4 Data Structuring

Continuous-media data is characterized by consecutive, time dependent logical data units. The
basic data unit of a motion video is a frame. The basic unit of audio is a sample. Frames con-
tain the data associated with a single video image, a sample represents the amplitude of the
analog audio signal at a given instance. Further structuring of multimedia data was suggested
in the following way [RaVi91, Rang93, StFr92]: A strand is defined as an immutable sequence
of continuously recorded video frames, audio samples, or both. Le., it consists of a sequence of
- blocks which contain either video frames, audio samples or both. Most often it includes head-
ers and further information related to the compression used. The file system holds primary
indices in a sequence of "Primary Blocks". They contain mapping from media block numbers
to their disk addresses. In "Secondary Blocks" pointers to all Primary Blocks are stored. The



“"Header Block" contains pointers to all secondary blocks of a strand. General information
about the strand like recording rate, length etc. is also included in the header block.

Media strands that together constitute a logical entity of information (e.g. video and associated
audio of a movie) are tied together by synchronization to form a multimedia rope. A rope con-
tains the name of its creator, its length and access rights. For each media strand in this rope the
strand ID, rate of recording, granularity of storage, and corresponding block-level is stored
(information for the synchronization of the playback start for all media at the strand interval
boundaries). Editing operations on ropes manipulate pointers to strands only. Strands are
regarded as immutable objects because editing operations like insert or delete may require sub-
stantial copying which can consume significant amount of time and space. Intervals of strands
can be shared by different ropes. Strands that are not referenced by any rope can be deleted, its
storage is reclaimed [RaVi9l]. The following interfaces are the operations that file systems
provide for the manipulation of ropes:

¢« RECORD [media] = [requestID, mmRopelD]
A multimedia rope, represented by mmRopeID and consisting of media strands, is
recorded until a STOP operation is issued.

« PLAY [mmRopelD, interval, media] — requestID
This operation plays a multimedia rope consisting of one or more media strands.

« STOP [requestID]
This operation stops the retrieval or storage of the corresponding multimedia rope.

- Additionally the following operations are supported:
INSERT [baseRope, position, media, withRope, withInterval]
REPLACE [baseRope, media, baseInterval, withRope, withInterval]
SUBSTRING [baseRope, media, interval]
CONCATE [mmRopeID1, mmRopelD2]
DELETE [baseRope, media, interval] -

Example: INSERT baseRope:Ropel, position: 3, media:AudioVisual,

withRope: Rope2, * ‘withInterval: from:0, length:2
Ropel Rope2
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Figure 22: INSERT Operation

Figure 22 provides an example of the INSERT operation whereas Figure 23 shows the
REPLACE operation.

The storage system is divided into two layers:
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» The rope server is responsible for the manipulation of multimedia ropes. It communi-
cates with applications, allows the manipulation of ropes, and communicates with the
underlying storage manager to record and play back multimedia strands. It provides the
rope abstraction to the application. The rope access methods were designed similar to
UNIX file access routines. Status messages about the state of the play or record operation
are passed to the application. The storage manager is responsible for the manipulation of
strands. It places the strands on disk to ensure continuous recording and playback. The
interface to the rope server includes four primitives for manipulating strands:

1. "PlayStrandSequence" takes a sequence of strand intervals and displays the given
time interval of each strand in sequence.

2. "RecordStrand" creates a new strand and records the continuous-media data either for
a given duration or until StopStrand is called.

3. "StopStrand" terminates a previous PlayStrandSequence or RecordStrand instance.
4. "DeleteStrand" removes a strand from storage.

Example: REPLACE[baseRope:Ropel, media:video, baseInterval:[start:0, length: 3],

withRope: Rope2, withlInterval: [start:0, length:3]]
Ropel
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Figure 23: REPLACE Operation

The experimental Video File Server introduced in [Rang93] supports integrated storage and
retrieval of video. The "Video Rope Server” presents a device independent directory interface
to users (Video Rope). A Video Rope is characterized as a hierarchical directory structure con-
structed upon stored video frames. The "Video Disk Manager" manages a frame oriented
motion video storage on disk, including audio and video components.

6. Further Operating System Issues

6.1 Interprocess Communication and Synchronization

In multimedia systems interprocess communication refers to the exchange of different data
between processes. This data transfer has to be very efficient because continuous media require
the transfer of a large amount of data in a given time span. For the exchange of discrete media
data the same mechanisms are used than'in traditional operating systems. Data interchiaiige of

continuous media is closely related to the memory management and is discussed in the respec-
tive section.



Synchronization guarantees timing requirements between different processes. In the context of
multimedia this is an especially interesting aspect. Different data streams, database entries,
document portions, positions, processes, etc. have to be synchronized. Thus, synchronization is
important for various components of a multimedia system and therefore it is not included in
this discussion on operating systems.

6.2 Memory Management

The memory manager assigns physical resource memory to a single process. Virtual memory
is mapped onto actually available memory. With paging less frequently used data is swapped
between main memory and external storage. Pages are transferred back into the main memory
when data on them is required by a process. Note, continuous-media data must not be tempo-
rary paged out of the main memory. If a page of virtual memory containing code or data
required by a real-time process is not in real memory when it is accessed by the process, a page
fault occurs, meaning that the page has to be read from disk. Page faults affect the real-time
performance very seriously, so they must be avoided. A possible approach is to lock code and/
or data into real memory. However, care should be taken when locking code and/or data into
real memory. Real memory is a very scarce resource to the system. Committing real memory
by pinning (locking) will decrease overall system performance. The typical AIX kernel will
not allow more than about 70% of real memory to be committed to pinned pages [IBM91].
The transmission and processing of continuous data streams by several components require a
very efficient data transfer restricted by time constrains. Memory allocation and release func-
tions provide well defined access to shared memory areas. In most cases, no real processing of
data but only a data transfer is necessary. For example, the camera with a digitalization process
is the source and the presentation process is the sink. The essential task of the other compo-
nents is the exchange of continuous-media data with relatively high data rates in real-time.
The processing involves to compute, to add, to interpret and to strip headers. This is well
known in communications [McR093]. The actual implementation can either be with external
devices and dedicated hardware in the computer or can be realized with software components.

