
. ~ -~
~ ~

'[~tei95b]. j,': .R@lfSfeinme.g; ~.&fyltj&ed@,~ile System Surve* ;Appaches for ~ n t i n u ~ b '
Media Disk Scheduling, erscheint in Com$&i Communiqtions, April 1995. .'

. .

Multimedia file systems survey:
approaches for continuous media
disk scheduling

.

Ralf Steinmetz

We understand multimedia data processing as the handling of
audio and video data together with traditional data like text
and images. This multimedia data is to be stored with and by a
multimedia file system which compnses one or more of the
following three issues: (1) The file system can rely on various
types of different physical storage devices; however, we usually
encounter the same devices as in any othcr high performance
Computers; (2) the organization of files in a contiguous order
and thc data structunng with ropes and Strands improves the
throughput at thc expense of additional management effort;
(3) the main goal of traditional disk scheduling is to reduce the
cost of seek operations, to achieve a high throughput, and to
provide a fair disk access. In multimedia disk scheduling the
main goal in to meet all deadlines of the time critical tasks. The
buffer requirement should be kept low, and aperiodic requests
should not starve, i.e. a balance between the time constrainrs
and eff~ciency must he found. This paper presents a survey of
lhese three issues, with the focus on disk scheduling. It shows
how the traditional disk scheduling techniques 'first come first
serve', 'shortest seek time first', SCAN and C-SCAN are
enhanced or substitutcd by EDF, SCAN-EDF, 'group
sweeping scheduling', a 'mixed strategy' and a 'continuous
media file systcm' approach.

Keywards: multimedia fde systems, continuaus media, disk
scheduling

The operating system is the shield of the computer
hardware to all other Software components. I t provides
a comfortable environment for the execution of
programs, and it ensures a n effective utiiization of the
Computer hardware. The operating system offers
various services related to the essential resources of a
computer: CPU, main memory. storage and all input
and output devices. In this paper we focus on storage,
i.e. file system aspects.

IBM Eurapean Netwarking Center, Creative Multimedia Studios,
Van~trowstrae 18, 69115 Heidelberg. Germany (Email: steinmetr@
met.ibm.cam)

The file system is said t o b e the most visible pat t of an
operating system. Most programs write or read on
files- their program code as well as User data stored in
files. The organization o f the file system is a n important
factor for the usability and convenience of the operating
system. A file is a sequence of information held as a unit
for storage and use in computer systemsl. Files are
stored in secondary storage, and they can be used by
different applications. The lifespan of files is usually
longer than the execution of a program. In traditional
file systems, the information types stored in files are
sources, objects, libraries and executables of programs,
numeric data, text, payroll records, e t ~ . ~ .

In multimedia systems, the stored information also
Covers digitized video and audio as being the contin-
uous media data. As a prerequisite Tor the archiving
and retrieval of this type of media data, the systems
need to cope with the respective bandwidth demands
and they must have sufficient storage ~ a ~ a c i t y ' . ~ .
According to, for example, Doganata and ~ a n t a w y ~ ,
today we can cope with these demands: We distinguish
between:

expanded storage (these are Random Access Mod-
ules-the bandwidth and capacity is limited by the
surrounding system components. Typical values are
a bandwidth of 100 Mbytels- l Gbyte/s and storage
capacities up to 100 Gbyte);
disk Storage (with one disk of such a disk subsystem
holding 0.5-2 Gbyte and a read throughput of each
arm of 1 4 Mbytels); and
tape libraries (which can hold 1-15 Tbyte of media
data and have a limited bandwidth of a few Mbyte/
s). In the following we will concentrate o n disk
storage, as this is the most widely used media for
persistent storage in computing systems. There we
encounter work o n distributed hierarchical storage,
including disk arrays6. The basic idea is to improve
the throughput and capacity by storing data of each

0140-3664195/$09.50 Q 1995 Elsevier Science B.V. All rights reserved
computer cornmunications voiume 18 number 3 march 1995 133

Multimedia file systems survey: R Steinmetz

audio and video file on several volumes (disk 110
bandwidth is rnaximized by striping; seek times are
minimized by grouping and sorting). In multimedia
fiie systems we do also have real-time 'read' and
'write' demands. Therefore, additional requirements
in the design and implementation of file systems
have to be considered.

Multimedia applications demand the processing of
audio and video data such that humans perceive these
media in a natural-error free and non-artificial-way.
This continuous media data has its origin in sources like
microphones, cameras and files. From these sources the
data is transferred to destinations like loudspeakers,
video windows and files located at the Same computer
or at a remote station. On the way from the source to
the sink, the digital data is processed by at least some
type of rnove, copy or transmit operation. Therefore, in
this data manipulation process there are always many
resources which are under the control of the operating
system7. Files are such resources. The integration of
discrete and continuous multimedia data provides a
need for additional services. The main point in this
context is the real-time processing of continuous media
data. The process management must take into account
the timing requirements imposed by the handling of
multimedia data. Appropriate scheduling rnethods
should thus be appliedL 4.

The file system provides access and control functions
for the storage and retrieval of files. From the user's
viewpoint, the organization and structure allowed is
important. The internals, which are more important in
our context, i.e. the organization of the file system deals
with the representation of information in files, their
structure and organization in secondary storage.
Because of the timing requirements of multimedia data,
disk scheduling is essential.

The next section Starts with a brief characterization of
traditional file systems and disk scheduling algorithms.
Subsequently, different approaches to organize multi-
media files and disk scheduling algorithms for the use in
multimedia systems are discussed.

TRADITIONAL FILE SYSTEMS

The two main goals of traditional files systems are to
provide a comfortable interface for file access to the
User, and to make efficient use of storage media.
Whereas the first goal is still an area of interest for
research (e.g. indexing for file systemsB and intelligent

File structure

We commonly distinguish between two methods of file
organization: sequential and non-sequential.

