
Examining approaches for mobility

detection through Smartphone Sensors

Thomas Tregel1, Andreas Gilbert2, Robert Konrad1, Petra Schäfer2, Stefan Göbel1

1: TU Darmstadt, Darmstadt, Germany

{thomas.tregel, robert.konrad, stefan.goebel}@kom.tu-

darmstadt.de

2: Frankfurt University of Applied Sciences, Frankfurt, Germany

{andreas.gilbert, petra.schaefer}@fb1.fra-uas.de

Abstract. The ubiquity of smartphones with integrated positioning systems,

and multiple sensors for movement detection made it possible to develop con-

text-sensitive applications for both productivity and entertainment. Location-

based games like Ingress or Pokémon Go have demonstrated the public interest

in this genre of mobile-only games – games that are exclusively available for

mobile devices due to their sensor integration. For these games mobility is a

key component, which defines and influences the game’s flow directly.

In this paper we compare different approaches and available frameworks for

mobility detection and examine the frameworks’ performances in a scenario-

based evaluation.

Based on our finding we present our own approach to differentiate between dif-

ferent modes of public transport and other common modes of movement like

walking, running or riding a bicycle. Our approach already reaches an accuracy

of 87% with a small sample size.

Keywords: Mobility, Mobility detection, Machine Learning

1 Introduction

The purpose of recognized types of movement is diverse. Depending on the appli-

cation, different levels of detail are required in the recognition. If the user is to be

animated solely for more exercise in the fresh air and thereby improve his health, the

recognition of different types of mobility such as walking or running, cycling and

skating is needed. Distinctions regarding different types of vehicles are not necessary.

If, however, it is possible to differentiate between different emission levels, additional

vehicles must be distinguished from each other. So there are in addition to the usual

cars with combustion engine electric cars or cars with hybrid drive. There are also

motorbikes and public transport such as trams and buses. In order for the respective

level of pollutant emissions to be approximately assigned, a precise distinction of the

vehicles is required. Although there are two implementations for mobility detection

mailto:%7d@kom.tu-darmstadt.de
mailto:%7d@kom.tu-darmstadt.de
rst
Textfeld
Thomas Tregel, Andreas Gilbert, Robert Konrad, Petra Schäfer, Stefan Göbel: Examining approaches for mobility detection through Smartphone Sensors. In: Stefan Göbel, Augusto Garcia-Agundez, Thomas Tregel, Minhua Ma, Jannicke Baalsrud Hauge, Manuel Oliveira, Tim Marsh, Polona Caserman: Proceedings of the 4th Joint International Conference on Serious Games, p. 217- 228, Springer, November 2018. ISBN 978-3-030-02761-2.

for Android in the form of an API and a framework, the distinction with these imple-

mentations is not sufficiently detailed possible. These allow at most a distinction be-

tween non-existent mobility, walk, run, drive and ride a bicycle.

Our goal in this paper is to show possibilities and limitations of mobility detection

with Android smartphones in both literature and open available frameworks. To this

end, existing approaches are first examined and compared, and relevant components

from comparable approaches are analysed. Subsequently, existing implementations

for Android are examined, implemented and compared with each other. In addition to

the accuracy of the recognition, particular attention should be paid to resource con-

sumption.

From the results obtained, a concept is created and implemented that can more

quickly differentiate more modes of transport. This implementation is checked for

accuracy in detail. The goal is to be able to distinguish vehicles from each other and

to operate with greater accuracy than in existing implementations.

In the context of Location-based games or mobile-only games this system enables

the use personalization and adaptation methods with respect to the user’s mobility

behaviour.

2 Mobility Detection using Smartphones

The following approaches have been developed in the current decade. At the

beginning of the decade, Nokia was the most popular operating system for

smartphones with Symbian operating system versions, but Android and iOS also

became more relevant in the marketplace than at the end of the last decade [1]. The

following approaches are in chronological order.