Early prototypes of multimedia systems incorporate audio and video based on external data
paths only. Memory management, in this case, has a switching function only, i.e., to control an
external switch.

A first step towards integration was the incorporation of the external switch function into the
computer. Therefore, some dedicatéd adapter cards, that are able to switch data streams with
varying data rates, were employed.

A complete integration can be achieved with a full digital approach within the computer, ie.,
to offer a pure software solution. Data is transmitted between the single components in real-
time. Copy operations are - as far as possible - reduced to the exchange of pointers and the
check of access rights. This requires the access of a shared address space. Data can also
directly be transferred between different adapter cards. The transfer of continuous-media data
takes place in a real-time environment. This exchange is controlled but not necessarily exe-
cuted by the application. The data transfer has to be performed by processes running in a real-
time environment. The application running in a non-real-time environment generates, manipu-
lates and consumes this data streams at an operating system interface.

6.3 Device Management

The device management and the actual access to a device allows the operating system to inte-
grate all hardware components. The physical device is represented by an abstract device driver.



The physical characteristics of devices are hidden. In a conventional system such devices are,
e.g. a graphics adapter card, disk, keyboard, and mouse. In multimedia systems additional
devices like cameras, microphones, speakers, and dedicated storage devices for audio and
video have to be considered. In most existing multimedia systems such devices are not often
integrated by device management and the respective device drivers.

Existing operating system extensions for multimedia usually provide one common systemwide
interface for the control and management of data streams and devices. In Microsoft Windows
and OS/2 this interface is known as the Media Control Interface (MCI). The multimedia exten-
sions of Microsoft Windows, for example, provide the following classes of function calls:

¢ System commands are not forwarded to the single device driver (MCI driver), they are

served by a central instance. An example for such a command is the query concerning all
devices connected to the system ("Sysinfo").

» Each device driver has to be able to process compulsory commands. For instance the
query for specific characteristics ("capability info") and the opening of a device (“open")
are such commands.

» Basic commands refer to characteristics that all devices have in common. They can be
supported by drivers. If a device driver processes such a command it has to consider all

variants and parameters of the command. A data transmission is typically started by the
basic command “play”.

 Extended commands may refer to both, device types and special single devices. The
"seek" command for the positioning on an audio CD is an example.

On the basis of a controllable camera the required concepts are explained in more detail. A
camera has functions to adjust the focal length, focus and position. An abstraction of the func-
tionality provided by the physical camera as an video input device covers the following layers,
which relate to different components in a multimedia system:

« The application has access to a logical camera without knowledge about the specific
control functions of the actually employed camera. The focal length is adjusted in milli-
meters. The driver translates a specific “set focal length command" into a sequence of
camera hardware control commands and passes them to the control logic. The provision
of such an abstract interface and the transformation into hardware dependent commands
is a task of the device management of a multimedia operating system.

« Different input device classes have similar characteristics. The zoom operation of a cam-
era can be applied in a similar way to the presentation of a still image. The still image
would be zoomed. If, for instance, the image is stored on a photo CD with a given resolu-
tion the zoom operation would, according to the requested focal length, result in the pre-
sentation of images with different resolution respectively special parts of the image only.
This kind of abstraction is part of the programming environment of a multimedia system
and not task of an operating system, although in some cases it is performed by the oper-
ating system. The basic commands define several operations supported by different
devices. The basic command used for the start of a data transmission between the camera
and the video window of an application — called play command in this context — can be
used in a second realization for file transfer - as a kind of copy command.

To complete the description of the camera control, the positioning of the camera is discussed in
this paragraph. To change the position of the camera the application specifies the target coordi-
nates in a polar coordinate system. Yet, a concrete camera control can only execute commands
like "move swivel slope head in a specific direction with a defined speed”. The direction can be



“left" or "right", respectively "up” or "down". Eight different speed levels are given but it is
only possible to change the speed in steps of maximum two levels. During acceleration consec-
utively commands with speed level 2, 4, 6, 8 must be executed. It is the task of the camera
driver to perform the mapping of coordinates into this positioning controlled by time and
speed.

In order to define the required application interface the selectable control class can be subdi-
vided into four function categories [RSSS90]:

1. Defined, compulsory, and generic:
All operations that must be provided for each device driver regardless to its specific

functionality belong to this category. This comresponds to the above mentioned com-
mands of the MCL

2. Defined, compulsory, and device specific:
All functions and parameters specified in this category have to be provided by the device
driver. Therefore, it exists a defined interface in the respective operating system. For
example a camera driver has to be able to answer an inquiry for an eventual existing auto
focus mechanism.

3. Defined, but not compulsory:

For each device type, a set of functions is defined which covers all so fare known possi-
bilities. The functions can not be provided by all different devices and drivers. In case of
the camera, such functions are, €.g., to position and to adjust the focal length because not
every camera has these facilities. The interface is defined having in mind what is possible
and meaningful. If such a function is employed although it is not supported by the imple-
mentation a well defined error handling mechanism applies. The application can handle
this errors, and therefore it is independent of the connected physical devices.