In sequentialsforage, each file is organized as a simple
sequence of bytes or records. Files are stored consecu-
tively on the secondary storage media, as shown in
Figure I. They are separated from each other by a well
defined 'end of file' bit Pattern, character or character
sequence. A file descriptor is usually placed at the
beginning of the file, and is, in some systems, repeated
at the end of the file. Sequential storage is the only
possible way in which to organize the storage on tape,
but it can also be used on disks. The main advantage is
its efficiency for sequential access, as well as for direct
access'. Disk access time for reading and wnting is
minimized.

Additionally, for a further improvement of perfor-
mance with caching, the file can be read ahead of the
User programiO. In systems where file creation, deletion
and size modification occur frequently, sequential
storage has major disadvantages. Secondary storage is
split, fragmented, through creation and deletion opera-
tions, and files cannot be extended without copying all
of the files into a larger space. It is possible to copy the
files such that all of them are located adjacently, i.e.
without any 'holes' between them.

In non-sequential Storage the data items are stored in a
non-contiguous order. Two main approaches exist:

b One way is to use linked blocks, wherc physical
blocks, containing consecutive logical locations, are
linked using pointers. The file descriptor must
contain the number of blocks occupied by the file,
the pointer to the first block, and it may also have
the pointer to the last block. A senous disadvantage
of this method is the cost of implementation for
random access, because all prior data has to be
read. In MS-DOS a similar method is applied. A file
allocation table (FAT) is associated with each disk.
One entry in the table represents one disk block.
The directory entry of each file holds the block
number of the first block. The number in the slot of
an entry refers to the next block of a file. The slot of
the last block of a file contains an end-of-file
mark".

b Another approach is to store block information in
mapping tables. Each file is associated with a table
where, apart from the block numbers, information

contiguou Placement .
file systems ior thc contenr-based associari\e access ro
file sysiem daia9j. ihe siriicture. organization and ~ ~ z ~ z ~ B ~ ~ ~ ~ H ~ ~ c

I I R Tile 11 2nd file 1 1 3rd tile access of data stored on disk have bcen extensively I

discussed and investigated over the last few decades. non.contiguousplacement
To understand the specific multimedia developments in 9
this area. this section gives a brief overview on files, file ist I

system organizations and file access mechanisrns.
I

Later, disk scheduling algorithms for file retrieval are
discussed. ~ i g u r c I Contiguous and non-coniiguous Storage

134 Computer communications volume 18 number 3 march 1995

Multimedia file systems survey: R Steinmetz

like owner, file size, creation time, last access time. interleavedstmage
etc. are stored. ~ h o s e tables usuily have a fixed
size, which means that the number of block
references is bounded. Files with more blocks are
referenced indirectly by additional tables assigned
to the files. In UNIX, with each file a small table
(on disk) called an i-node is associated (See
Figure2). The indexed sequential approach is an
example of multi-level mapping; where logical and
physical organization is not clearly separatedl.

Directory structure

Files are usually organized in directories. Most of
today's operating systems provide tree structured
directories, where the User can organize the files
according to his personal needs. In multimedia systems,
it is important to organize files in a way that allows an
easy, fast and contiguous data access.

Disk management

Disk access is a slow and costly transaction. In
traditional systems, a common technique used to
reduce disk access times is block caching. Using a
block cache, blocks are kept in memory because it is
expected that future read or write operations will access
this data again. Thus, performance is increased due to
the shorter access time. Another way in which to
increase performance is to reduce disk arm motion.
Blocks that are likely to be accessed in sequence are
placed together on one cylinder. To refine this method,
the rotational positioning can be taken into account.
Consecutive blocks are placed on the Same cylinder but
in an interleaved way, as shown in Figure 3.

Another important issue is the placement of the
mapping tables (e.g. I-nodes in UNIX) an the disk. If
they are placed near the beginning of the disk then the
distance between them and the blocks will be, on
average, half the number of cylinders. To improve this,
they can be placed in the middle of the disk, hence the

Figure 2 The UNIX i-node"

non-interleaved storage
3rdfile I I I I I

Figure 3 lnterleaved and non-interleaved Storage

average seek time is roughly reduced by a factor of two.
In the same way, consecutive blocks should be placed
on the same cylinder. The use of the same cylinder for
storage of the mapping tables and the referred blocks
also improves the performance.

Disk scheduling

Whereas strictly sequential storage devices (e.g. tapes)
do not have a scheduling problem, for random access
storage devices every file operation may require
movements of the readlwrite head. This operation,
known as 'to seek', is very time consuming, i.e. a seek
time in the order of 200ms for CDs is still state-of-the-
art. The actual time taken to read or write a disk block
is determined by:

the seek time (the time required for the movernent
of the readlwrite head);
the latency time or rotational delay (the time delay,
during which the transfer cannot proceed, for the
right block or sector to rotate under the readlwrite
head);
the actual data transfer time needed for the data
copy from disk into main memory.

Usually, the seek time is the largest factor of the actual
transfer time. Most systems try to keep the cost of
seeking low by applying special algorithms for the
scheduling of disk readlwrite operations. The access of
the storage device is a problem greatly influenced by the
file allocation method. For instance, a program, reading
a contiguously allocated file, generates requests which
are located close together on a disk, thus head
movement is limited. Linked or indexed files with
blocks, which are widely scattered, cause rnany head
movements. In multiprogramming systems, where the
disk queue may often be non-empty, fairness is also a
criterion for scheduling. Most systems apply one of the
following scheduling algorithms:

First-Come-First-Served (FCFS)
With this algorithm the disk driver accepts requests
one at the time, and serves them in the incoming
order. This is an easy to program-and an intrinsi-
cally fair-algorithm. However, it is not optimal
with respect to head movements because it does not