4. Not defined, and not compulsory: o
.—.-.— We have to be aware that there always will be unpredictable "new" devices and special

developments. Hence, the operating system provides a fourth category of functions to
cover all these calls.

An unambiguous definition of these categories allows am easier integration of devices into the
programming environment. The multimedia extensions of todays operating systems have a

device management with a first step of functional distinction towards the above outlined cate-
gories.

7 System Architecture

The employment of continuous media in multimedia systems also imposes additional, new
requirements to the system architecture. A typical multimedia application does not require pro-
cessing of audio and video to be performed by the application itself. Usually data is obtained
from a source (e.g. microphone, camera, disk, network) and is forwarded to a sink (e.g.
speaker, display, network). In such a case the requirements of continuous-media data are satis-
fied best if it takes "the shortest possible path" through the system, i.e. to copy data directly
from adapter to adapter. The program than merely sets the correct switches for the data flow by
connecting sources to sinks. Hence the application itself never really tauches the data as it is
the case in traditional processing. A problem with direct copying from adapter to adapter is the
control and the change of quality of service parameters. In multimedia systems such an adapter
to adapter connection is defined by the capabilities of the two involved adapters and the bus
performance. In todays systems this connection is static. This architecture of low-level data
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streaming corresponds with proposals for using additional new busses for audio and video
transfer within a computer. It also enables a switch-based rather then a bus-based data transfer
architecture [Finn91][HaMc91]. Note, in practice we encounter header and trailers surround-
ing continuous-media data coming from devices and being delivered to the devices. In the case
of compressed video data, e.g. the MPEG-2 program stream contains several layers of headers
compared with the actual group of pictures to be displayed.

Most of todays multimedia systems have to coexist with conventional data processing. They
share hardware and software components. For instance, the traditional way of protocol pro-
cessing is slow and complicated. In high speed networks protocol processing is the bottleneck
because it can not provide the necessary throughput. Protocols like VMTP, NETBLT and XTP
try to overcome this drawback but research in this area has shown that throughput in most
communication systems is not bounded by protocol mechanisms but by the way they are
implemented [CIRS89]. Time intensive operations are, for example, physical buffer copying.
Since the memory on the adapter is not very large and it may not store all related compressed
images, data has to be copied at least once from adapter into main memory. Further copying
should be avoided. An appropriate buffer management allows operations on data without per-
forming any physical copy. In operating systems like UNIX the buffer management must be
available in both, the user and the kernel space. The data need to be stored in shared memory to
avoid copying between user and kernel space. For further performance improvement protocol
processing should be done in threads with upcalls, i.e. the protocol processing for an incoming
message is done by a single thread. A Development to support such a protocol process man-
agement is, for example, the x-Kemel.

The architecture of the protocol processing system is just one issue to be considered in the sys-
tem architecture of multimedia supporting operating systems. Multimedia data should be
delivered from the input device (e.g. CD-ROM) to an output device (e.g. a video decompres-
sion board) across the fastest possible path. The paradigm of streaming from source to sink is
an appropriate way of doing this. Hence the multimedia application opens devices, csmbhshes
a connection between them, starts the data flow, and returns to other duties.

Figure 24: Real-time (RTE) and non real-time environments (NRTE)



As stated above, the most dominant characteristic of multimedia applications is to preserve the
temporal requirement at the presentation time. Therefore multimedia data is handled in a real-
time environment (RTE), i.e., its processing is scheduled according to inherent timing require-
ments of multimedia data. On a multimedia computer the RTE will usually coexist with a non-
real-time environment (NRTE). The NRTE deals with all data that has no timing require-
ments. Figure 24 shows the approached architecture. Multimedia I/O devices are in general
accessed from both environments. Data such as a video frame, for example, is passed from the
RTE to the display. The RTE is controlled by related functions in the NRTE. The establishment
of communication connections at the start of a stream must not obey timing requirements, but
the data processing for established connections has to. All control functions are performed in
the NRTE. The application usually calls only these control functions and is not involved in the
active continuous-media data handling. Therefore the multimedia application itself typically
runs in the NRTE and is shielded from the RTE. In some scenarios users may want applications
to “process” continuous-media data in an application specific way. In our model such an appli-
cation comprises a module running as stream handler in the RTE. The rest of the applications
run in the NRTE, both using the available stream control interfaces. System programs such as
communication protocol processing and database data transfer programs make use of this pro-
gramming in the RTE. Whereas applications like authoring tools and media presentation pro-
grams are relieved from the burden of programming in the RTE, they just interface and control

the RTE services. Applications determine processing paths which are needed for their data pro-
cessing and the control devices and paths.

To reduce data copying buffer management functions are employed in the RTE as implementa-

tion means for data transfer. This buffer management is located "between" the stream handlers.

Stream handlers are all entities in the RTE which are in charge of multimedia data. Typical

stream handlers are filter and mixing functions, but also parts of the communication subsystem

described above can be treated in the same way. Each stream handler has endpoints for input

and output through which data units flow. The stream handler consumes data units from one or
“more input endpoints and generates data units through one or more output endpoints.

Multimedia data usually "enters" the computer through an input device, a source, and "leaves™
it through an output device, a sink (where storage can serve as an J/O device in both cases).
Sources and sinks are implemented by a device driver. Applications access stream handlers by
establishing sessions with them. A session constitutes a virtual stream handler for exclusive
use by the application which has created it. Depending on the required QoS of a session, an
underlying resource management subsystem multiplexes the capacity of the underlying physi-
cal resources among the sessions. To manage the RTE data flow through the stream handlers
control operations are used which belong to the NRTE. These functions make up the stream
management system in the multimedia architecture. There are operations provided by all
stream handlers (e.g. operations to establish sessions and to connect their endpoints) and oper-

ations specific to individual stream handler (they usually determine the content of a multimedia
stream and apply to particular I/O devices).

Some applications which are all in the NRTE have the need to correlate discrete data such as
text and graphics with continuous streams or to post-process multimedia data (e.g. to display
the time stamps of a video stream like a VCR). These applications need to obtain segments of
multimedia at the stream handler interface. With a grab function the segments are copied to the
application as if stream duplication took place. Due to this operation the data units loose their
temporal properties because they enter the NRTE. Applications that have to generate or trans-
form multimedia data keeping the real-time characteristics must use a stream handler included
in the RTE, which performs the required processing.



The synchronization of streams is a function that is provided by the stream management sub-
system. Synchronization is specified on a connection basis and can be expressed using the
notions of clock or logical time systems. It determine points in time at which the processing of
data units shall start. For regular streams, the stream rates can be used to relate data units to
synchronization points. Sequence numbers can accomplish the same. Time stamps are a more
versatile means for synchronization as they can also be used for non periodic traffic. Synchro-
nization is often implemented by delaying the execution of a thread or by delaying the receive
operation on a buffer exchanged between stream handlers.

Many-operating systems already provide extensions to support multimedia applications. In the
next paragraphs three of these multimedia extensions are presented.

7.1 UNIX Based Systems

In the Unix operating system the applications in the user space generally make use of system
calls in the NRTE. Either the whole operating system or a part of it is also located in the NRTE
and in the kernel space. Extensions to the operating system providing real-time capabilities
make up the RTE part of the kernel space (see Figure 25).

user
space

kernel

Figure 25: NRTE and RTE in UNIX systems

The actual implementation of the RTE varies substantially:
» SUN OS does not yet provide RTE.

« AIXincludes real-time priorities. This feature provides the basis for the RTE in the AIX
based Ultimedia server.

» The IRIX operating system on Silicon Graphics Workstations has real-time capabilities,
1.e., it includes a RTE.

7.2 QuickTime

QuickTime is a software extension to the Macintosh System. It provides the capability to cap-
ture, store, manage, synchronize, and display continuous-media data. A more detailed descrip-
tion can be found in [DrMu92]. It introduces digitized video as standard data type into the



system, and it allows an easier handling of other continuous media like audio and animation.
Standard applications are enhanced by multimedia capabilities. Apple has announced Quick-
Time to be available for other operating systems like Windows and UNIX as well. An integra-
tion of future hardware and software developments is possible.

The standard data type of QuickTime is a movie. All kinds of continuous-media data are stored
in movie documents. Additionally time information like the creation and modification date,
-duration etc. is also kept in the movie document. With each movie, a poster frame is associated
that appears in the dialog box. Other information like current editing selection, spatial charac-
teristics (transformation matrix, clipping region) and a list of one or more tracks are associated
with the movie. A frack represents a stream of information (audio or video data) that flows in
parallel to every other track. With each track information like creation and modification data,
duration, track number, spatial characteristics (transformation matrix, display window, clip-
ping region), a list of related tracks, volume and start time, duration, playback rate, and data
reference for each media segment is stored. A media segment is a set of references to audio
and video data including time information (creation, modification, duration), language, display
or sound quality, an media data type, and data pointers. Future releases will have, apart from
audio and video tracks, "custom tracks" such as a subtitle track. All tracks can be viewed or
heard concurrently. The tracks of a movie are always synchronized. Since movies are docu-
ments they can not only be played (including pausing, stepping through etc.) but also be edited,
operations like cut, copy and paste are possible. Movie documents can be part of other docu-
ments. QuickTime is scalable, hardware components like accelerator or compressor/decom-
pressor cards can be employed.

Application Application Application Application Application

Application
Defined
Component

Figure 26: QuickTime Architecture

The QuickTime architecture comprises three major components (see Figure 26):

The Movie Toolbox offers a set of services to the user that allows to incorporate movies into
applications. These applications may directly manipulate characteristics of audio and video
data of movies. The movie is integrated in the desktop environment. Movie data can be
imported and exported with the system clipboard and a movie can be edited within the Movie
Toolbox.

The second component known as the Image Compression Manager provides a common inter-
face for compression and decompression of data which is, independent of the implementation,



to and from hard disk, CD-ROM, and floppy. It offers a directory service in order to select the
correct compression component. Different interface levels for different application require-
ments are available. The compression techniques are a proprietary image compression scheme,
a JPEG implementation, and a proprietary video compressor for digitized video data (leading
to a compression ratio of 8:1 and if temporal redundancies are also removed to a ratio of 25:1).
An animation compressor can compress digital data in lossy and lossless (error-free) mode. A
graphics compressor is also available. The pixel depth conversion in bits per pixel can be used
as a filter to be applied in addition to other compressors.