Computer communications volume 18 number 3 march 1995 135

Multimedia file systems survey: R Steinmetz

consider the location of the other queued requests.
This results in a high average seek time. Figure 4
shows an example of the application of FCFS to a
request of three queued blocks. . Sliortcst-Seek-Time First (SSTF)
At every point in time when a data transfer is
requested, SSTF selects from all the requests that
one with the minimum seek time from the current
head position. Therefore the head is moved to the
closest track in the request queue. This aigorithm
was developed to minimize seek time, and in this
sense it is optimal. SSTF is a modification of
Shortest Job First (SJF), and like SJF, it may
cause starvation of some requests. Request targets
in the middle of the disk will get immediate service
a t the expense of requests in the innermost and
outermost disk areas. Figure 5 demonstrates the
operation of the SSTF algorithm.
SCAN
Like SSTF, scan orders the requests to minimize
seek time. In contrast to SSTF, it takes the direction
of the current disk movement into account. I t first
serves all requests in one direction until it no longer
has any requests in this direction. The head move-
ment is then reversed and service is continued.
SCAN provides a very good seek time, because the
edge tracks get better service times. Note that
middle tracks still get a better service than edge
tracks. When the head movement is reversed, it first

serves tracks that are near the most recently
serviced tracks. Figure 6 shows an example of the
SCAN algorithm.
C-SCAN
C-SCAN also moves the head in one direction, but
it offcrs a fairer service with more uniform waiting
times. It does not alter the direction as in SCAN,
but instead scans in cycles, always increasing or
decreasing, with one idle head movement from one
edge to the other between two consecutive scans.
The perfonnance of C-SCAN is somewhat less than
that of SCAN. Figure 7 shows the operation of the
C-SCAN algorithm.

Traditional file systems are not designed for employ-
ment in multimedia systems. They do not, for example,
consider requirements like real-time, which are
important to the retrieval of stored audio and video.
To serve this requirement, new policies in the structure
and organization of fiIes, and in the retrieval of data
from the disk, have to be applied. The next section
outlines the most important developments in this area.

MULTIMEDIA FILE SYSTEMS

The storage subsystem is a major component of any
information System. Due to the immense storage space

-.
30 -
l6 1
50 1
45

l2 1

head mves
downwards

20 head moves upwards head moves upwards

Figure 4 FCFS disk ncheduling Figum 6 SCAN disk rchcduling

Figurs 5 SSTF disk scheduling

head mves
downwards

24

30 - r
l6 V 7
42 7
45

l2 1

UPWards

20 head moves upwards

Figure 7 C-SCAN disk xheduling

136 Computer cornrnunications volurne 18 number 3 march 1995

Multimedia file Systems survey: R Steinmetz

requirements of continuous media, conventional
magnetic storage devices are often no longer sufficient.
Tapes, still in use in some traditional systems, are
inadequate for multimedia systems because they cannot
provide independent accessihle streams, and random
access is slow and expensive.

Apart from common disks with a large capacity,
some multimedia applications, such as kiosk systems,
use CD-ROMS to store data. In general, disks can be
characterized in two different ways:

1 . How information is stored on them. There are
rewriteable (magnetic and optical) disks, write-once
(WORM) disks and read-only disks like CD-ROMS.

2. Metbod of recording. The distinction is between
magnetic and optical disks. The main difference is
the access time and their track capacity. The seek
time on magnetic disks is typically above 10ms,
whereas on optical disks 200 ms is a common lower
bound. Magnetic disks have a constant rotation
speed (constant angular velocity, CAV). Thus, while
the density varies, the storage capacity is the Same
on the inner and outer tracks. Optical disks have a
varying rotation speed (constant linear velocity,
CLV), and hence the storage density is the Same on
the whole disk.

Therefore different algorithms for magnetic and
optical disks are necessary. File systems on CD-ROMS
are defined by ISO 9660. It is considered to be closely
related to CD-ROMS and CD-ROM-XA. Very few
variations are possible, thus we will focus the descrip-
tion on algorithms applicable to magnetic storage
devices.

Compared to the increased performance of processors
and networks, storage devices have become only
marginally ' fa~ter"~ . The effect of this increasing speed
mismatch is tbe search for new storage structures, access
and retrieval mecbanisms with respect to the file system.
Continuous media data is different to discrete data in:

real-time characteristics: as mentioned above, the
retrieval, computation and presentation of contin-
uous media is time-dependent. The data has to be
presented (read) before a well defined deadline with
only a small jitter. Thus, algorithms for the storage
and retrieval of such data have to consider time
constraints, and additional buffers to smooth the
data stream have to be provided.
file size: compared to text and graphics, video and
audio have very large storage space requirements.
Since the file system has to store information
ranging from small unstructured units like text files
to large, highly structured data units like video and
associated audio, it has to organize the data on disk
in a way that efficiently uses the limited storage.
For example, the Storage requirement of uncom-
pressed CD quality stereo audio is 1.4 Mbit/% Low
but acceptable quality compressed video still
requires about 1 Mbitls using, for example,
MPEG-1.

multiple data streams: a multimedia system has to
support different media at the Same time. It not
only has to ensure that each medium gets a
sufficient share of the resources, but it also has to
consider the tight relationships hetween different
streams arriving from different sources. The retrie-
val of a movie, for example, requires the processing
and synchronization of audio and video.

There are two different approaches to supporting
continuous media in file systems. With the first
approach, tbe organization of files on disk remains as
it is. The necessary real-time support is provided
through special disk scheduling algorithms and suffi-
cient buffers to avoid jitter. In the second approach, tbe
organization of audio and video files on disk is
optimized for their use in multimedia systems.
Supporting continuous media in file systems still
remains an issue of research, especially the scheduling
of multiple data streams.

In the next section, the different approaches to the
organization of files on disks employed in multimedia
systems are outlined. Subsequently, different disk
scheduling algorithms for the retrieval of continuous
media are presented.

FILE STRUCTURE AND PLACEMENT ON
DISK

Whereas, in conventional file systems, the main goal of
the file organization is to make efficient use of the
storage capacity (i.e. to reduce internal and external
fragmentation) and to allow arbitrary deletion and
extension of files, in multimedia systems the main goal
is to provide a constant and timely retrieval of data.
Interna1 fragmentation occurs when blocks of data are
not entirely filled. On average, the last hlock of a file is
only half utilized. The use of large blocks leads to a
larger waste of storage due to this internal fragmenta-
tion. External fragmentation mainly occurs when files
are stored in a contiguous way. After tbe deletion of a
file the gap can only be filled by a file of the Same or of
a smaller size. Therefore, there are usually small
fractions between two files that are not used; storage
space for continuous media is wasted.