The Component Manager provides a directory service related to the components. It is the
interface between the application and various system component. It shields developers from
having to deal with the details of interfacing with specific hardware. In the Component Man-
ager object oriented concepts (e.g. hierarchical structure, extensible class libraries, inheritance
of component functionality, instance-based client/server model) are applied. Thus, applications
are independent of implementations, they can easily integrate new hardware.and software, and
they can adapt to the available resources. The components managed by the Component Man-
ager are the “Clock”, the “Image Compressor" and "Image Decompressor”, the "Movie Con-
troller”, the "Sequence Grabber"”, "Sequence Grabber Channel" and the "Video Digitizer".
Further, application defined components can be added.

There is a simple resource management scheme applied to the local environment only: In case
of scarce resources audio is prioritized over video, ie., audio playback is maintained (if possi-
ble) whereas single video frames might be skipped. If an application calls the Movie Toolbox
during playback, there are the following possibilities to handle these calls.

+ The commonly used mode is a preemptive calling sequence, where the application
returns to the system after each update. This might cause a jerky movie output.

+ With a non-preemptive calling sequence, the application does not return to the system
while a movie is played. This counteracts the multitasking capability.

- ~—*+=%~~The higli-performance Controlled preemptive calling sequence is a compromise, where
the application gives up the control to the Movie Toolbox for a specified time period
(e.g., 50 ms).

As additional resource management scheme for better performance, it is recommended to turn
off the virtual memory while playing QuickTime movies. If it is on, it will cause the sound to
skip and it will lower the frame rate during the playback of a movie. However, no RTE exists.

The concept of components in QuickTime allows for easy extension without effecting applica-
tions. It attempts to form a hierarchical structure of functionality by components. The movie
controller component eases user interface programming. A disadvantage of QuickTime is that

there is no clear layering of abstractions for programmers and that the functionality of manag-
ers and components sometimes overlap.

7.3 Windows Multimedia Extensions

The Microsoft Windows Multimedia Extensions (WME) are an enhancement to the Windows
programming environment. They provide high-level and low-level services for the develop-

ment of multimedia applications for application developers, using the extended capabilities of
a multimedia personal computer [Micr91].

The following services for multimedia applications are provided by the WME:

= A Media Control Interface (MCI) for the control of media services. It comprises an
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Figure 27: MS Windows Multimedia Extensions architecture

extensible string-based and message-based interface for the communication with- MCI
device drivers. The MCI device drivers are designed to support the playing and recording
of waveform audio, the playing of MIDI (Musical Instrument Digital Interface) files, the
playing of compact disc audio from a CD-ROM disc drive, and the controlling of some
video disc players.

A Low-Level API (Application Programming Intérfaoc) provides access to multimedia
related services like playing and recording of audio with waveform and MIDI audio
devices. It also supports the handling of input data from joysticks and precise timer ser-
vices.

A multimedia file I/O service provides buffered and unbuffered file I/O. It also supports
the standard IBM/Microsoft Resource Interchange File Format (RIFF) files. These ser-
vices are extensible with custom I/O procedures that can be shared among applications.

The most important device drivers are available for multimedia applications are:

« An enhanced high-resolution video display driver for Video 7 and Paradise VGA
cards providing 256 colors, improved performance, and other new features.

« A high-resolution VGA video display driver allowing the use of a custom 16-color
palette as well as the standard palette.

« A low resolution VGA video display driver providing 320-by-320 resolution with 256
colors.

The Control Panel Applets that allows the user to change display drivers, to set up a
screen saver, 1o install multimedia device drivers, to assign waveform sounds to system



alerts, to configure the MIDI Mapper, and to calibrate joysticks. A MIDI Mapper sup-
ports the MIDI patch service, that allows MIDI files to be authored independently of end-
user MIDI synthesizer setups.

Figure 27 shows the rough architecture of MS Windows Multimedia Extensions:

The MMSYSTEM library provides the Media Control Interface services and low-level multi-
media support functions. The communication between the low-level MMSYSTEM functions
and multimedia devices such as waveform, MID], joystick, and timer is provided by the multi-

media device drivers. The high-level control of media devices is provided by the drivers for the
Media Control Interface.

The main concepts of the architecture of the Multimedia Extensions are extensibility and
device independence. They are provided by a translation layer MMSYSTEM) that isolates
applications from device drivers and centralizes device independent code, run-time linking that
allows the MMSYSTEM translation layer to link to the drivers it needs, and a well defined and
consistent driver interface that minimizes the development of specialized code and makes the
installation and upgrade process easier.

7.4 OS/2 Multimedia Presentation Manager/2

The Multimedia Presentation Manager/2 (MMPM/2) is part of IBMs Operating System/2 (OS/
2). OS/2 is a well suited platform for multimedia, because it supports, €.g., preemptive multi-
tasking, priority scheduling, overlapped 1/O, and demand-paged virtual memory storage.

l- Media Device Manager
i Media
F e ’ ! Driver R e T
Non Real-Time l T
Environment

Sync/Stream

Manager

Stream Manager Helpers

Source HW |-
Device
Driver

Figure 28: The architecture of the OS/2 Multimedia Presentation Mangager/2

Figure 28 provides an overview of the architecture.



The Media Control Interface (MCI) is a device-independent programming interface that

offers commands similar to an entertainment system. The following list comprises a selection
of typical MCI-commands:

« "Open", "close", "status of a device" are provided for all devices.

* For playback and recording device-dependent "play", "record", “resume", “stop”, "cue",
and "seek" commands exist.

» “Set cue point" allows for synchronization.
"Get table of contents of a CD-ROM" is an example of a device specific command.

A logical device in MMPM/2 is a logical representation of the functions available from either a
hardware device, a hardware device with software emulation or a software emulation only. The

actual implementation is not relevant to an application because the MCI provides this device
independence.

Examples for logical devices are an "Amplifier-Mixer Device" similar to a home stereo ampli-
fier-mixer, a "Waveform Audio Device" to record and play digital audio, a sequencer device
for MIDI-sounds, a "CD Audio Device" that provides access to audio compact discs (CD-DA),
a "CD-XA Device" to support CD-ROM/XA discs and a "Videodisc Device" to control video
disc players which deliver analog video and audio signals.

The Multimedia I/0 functions enable media drivers and applications to access and manipulate
data objects that are stored in memory or on a file system. Storage system I/O processes handle
the access to specific storage devices. File format I/O processes manage the access to data
stored in file formats like "RIFF Waveform" and "BitMap". They use the services of the stor-
age system J/O processes.

The implementation of data streaming and synchronization is supported by the Stream Pro-
gramming Interface (SFI). It provides access to the SyncStream Manager that coordinates and

~=——-yrramgges thé data buffers and synchronization data. Pairs of stream handlers implement the
transport of data from a source to a sink.

Ease of use is supported in MMPM/2 on several levels. The installation of programs and setup
of devices is supported by unified graphical user interfaces that centralize these functions for
easy access. Also a style guide for applications ensures that there is 2 common look and feel of
applications that correspond to this guide. There is a high flexibility because the application
developers and device providers can integrate their own logical devices, I/O processes and
stream handlers. So, new media devices, data formats, etc. can be integrated in MMPM/2 and
can be used by every application using the Media Control Interface.

0S/2 with MMPM/2 is a platform that has some basic operating mechanisms to support the
processing and presentation of multimedia information as it is needed in multimedia applica-
tion scenarios. It incorpororates a RTE implemented as a set of device drivers. MMPM/2 is an
advanced platform for the development of these multimedia applications by providing the
media and stream abstractions.

Finally it should be pointed out that MMPM/2 and WME look very similar and have many
concepts in common.



8. Concluding Remarks

In this paper we addressed the major issues of operating systems related to multimedia data
processing namely, resource’ management, scheduling, and file systems. This discussion
includes the most relevant existing architectures of such systems.

The concepts employed by current multimedia operating systems have been .initially used in
real-time systems and were adapted to the requirements of multimedia data. Todays operating
systems incorporate these functions either as device driver or as extensions based on the exist-
ing operating system scheduler and file systems. In a next step an integration of real-time pro-
cessing and non real-time processing in the native system kernel can be expected.
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;5;1&!:: Signal - o
Aoy Petri Netze als Beschreibungs- und Analysehilfen zur
AnJOVQ/ Strukturierung von Algorithmen auf Mehrrechnersysteme

»

LaBe BH

K.Hoffmann, R.Steinmetz
Institut fir Ubertragungstechnik
Technische Hochschule Darmstadt, Merckstr.25, 6100 Darmstadt

Einleitung
Petri Netze sind ein Hilfsmittel zur Spezifikation, Modellierung und

Entwicklung von sehr unterschiedlichen Systemen auf verschiedenen Abstrak-
tionsebenen: Von der Programm- und Hardwarebeschreibung /Cap Dspl 82/ bis zur
Darstellung chemischer Prozesse, juristischer Beweisfihrung und wirtschaftli-
cher Produktionsabldufe. Die besonderen Vorteile liegen in der Verarbeitung
paralleler Prozesse, in dem fundierten mathematischen Hintergrund, nicht nur
in der Simulation, sondern auch in der Analysierbarkeit und in den Moglichkei-
ten zur graphischen Darstellung /Peterson 81, Reisig 82/.

Mit Unterstitzung eines geeigneten Petri - Netzes werden hier digitale Signal-
verarbeitungsanlagen u.A. auf ihre Verklemmungsfreiheit bhin untersucht.
Gleichzeitig werden Aussagen zur vorteilhaften Strukturierung (Aufteilung) der
Algorithmen fir das spdtere ProzeBsche-
duling bei Mehrrechnerbetrieb getrof-
fen. Das System soll mehrere Algorith-
men verarbeiten, die von mehreren Da-
tenstrémen gespeist werden, Ergebnisse
liefern und mit der Umgebung Kommunika-
tionsprotokolle abwickeln. Die Algo-
rithmen sollen als Prozesse untereinan-
der Informationen austauschen (Bild 1). Bild 1
Hier sollen weder eine Parallelisierung von Algorithmen /Brent 74, Coleman
Hughes Powell 81/, eine Analyse paralleler Ausdriicke /Bernstein 66/, noch
Schedulingprobleme /Ecker 77/ betrachtet werden.

,81:y1

Die Systementwicklung

Ausgehend von der Aufgabenstellung werden die zu implementierenden Algo-
rithmen definiert. AnschlieBend werden sie in der Petri Netz Beschreibungs-
sprache PNDL kodiert. Auch die Systeminternen Abh#ngigkeiten miissen in PNDL
klar spezifiziert werden. Fir die weitere Strukturierung sind folgende Erl&u-
terungen notwendig:
Eine logisch zusammenhdngende Sequenz von zeitlich sequentiellen Ablaufen in
einem System heiB3t ProzeB P. Ein Algorithmus wird einmal beschrieben und kann
in etlichen Inkarnationen (als Prozesse P1,P2..Pk) gleichzeitig auf einem

System laufen. Die Algorithmen Al,A2,..,An , deren Interkommunikation und
der Kommunikation mit anderen Systemen bilden das System. Dieses 1aBt sich
dann stets in eine Menge von Prozessen P1,P2,..,Pm aufteilen. Dabei kann

ein ProzeB aus mehreren Algorithmen oder ein Algorithmus aus mehreren Prozes-
sen bestehen.