As mentioned above, the goals for multimedia file
systems can be achieved by providing enough buffer for
each data stream and through the employment of disk
scheduling algorithms that are especially optimized for
the real-time storage and retrieval of data. The
advantage of this approach (where data blocks of
single files are scattered) is flexihility. External fragmen-
tation is avoided, and the Same data can be used by
several streams (via references). Even when only using
one rtream this might be of advantage. For instance, it
is possible to access one block twice, e.g. when a phrase
in a Sonata is repeated. However, due to the large seek
Operations during playback, even with optimized disk
scheduling, large huffers have to be provided to smooth
jitter at the data retrieval phase. Therefore, there are

computer cornmunications volume 18 number 3 rnarch 1995 137

Multimedia file systems survey: R Steinmetz

also large initial delays in advance of the actual retrieval
of continuous media data.

Another problem in this context is the restricted
transfer rate. With upcoming disk arrays, which might
have 100 or more parallel heads, the projected seek and
latency times are less than IOms, and a block size of
4Kbytes at a transfer rate of 0.32Gbitis will be
achieved. But this is not, for example, sufficient for
the simultaneous retrieval of four or more production
level MPEG-2 videos compressed in HDTV-quality
that may require transfer rates of up to 100Mbit/s13~'4.

Approaches which use a specific disk layout take the
specialized nature of continuous media data into
account to minimize the cost of retrieving and storing
streams. The much greater size of continuous media
files and the fact that they will usually be retrieved
sequentially, because of the nature of Operation
performed on them (such as play, pause, fast forward,
etc.), are reasons for an optimization of the disk layout.
The author's multimedia application related experience
has shown that continuous media streams predomi-
nantly belong to the write-once-read-many nature, and
streams that are recorded at the Same time are likely to
be played back at the Same time (e.g. audio and video of
a m ~ v i e) ' ~ . Hence, it seems to be reasonable to Store
continuous media data in large data blocks contigu-
ously on disk. Files that are likely to be retrieved
together are grouped together on the disk. Thus,
interference due to concurrent access of these files is
minimized. With such a disk layout, the buffer require-
ments and the seek times decrease.

The disadvantage of the contiguous approach is
external fragmentation and copying overhead during
insertion and deletion. To avoid this, without scattering
blocks in a random manner over the disk, a multimedia
file System can provide constrained block allocation of the
continuous media. Different placement strategies have
been compared elsewhereIb. The size of the blocks (M)
and the size of the gaps (G) between them can be derived
from the requirement of continuity. The size is measured
in terms of sectors. We assume that the data transfer rate
rdt is the same as the disk rotation rate (sectors/s). The
continuity requirement in this case is met if the time to
skip over a gap and to read the next media block does not
exceed the duration of its playback time T,~„(S)'~.

Since there are two variables in the equation, the
storage pattern (M, G) is not unique. There are several
combinations possible to satisfy the above equation.
Problems occur if the disk is not suficiently empty, so
that single data streams cannot be stored exactly
according to their storage pattern. In this case the
continuity requirements for each block are not strictly
maintained. To serve the continuity requirements, read-
ahead and buffering of a determined number of blocks
has to be introduced (e.g. See elsewhere for a detailed
description of this storage meth~d) '" '~.

Some systems using scattered storage make use of a
Special disk space allocation mechanism to allow fast
and efficient access. ~ b b o t t ~ ' performed the pioneer
work in this field. He was especially concemed about
the size of single blocks and their positions on disk.
Another topic to be considered is the placement of
different streams. With interleaved placement the nth
blocks of each stream are in close physical proximity on
disk. A contiguous interleaved placement is possible as
well as a scattered interleaved placement. With inter-
leaved data streams synchronization is much easier to
handle. On the other hand, the insertion and deletion of
single parts of data streams become more complicated.

A layout algorithm has been developed and analysed
which provides a uniform distribution of media blocks
on the disk after copying or writing audio and video
IiIes2'. It takes into account the fact that further files
will be merged. Therefore, a Set of non-filled gaps is left.
This uniform distribution is achieved by storing new
blocks at the centre of existing-so far-non-filled gaps.
With this 'central merging method' gaps are successively
split into two new equal gaps. It was shown that the
mean efficiency of the secondary storage usage with this
algorithm is about 75% without violation of any real-
. .
time constraint.

DISK SCHEDULING ALGORITHMS

The main goal of traditional disk scheduling algorithms
is to reduce the cost of seek operations, to achieve a
high throughput, and to provide fair disk access for
every process. The additional real-time requirements,
introduced by multimedia systems, make traditional
disk scheduling algorithms, as described before, incon-
venient for multimedia systems. Systems without any
optimized disk layout for the storage of continuous
media depend far more upon reliable and efficient disk
scheduling algorithms than others. In the case of
contiguous storage, scheduling is only needed to serve
requests from multiple streams concurrently. A round-
robin scheduler is employed in Lougher and shepherdI5
that is able to serve hard real-time tasks. Here,
additional optimization is provided through the close
physical placement of streams that are likely to be
accessed toeether. -

The overall goal of disk scheduling in multimedia
systems is to meet the deadlines of all time-critical tasks.
The goal of keeping the necessary buffer space require-
ments low is closely related. As many streams as
possible should be served concurrently, but aperiodic
requests should also be schedulable without delaying
their service for an infinite amount of time. The
scheduling algorithm has to find a balance between
time constraints and efficiency.

Earliest Deadline First

Let us first look at the EDF (Earliest Deadline First)
scheduling strategy, as known from CPU scheduling,

138 comouter communications volurne 18 number 3 rnarch 1995

Multimedia file Systems survey: R Steinmetz

but used for the file system issue as well. The EDF
algorithm is one of the best known algonthms for real-
time processing. At every new ready state, the scheduler
selects from the tasks that are ready and not fully
processed the one with the earliest deadline. The
requested resource is assigned to the selected task. At
the arrival of any new task, EDF must be computed
immediately, heading to a new order, i.e. the running
task is preempted and the new task is scheduled
according to its deadline. The ncw task is processed
immediately if its deadline is earlier than that of the
interrupted task. The processing of the interrupted task
is continued according to the EDF algorithrn later On.
EDF is not only an algorithm for periodic tasks, but
also for tasks witb arbitrary requests, deadlines and
service execution times''. In this case, no guarantec
about the processing of any task can be given.

In file Systems the block of the stream with the
nearest deadline would bc read first. Thc employment
of EDF as shown in Figure 8 in the strict sense results in
poor throughput and an excessive seek time; no buffer
space is optimized. Further, as EDF is usually applied
as a preemptive scheduling scheme, the costs for
preemption of a task and scheduling of another task
are considerable. The overhead caused by this is in the
same order of magnitude as at least one disk seck.
Hence EDF has to be adapted or cornbined with file
system strategies.

SCAN-Earliest Deadline First

The SCAN-EDF strategy is a combination of the
SCAN and the EDF mechanisms. The seek optimiza-
tion of SCAN and the real-time guarantees of EDF are
combined in the following way. As in EDF, the request
with the earliest deadline is always served first. Among
requests with the same deadline, the specific one, that is
first according to the scan direction, is served first. This
principle is repeated among the remaining requests until
no request with this deadline is left.

Since the optimization only applics for requests with
the same deadline, its efficiency depends upon how
often it can be applied (i.e. how many requests have the

same or a similar deadline). To increase this probability,
the following sophisticated technique can be used: all
requests have release times that are multiples of the
period p. Hence, all requests have deadlines that are
multiples of the period p. Therefore the requests can be
grouped together and served accordingly. For requests
with different data rate requirements, in addition to
SCAN-EDF, the employment of a periodic fill policy is
proposed24 to let all requests have the same deadline.
With this policy, all requests are served in cycles. In
every cycle each request gets an arnount of service time
that is proportional to its required data rate. The cycle
length is equal to the sum of the service tirnes of all
requests. Thus, in every cycle all requests can be given a
deadline at tbe end of the cycle.

SCAN-EDF can easily be implemented, therefore
EDF has to be modificd slightly. If D; is the deadline
of task i and Ni is the track position, then the deadline
can be rnodified to be D, + f(Nj). Thus the deadline is
deferred. The functionfl) convcrts the track number of
i in10 a small perturbaiion of the deadline as shown in
the example of Figure 9. It has to be small enough so
that D; +/(.V;) 2 Dj + f(N,) holds for all Di 2 D,. For
f(Nj) the following function was proposed23 (Note: this
mapping works according to SCAN in most of the
cases, but not always; Figure 9 shows an example where,
according to pure SCAN-EDF, the resulting series of
block numbers would be ... 12, 22, 45, 42, 40, 16 ..., with
this function we get ... 12, 22, 45, 40, 16, 42,..):

where Nm is the maxirnum track number on disk.
We enhanced this mechanism by proposing a more

accurate perturbation of the deadline which takes into
account the actual position of the head (N) and always
leads to the exact SCAN-EDF results (e.g. ... 12, 22, 45,
42, 40, 16, ... in our example). This position is measurcd
in terms of block numbers and the current direction of
the head movement (See also Figures I0 and 11):

1. I f the head moves toward .Vmm.„ i.e. upwards
(according to Figure IO), then:
IA. for all blocks N; located between the actual

position N and Nma, thc perturbation of thc
deadline is:

19. for all blocks Ni located between the actual
position and the first block (no. 0):

2. If the head moves downwards (according to Fig-
urel l) towards the first blocks then:
2A. for all blocks located between the actual

T 1'

t 22
IFqum ~ l h .

. position and Nm,
20

I -"C I DlWUlmo;r

Figure 8 EDF disk scheduling

Computer communications volurne 18 number 3 march 1995 139

Multimedia file Systems survey: R Steinmetz

'Y deadline l

Figure 9 SCAN-EDF disk scheduling with Nm. = 100 andf(N0 = N;/N.„

2B. for all blocks located between the first block SCAN-EDF was compared with pure EDF and
(block number 0) and the actual position: different variations of SCAN. It was shown that

N-N;
SCAN-EDF with deferred deadlines performs well in

f (N;) = -- V N ; g N multimedia environmentsZ3.
Nmaz

Our algorithm is more computationally intensive than
those with the simple calculation of Reddy and wyllieZ3.
In cases with only a few equal deadlines, our algorithm
provides irnprovements and the expenses of the calcula-
tions can be tolerated. In situations with many, i.e.
typically more than five) equal deadlines, the simple
calculation provides sufficient optimization, and addi-
tional calculations should be avoided. Buffer require-
ments are not optimized, but they are lower than in the
EDF scheduling technique; the throughput is also
higher than applying the EDF method.

Figure 10 Accurate EDF-SCAN algorithrn, head movcs upwards

if r N): fn) +
N.

I I

0 Ni 4-N Nm-
4

if (Ni < N): f(Ni)

Figure 11 Accurate EDF-SCAN algorithm, head moves dowwards

Group Sweeping Scheduling

With Group Sweeping Scheduling (GSS) requests are
served in cycles, in a round-robin manner. To reduce
disk arm movements, the set of n streams is divided into
g groups. Groups are served in fixed order. Individual
streams within a group are served according to SCAN;
therefore it is not fixed at which time or order individual
streams within a group are served. In one cycle a
specific stream may be the first to be served, in another
cycle it may be the last in the same group. A smoothing
buffer which is sized according to the cycle time and
data rate of the stream assures continuity. If the SCAN
scheduling strategy is applied to all streams of a cycle
without any grouping, then the playout of a stream
cannot be started until the end of the cycle of the first
retrieval at that stream (where all requests are served
once) because the next service may be in the last slot of
the following cycle. As the data must be buffered in
GSS, the playout can be started at the end of the group
in which the first retneval takes place. Whereas SCAN
requires buffers for all streams, in GSS the buffer can be
reused for each group. Further optimizations of this
scheme are proposed by Chen et ~ 1 . ' ~ . This method
ensures that each stream is served once in each cycle.
GSS is a trade-oß between the optimization of buffer
space and arm movements. To provide the requested
guarantees for continuous media data we propose here
to introduce a 'joint deadline' mechanism: we assign to
each group of streams one deadline, the 'joint deadline'.