Bei der Spezifikation in PNDL wird jeder Algorithmus durch verschiedene
Sprachelemente beschrieben und kann noch weiter untergliedert werden (ent-
sprechend “Program Refinement”). Diese Darstellungsweise bildet das statische
Petri Netz. Das Netz kann nun analysiert werden, wobei gegebenenfalls enthal-
tene Fehler (Verklemmungen) eliminiert und zeitkritische Pfade .erkannt werden.
In einem weiteren Schritt werden bei verschiedenen Datenkonstellationen an den
Eing&ngen alle Prozesse (alle Inkarnationen) analysiert (dynamisches Petri
Netz). Dabei erhilt man zusidtzlich Hinweise auf ein optimales Scheduling, die
dem ProzeBmanager (Teil des Steuerwerks) des spdteren Systems als ProzeBver-
teilungshinweise dienen k&nnen. Das Ziel ist dabei eine gleichm#Bige Ausla-
stung von Prozessoren, Sicherheitsaspekte oder die Minimierung der systemin-
ternen Kommunikation /Hoffmann Steinmetz 83/. Dann kdnnen abhingig oder unab-
hdngig von der Petri Netz Ebene Simulationsverfahren angewendet werden um die
Optimierung der Realisierung zu erreichen.
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Ein Petri Netz Modell und die Petri Netz Beschreibungssprache PNDL
Es existieren in der Literatur eine Vielzahl von grundsatzlich unterschied-
lichen Modellen, die alle unter dem Oberbegriff “Petri Netz® zusammengefaBt
sind. Die beiden einfachen und allgemein bekannten Arten sind die Bedin-
gungs-Ereignis (B/E) und die Stellen-Transitionen (S/T) Netze /Reisig 82/.
Ein Bedingungs-Ereignis Netz B/E ist ein 3-tupel: B/E = (Netz,Init,Schalt)
mit:
-Netz = (Bedingungen,Ereignisse,FluBrelation) ist ein 3-tupel und ein ge-
richteter Graph mit:
-Bedingungen: Nichtleere endliche Menge B von Bedingungen (Knotentyp 1
des Graphs).
-Ereignisse: Nichtleere endliche Menge E von Ereignissen (Knotentyp 2
des Graphs), E und B seien disjunkte Mengen.
-FluBrelation: Teilmenge von {B x E}JU{E x B} (Kanten des Graphs ohne
Schlingen).
-Init : Initialisierung des B/E Netzes = B =» {0,1} . Marken werden auf die
Stellen abgebildet.
-Schalt : Menge der Schaltregeln. Siehe hierfiir z. Bsp. /Reisig 82/ oder
/Peterson 81/.
Die Vorteile der B/E Netze liegen in ihrer einfachen Analysierbarkeit. Soll
dagegen ein komplexes Problem als B/E System darstellt werden, so bedeutet
dies einen groBen, wenn nicht gar unmdglichen manuellen Kodierungs- und
Abstraktionsaufwand. Die Fehlerquelle bei der Umsetzung des Problems in das
B/E Netz ist nicht vernachldssigbar! Diese Problematik ist vergleichbar mit
der Programmierung in hSheren Programmiersprachen und in Assemblersprache.
Deshalb wurde fur komplexere Problemstellungen ein "hoheres” Petri Netz Modell
mit einer eigenen Beschreibungssprache PNDL entwickelt. Eine der Erweiterungen
gegeniiber B/E und S/T Netzen liegt wie bei Pradikat-Ereignis (Pr/E) Netzen
/Genrich Lautenbach 79/ in der Individualit#t der Marken.
Durch eine Petri Netz Trans-
formation wird ein B/E Netz > PRDL
generiert oder es werden die —
nicht abbildbaren Konstrukte

des beschriebenen Systems auf- evtl. Petri Netz Transformator

gezeigt (Bild 2). Der Anwender |Redesign

wird dann die Analysemdglich- oder

keiten des B/E Netzes ausnut-

zen, indem er versucht, seine “f““°i$°‘:f ierhare

Systembeschreibung an  der 'I‘(‘:::t:;::: et ﬁ!edingungs-Ereignis Netz]
nicht transformierbaren Stelle

geeignet zu &ndern. Bild 2

In PNDL werden die Marken wie Variable einer Programmiersprache mit Namen und
Typ erfalt:
Zum Beispiel: (Terminalsymbole in GroBschrift)
TOKEN TYPE messagetype IS RECORD tln IS INTEGERSUBSET (1..1000)
signal IS ELEMENTOFSET (wait,do)
END RECORD
VAR inmessage, outmessage IS messagetype
Den Stellen (Bedingungen) werden Attribute zugeordnet:
Namen, minimale und maximale Verweilzeiten, Warteschlangenorganisationen,
Prioritdten fur bestimmte Marken, Kapazitdten in Abh&dngigkeit der Marken-
werte und Markentypen.
Den Aktionen (Ubergange) werden Stellen und Transitionseigenschaften zugeord-
net:
Namen, minimale und maximale Ausfiihrungszeiten, Boolsche Verkniipfungen als
Schaltregeln (B/E, S/T und Pr/E Netze haben nur UND Verkniipfungen).