140 computer communications volume 18 number 3 march 1995

Multimedia file systems survey: R Steinmetz

This deadline is specified as being the earliest of the 'fullness' (amount of buffered data). This number
deadlines of all streams in the respective group. Streams measures both the relative balance of all read processes
are grouped such that all of them have similar deadlines. and the number of them. If the urgency is large then the
Figure 12 shows an example of group sweeping balance strategy will be used, if it is small it is safe to
scheduling. apply the shortest seek algorithm.

Mixed strategy Continuous Media File System

In Abbott2' a mixed strategy was introduced based on
the shortest seek (also called the greedy strategy) and
the balanced strategy. As shown in Figure 13, every time
data is retrieved from disk it is transferred into buffer
memory allocated for the respective data stream. From
there the application process removes it piece by piece.
The goal of the scheduling algorithm is:

to maximize transfer efficiency by minimizing seek
time and latency, and
to serve process requirements with a limited amount
of buffer space.

With shortest seek the first goal is served, i.e., the
process whose data block is closest is served first. The
balanced strategy chooses the process which has the
least amount of buffered data for service, because this
process is likely to run out of data. The crucial Part of
this algorithm is the decision between the two strategies
to be applied (shortest seek or balanced strategy). For
the employment of shortest seek two criteria must be
fulfilled: the number of buffers for all processes should
be balanced (i.e. all processes should have almost the
same amount of buffered data) and the overall required
bandwidth should be sufficient for the number of active
processes, so that none of them will try to read data
immediately out of an empty buffer. In AbbottZO the
urgency is introduced as an attempt to measure both.
The urgency is the sum of the reciprocals of the current

The CMFS Disk Scheduling is a non preemptive disk
scheduling scheme designed for the continuous media
File System (CMFS) at ~ c - ~ e r k e l e ~ ~ ~ . Different
policies ean be applied in this scheme. Here the notion
of the slack time H i s introduced. The slack time is the
time during which CMFS is free to do non-real-time
operations or workahead for real-time processes,
because the current workahead of each process is
sufficient so that no process would starve even if it was
not served for H seconds. The considered real-time
scheduling policies are:

The Stalic/Minimal Policy is based on the minimal
workahead-augmenting set (WAS). A process p;
reads a file at a determined rate R;. To each
process a positive integer M; is assigned which
denotes the time overhead required to read a block
covering, e.g., the seek time. The CMFS performs a
set of operations (i.e. disk operations required by all
processes) by seeking the next block of a file and
reading M; blocks of this file. Note: we consider
only read operations; the same also holds with
minor modifications for write operations. This seek
is done for every process in the System. The data
read by a process during this Operation 'lasts':

Mi X A
R,

where A is the block size in bytes. The WAS is a set

rüsk access reque.sts in one cycle with deadline (deadline I bloclaiumbers (

Figure 12 Group sweeping scheduling ar disk access rtrategy

com~uter communications volume 18 number 3 march 1995 141

Multimedia file systems survey: R Steinmetz

Figurc 13 Mixed disk scheduling strategy

of operations where the data read for each process
'lasts longer' than the worst-case time to perfonn
the operations (i.e. the sum of the read operations
of all processes is less than the time read data lasts
for a process). A schedule is derived from the set
that is workahead-augmenting and feasible (i.e. the
requests are served in the order given by the WAS).
The 'Minimal Policy', the minimal WAS, is the
schedule where the worst-case elapsed time needed
to serve an operation set is the least (i.e. thc set is
ordered in a way that reduces time needed to
perform the operations, e.g. by reducing seek
times). The Minimal Policy does not consider
buffer requirements. If there is not enough buffer
this algorithm causes an buffer overflow. The
'Static Policy' modifies this schedule such that no
block is read if this would cause a buffer overflow
for that process. With this approach starvation is
avoided but its use of short operations causes high
seek overhead.

With the Greedy Policy a process is served as long
as possible. Therefore it computes at each iteration
the slack time H. The process with the smallest
workahead is served. The maximum number n of
blocks for this process is read; n is determined by H
(the time needed to read n blocks has to be less than
or equal to H) and the currently available buffer
space.
The Cyclical Plan Policy distributes the slack time
among processes in order to maximize the slack
time. It calculates H and increases the minimal
WAS with H milliseconds of additional reads; an
additional read for each process is done immedi-
ately after the regular read determined by the
minimal WAS. This policy distributes workahead
by identifying the process with the smallest slack
time and schedules an extra block for it; this is
done until H is exhausted. The number of block
reads for the least-workahead is determined. This
procedure is repeated every time the read has
completed.

duced strategy showed that Cyclical Plan increases
system slack faster at low values of the slack time
(which is likely to be the case at system set up). With a
higher system slack time, apart from the Static/Minimal
Policy. all policies perfonn about the same.

All of the disk scheduling strategies described above
have been implemented and tested in prototype file
systems for continuous media. Their efficiency depends
on the design of the entire file system, the disk layout.
tightness of deadlines, and last but not least on the
application behaving. Which algorithm is the 'best'
method for the storage and retrieval of continuous
media files is not yet common sense. Further research
must show which algorithm serves the timing require-
ments of continuous media best and ensures that
aperiodic and non-real-time requests are eff~ciently
served.

DATA STRUCTURING

Continuous media data is characterized by consecutive,
time dependent logical data units. The basic data unit of
a motion video is a frame. The basic unit of audio is a
sample. Frames contain the data associated with a
single video image; a sample represents the amplitude
of the analog audio signal at a given instance. Further
structuring of multimedia data was suggested in the
following way'8.27,28: a s1rand is defined as an
immutable sequence of continuously recorded video
frames, audio samples, or both, i.e., it consists of a . .
sequence of blocks which contain either video frames,
audio samples or both. Most often it includes headers
and further information related to the compression
used. The file system holds primary indices in a
sequence of 'Primary Blocks'. They contain mappings
from media block numbers to their disk addresses.
Pointers to all Primary Blocks are stored in 'Secondary
Blocks'. The 'Header Block' contains pointers to all
secondary blocks of a strand. General information
about the strand like recording rate, length etc. is also
included in the header block.

Media strands that together constitute a logical
entity of infonnation (e.g. video and associated audio
of a movie) are tied together by synchronization to
form a multimedia rope. A rope contains the name of
its creator, its length and access rights. For each media
strand in this rope the strand ID, the rate of
recording, the granulanty of storage, and the corre-
sponding block-level is stored: this information is used
for the synchronization of the playback start for all
media at the strand interval boundaries. Editing
o~erations on roues mani~ulate ~o in t e r s to strands

The Aggressive version of the Greedy and the Cyclical only. Strands are regarded as immutable objects
Plan Policy calculates H o f all processes except the least- because editing operations like insert or delete may
workahead process that is immediately served by both require substantial copying which can consume signifi-
policies. If the buffer size limit of a process is reached, Cant amount of time and space. Intervals of strands
all policies skip to the next process. Non-real-time can be shared by different ropes. Strands that are not

are served if there is enough slack time. referenced by any rope can be deleted, and their
First performance measurements of the above intro- storage is rec~aimed'~. The following interfaces are

142 Computer communications volume 18 number 3 march 1995

Multimedia file Systems survey: R Steinmetz

the operations that file systems provide for the ager to record and play back multimedia strands. It
manipulation of ropes: provides the rope abstraction to the application.

RECORD [media] + [requestID, mmRopeID]
A multimedia rope, represented by mmRopeID and
consisting of media strands, is recorded until a
STOP operation is issued.
PLAY [mmRopeID, interval, media] -t requestID
This operation plays a multimedia rope consisting
of one or more media strands.
STOP [requestID]
This operation stops thz retrieval or storage of the
corresponding multimedia rope.
Additionally the following operations are sup-
ported:
INSERT [baseRope, position, media, withRope,
withInterval]
REPLACE [baseRope, media, baseInterval, with-
Rope, withInterval]
SUBSTRING [baseRope, media, interval]
CONCATE (mmRopeID1, mmRopeIDZ]
DELETE [baseRope, media, interval]

Figure 14 provides an example of the INSERT
operation while Figure I5 shows the REPLACE
operation.

The storage system is divided into two layers:

~ h e rope acceis methods were designid to be
similar to UNIX file access routines. Status mes-
sages about the state of the play or record operation
are passed to the application.
The sioragc manager is responsible for the manip-
ulation of strands. It places the strands on disk to
ensure continuous recording and playback. The
interface to the rope server includes four primitives
for manipulating strands:

I. 'PlayStrandSequence' takes a sequence of
strand intervals and displays the given time
interval of each strand in sequence.

2. 'RecordStrand' creates a new strand and re-
cords the continuous media data either for a
given duration or until StopStrand is called.

3. 'StopStrand' terminates a previous PlayStrand-
Sequence or RecordStrand instance.

4. 'DeleteStrand' removes a strand from storage.

The experimental Video File Server introduced by
~ a n ~ a n ' ' Supports integrated storage and retrieval of
video. The 'Video Rope Server' presents a device
independent directory interface to Users (Video Rope).
A Video Rooe is characterized as a hierarchical

The rope server is responsible for the manipulation directory structure constructed upon stored video
of multimedia ropes. It communicates with applica- frames. The 'Video Disk Manager' manages frame
tions, allows the manipulation of ropes, and oriented motion video storage on disk, including audio
communicates with the underlying storage man- and video components.

Example: INSERT baseRope:Ropel, psition: 3, media:AudioVisual,
withRope: RopeZ. withlntewal: fiom:O, length:Z

Ropel Rope2

avdio LNUW nmmmin m0

Figure 14 INSERT operation

Exarnple: REPLACE[baseRope:Ropel, media:video, baseInterval:[start:O, lengih: 31,
withRope: Rope2, withlnterval: [start:O, length:3]]

Ropel RopeZ

audio oim
video 11 I 0

Figure 15 REPLACE operation

Computer cornmunications volume 18 nurnber 3 march 1995 143

Multimedia file systems survey: R Steinmetz

ACM Conf Multimedia, Anaheim, CA (August 1993) pp 393-
d""

CONCLUSION

Multimedia data handling which comprises the media
audio and video has mainly been addressed in the
application, hypermedia, communication and operating
system domain. The key issue-from the system's point
of view-is the merging of real-time data stream
manipulation with traditional data handling. Therefore
several operating system extensions with this capability
and respective file systems have been developed, are
being developed, or are still a matter of research. A
multimedia file system must preserve thc rcquired real-
time demands and deliver or consume data streams. In
this paper we extensively showed the form disk
scheduling must take.

Unfortunately most existing multimedia file systems
do either only make use of appropriate storage devices
(because it is done by, e.g., storage manufacturers), or
they only apply data structuring correctly (because it is
donc hy, e.g., system programmers), or they only
perform the disk scheduling according to the multi-
media demands (because it is done by, e.g., system
Software developers). However only with tho applica-
tion of all these techniques together, multimedia
filesystems will preserve real-time demands, keep the
huffer management as well as end-to-end delays low.
and handle many streams concurrently.

ACKNOWLEDGEMENTS

The author gratefully acknowledges the many valuable
advices, days and nights of discussions, and the specific
work performed by Andreas Mauthe in this area.
Marcus Beattle, Klara Nahrstedt, Lars Wolf and the
anonymous reviewers suggested many improvements.
Thank you.