Zum Beispiel:
ACTIONS ...
getsignal: ACTIVATED FROM signalfifo NAMED inmessage
IF (inmessage.signal = wait) OR
(inmessage.tln = 110)

THEN (SEND police VAR outmessage = inmessage)

AND (GET FROM other TYPE ANY)
Gegeniiber anderen Petri Netz Modellen (zum Beispiel B/E Netzen) wurde so eine
komfortablere Beschreibungsmethode entwickelt. PNDL wurde fir Untersuchungen
der ProzeBinterkommunikation mit Nachrichten entwickelt /Hoffmann Steinmetz
83/. Andere Entwicklungen mit anderen Zielsetzungen sind: /Cap Dspl 82/, /Ep-
silon 82/, /Fun 83/ und /Necon 83/.

Beispiel: Sicherungsanlage

Die Sicherungsanlage (Bild 3) bestehe aus n Fihlern (F), die z.Bsp. unbefugtes
Betreten von Raumen feststellen. Ein ProzeB Fiihler (PF) lege den Schwellenwert
zwischen Normal- und Ausnahmezustand fest, er aktiviere bei Schwellenwerti-
berschreitung einen ProzeB Koordinator (PK) (Bild 4), indem er ihm die Meldung
<alarm> sendet. AuBerdem reagiere der ProzeB Fiihler auf Anfragen des eige-
nen ProzeB Koordinators. Die ProzeB Koordinatoren kommunizieren untereinan-
der, um das AusmaB des aufgetretenden Alarmfalls zu beurteilen. Bei entspre-
chender Alarmsituation werde ein ProzeB Polizei (PP) durch eine Meldung akti-
viert, dieser gehdre aber nicht mehr zum. Sicherungssystem. Der Pro-
ze Uberwacher (PU) diene der Wartung und Initialisierung des Systems.

PF1 Pii PKZ el PKn
_.[ PF. (Alarm) {Reset) (Alarm 7} ‘
! Fa |¢Antwort : Alarm) (Statistik 1) (Alles 0K>
{Aniwort : Ruhe) {(Alarm 7} (auch Alarm
PM
+ Fiihler | I
. .. (Alarm ) (Statistik) CHilfe) {Alles 0K)
PFy Prozef: Fibler | (Antwort : Ruhe) Cauch Atarm
. PK;: Prozefi : Koordinator | hatwort Alarm D
b PU = Prozen: lberwachung n;‘chio Rulhe)
y PP : Prozef: Polizei PF1 ) Pl PP PKZ e PK“
Bild 3 Bild 4

Ausschnitte aus dem in PNDL beschriebenen System:
SYSTEM sicherungsanlage;
ANALYSE INVARIANTEN,SHOW_DEADLOCKS,REACHABILITYGRAPH;
TOKEN TYPE pf pk_type IS | ELEMENT_| OF SET (Alarm, Antwort Alarm,Antwort_Ruhe)

VAR inmessage IS pf_pk type

ENVIRONMENT ... (* Fihler, Mensch am PU,... *) ...
PROCESS pkl
PLACES ... entrypoint = ...
ACTIONS ...
alarm von PF_auswertung: ACTIVATED FROM entrypoint NAMED inmessage
IF firstalarm THEM SEND PROCESS pkZ, .. pkn PORT entrypoint
VAR outmessage = auch_alarm? ...

END SYSTEM sicherungsanlage.
Durch die Netz Transformation (Bild 2) ergibt sich ein B/E Netz. Der fir die
Analyse interessante Teil sei hier beschrieben (die Nachbedingungen haben fir
das Beispiel keine Bedeutung und werden deshalb nicht explizit formuliert):

IF (frei UND Eigenalarm) THEN (sende auch Alarm? UND warte);

IF (warte UND empfange Antwort) THEN (werte aus UND frei); IF (frei UND
empfange auch Alarm?) THEN Kldrung; IF Klirung THEN (sende Antwort UND frei);
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' ¢ Bild 5

Die Zustande dieses Teilsystems lassen sich durch einen Zustandsvektor dar-
stellen: Cigenalarmy f'rm'] Auswerlung Aanortl Warte, Kla’érunqz axl('h_l\]arm?z
(',f,‘.Q.‘.*,*,1,‘,1,5,1,5,1)
Wartey Kldrungy auch_Alarm?y Eigenalarm, frei, Auswertungy Antwort; .i.
Mit der in Bild 5 gezeigten Initialisierung ergibt (1,0.1,0.0.0.0,1.0,1,0,0,0.0)
sich dieser Ausschnitt (Bild 6) aus dem Zustands- Tat N
graphen. Die Analyse zeigt die enthaltere Verklem- e
mung auf: Wenn beide Prozesse durch einen Eigen- {0,1.0.6.0.1,0,1,0,1,0,0,0,0)
alarm aktiviert sind und sich gegenseitig abfragen Tazp yVe2
(auch_Alarm?), dann sind die Bedingungen Wartel und o
WarteZ gesetzt. Nur durch ein anderes Netz oder
zusdtzliche Marken 1aBt sich diese Verklemmung auf- shne Folgeznstand]
16sen. Im Fall des Sicherungssystems wurden Zeitbe-
dingungen (Timer) eingefihrt. Bild 6
Durch die bisher unerwdhnten Sicherheitsanforderungen werden jeweils ein Pro-
zel_Fihler und der dazugehtrige ProzeB Koordinator in einer Rechnereinheit
zusammengefaBt. Der ProzeB Polizei ist extern, der ProzeB Uberwacher kann auf
einer PF-PK Rechnereinheit laufen oder eine eigenstdndige Rechnereinheit
beanspruchen.

(0.1.0,0,0.1,0.0,1,0.0.0,1.0.}
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