REFERENCES

1 Krakowiak, S Principler of Oprroring Syslrms. MIT Press,
Cambridge, MA (1988)

2 Peterson, J and Silberschatz, A Operaiing Sysrem Coneepis.
Addison-Wedey, Reading. MA (1983)

3 Steinmetz. R Mulrimidia Teel>nology: Fundomrn,ol.? ond Intro-
duciion (in Gerrnan). Springer-Verlag. Berlin (1993)

4 Steinmetz. R a n d Nahrstedt, K The Fundomenrols in Mulrimedin
Sysrems. Prentice-Hall, Englewood Clifls. NI (Febmary 1995)

5 Doganala. Y N and Tantawy, A 'A cortlperformance stvdy of
video Servers with hierarchical storage', IEEE Proe. Ini. Conf.
Mvllimedia Compuring nnd Slsrems, Boston, MA (May 1994)
pp393402 (T0 appear in revised form as 'Cost eifectiveness of
video serven', IEEE .Kuliimedin Mag.)

6 Tobagi. F A , Pang. J, Baird. Rand Gang, M 'Strearning RAID-
A dirk array management system for video files'. Proe. Ist Inr.

.""
7 Mauthe, A, Schulz. W 2nd Steinmetz, R Inside ihe Heidelberg

Mulrimedin Opernring Sysrem Suppori ReoCTimr Proeessing ~f
Conlinuous Medio in OS!L Technical Report No. 43.9214, IBM
European Networking Center. IBM Heidelberg (1992)

8 Salzer, J H 'File Systems indexing and backup'. O ~ e r n r i n ~
Sysrenir of ,Ire 903 und Bcyond, In,. Work~hop Dogsrulil Cosrlr,
Grrinany (July 1991) pp 13-19

9 Giffoord, D W and O'Toole, J W ' In te l l i~nt file Systems for
object repositories', Operoling Sysrems of Ihe 90s ond Beyond, In:.
Worksliop, Dagstuhl Castle, Germany (July 1991) pp 20-24

10 Jansan. P A 0perol;ng Sysiems. Slruerures nnd Meehonismr.
Academic Press. Orlando, FL (1985)

I 1 Tanenbaurn. A S Oprroiing Swrrm. Derign ond lmplementniian.
Prentice-Hall, Englewood Cliffs, NJ (1987)

I2 Mullender, S J 'Systems of the nineties-Distributed multirnedia
systems; systems of the 90s and beyond', Int. Workshop Dngsfuhl
Coslle, Gennany (July 1991)

13 Stcinmcu, R 'Datn cornpreision in multimedia computing:
principles and techniques', Mulrimedin Systems. Vol 1 N o 4
(Februar" 1994) oo 166172

. C .

14 Steinmetz, R 'Data compression in multimedia computing:
Standards and Systems', Mulrimedio Syslems, Vol I N o 5
(March 1994)

15 Lougher, P and Shepherd. D 'The design of a storage service for
continuous media'. The Compnier J, Vol 36 No 1 (1993) pp 32-
47 -

16 Gemmell, J and Christodoulakis. S 'Principles of delay sensitive
multimedia data storage and rerrieval'. AC.W Tronr. Info,. S y s ~ . ,
Vol 10 N o 1 (Janusry 1992)

17 Rangan, P V, Käppner, T and Vin, H W 'Tcchniques for efficient
storagc of digital video and audio', Proc. Workshop on Multi-
medb lnformorion Syrrrms. Tempe, AZ (Febniary 1992)

18 Rangan. P V and Vin, H M 'Derigning filc systcmr for digital
video and audio', Proc. 13rh ACM Symposium on Operorinp
Sy5lems Principfe~, Monterey CA Operßring Sysfams Review,
V0125 No 5 (October 1991)

19 Vin, H M and Rangan. P V 'Techniques for effident Storage of
digital video and audio', Compul. Commun.,Vol 16 (March 1993)
pp 168-176

20 Abbort. C 'Efficient editing of digital rount on disk', J. Audio
Eng Soc., V0132 No 6 (June 1984) pp 39&402

21 Kannouch, A. Wang. R and Ycap, T Derign ond A n n i y ~ ; ~ gf o
Sroroge Retrievol Model for Audio nnd Video Daro. Technical
Report, Multimedia Information Systeins, Dcpartment of Elcc-
trical Engineering, University of Ottawa, Canada (1994)

22 Dertouzos, M L 'Conrrol robotics', The Procedurol Coniroi 4f
Phpirol Proressing. Information Processing 74, Norlh Holland
(1974) ao 805-813

23 ~edd;:A L N and Wyllie, J 'Disk scheduling in a multimedia
110 system'. Proe. ACM Inr. Conf Mulrimedio, Anaheim, CA
(1993) oo 225-233

24 er, J Ynd ~a t a rya . P V Disk rcheduling policies for Reol-Time
Mulrimedin Applicnlions. Tachnical Report, University of Cali-
fornia. Berkeley (August 1992)

25 Chen, M-S, Kandlur, D D and Yu, P S 'Optimiration of thc
graup sweeping sfheduling (GSS) with heterogeneous multimedia
strearns'. Proc. Isr ACM In!. Conf Mulrimedio, Anaheirn, CA
(1993) pp 23M41

26 Anderson, D P, Osawa, Y and Govindan. R Real-Time Disk
Sloroge ond Relrieuol of Digital AudiolVideo Doto. Technical
Report No. UCBICSD 91 /64 , Computer Scicnce Division,
University ofcalifornia. Berkelcy (September 1991)

27 Rangan, P V 'Video conferencing, file Storage, and management
in multimedia compurer systems'. Compirr. Nerworks & ISDN
Sysf. (March 1993)

28 Steinmetz, R and Fritrrche, C 'Abstractions Tor continuous
rnedia programming', Comput. Commun., Vol I5 No 6 (luly/
August 1992)

144 computer comrnunications volume 18 number 3 march 1995