2.1 “Movement Recognition Using the Accelerometer in Smartphones”

The approach of Sian Lun Lau and K. David studied below was designed in 2010

[2]. As hardware the Nokia N95 8GB with the operating system Symbian S60 3rd

edition FP1 was used. Built into this is an accelerometer that measures the accelera-

tion on three different axes in the x, y and z directions.

The data was first collected using a Python script for the appropriate operating sys-

tem. Another script combined the collected data to determine the mode of travel. The

chosen modes of movement were running, standing, sitting and running down and

running up a staircase. As a condition to maintain the Accelerometer data, it was de-

termined that the smartphone is in your pocket. Two different situations were exam-

ined. The first situation (S1) stated that the smartphone is in a fixed and predeter-

mined position in the right pocket, while in the second situation (S2) the smartphone

did not need to have a fixed position in any trouser pocket. Sampling rates of 60Hz to

70Hz have been achieved with the Nokia N95 8GB by obtaining the accelerometer

data. However, in this approach 32Hz was considered sufficient for mobility detec-

tion, so higher sampling rates were not investigated. Sampling rates of 5Hz, 10Hz,

20Hz and 40Hz were compared with an accuracy of more than 90% already achieved

for 5Hz to 20Hz. The extracted features were the average �̅� and the standard deviation

𝜎 of both the accelerometer raw data and the Fast Fourier Transform (FFT) compo-

nents of the data. There were three combinations of features for this. The first combi-

nation (C1) included the average and standard deviation of the individual and aggre-

gate axes of the accelerometer. The second combination (C2) included the average

and standard deviation of the FFT components of each axis and the combination of

axes. The third combination (C3) contained all features for each axis and for the com-

bination of all axes.

For extracting the features, the sliding window approach was used. Compared win-

dow sizes were 5, 10, 20, 40, and 80 samples per window, so along with the sampling

rates, these window sizes are equivalent to 0.5, 1, 2, and 4 seconds between getting

new data. The windows also had an overlap of 50%. The classification was based on

the rule-based learner JRip and the Supervised classifiers Decision Tree, Bayesian

Network, Naive Bayes, K Nearest Neighbor (k-NN) and Support Vector Machine

(SVM). Sequential Minimal Optimization (SMO) was used for the comparison. It was

evaluated with 10-fold Cross Validation. Weka was used for the classification. The

accuracy of the results was determined by the percentage of correctly classified mo-

bility types on the total number of types of mobility occurring.

With the combinations of the classifiers C1 and C3 the best results were achieved

with 99.27% for S1 and 96.59% for S2. In addition, higher accuracy was achieved if

all axes were combined rather than considered individually. In addition, the classifier

KNN was the most accurate. The best combination of samples and window sizes was

a sampling rate of 20Hz with 80 samples per window with the classifiers KNN,

Bayesian Networks, Naive Bayes and JRip, as well as 10Hz with 40 samples and

40Hz with 80 samples. The highest accuracy reached was 99.27%. In addition, the

results were tested against a new data set with S1. Here an accuracy of 91.95% was

achieved, with levels achieved a lower accuracy than the other modes of mobility.

Other modes of transport had an accuracy of almost 100%. Here the combination of

C1 with KNN and Bayesian Networks with 10Hz and 20Hz as sampling rate and a

window length of four seconds gave the highest accuracy.

2.2 „Activity detection on smartphones“

The following examines a Wirtl and Nickel approach from 2011, with which vari-

ous activities can be distinguished directly on the smartphone [3].

Two smartphones with Android operating system were used. These include the

HTC G1 from 2008 with Android 1.6 and the Motorola Defy from 2010 with Android

2.1. The HTC G1 averaged a sampling rate of 43Hz, and the Motorola Defy one of

137Hz. The accelerometer was used for detection. The devices should be horizontally

attached to the belt in this approach, while the sensor data used were generated on a

flat and straight path.

There were six classifying features, which were also considered separately from

the sensor axis. To address the problem that an exact sample rate cannot be specified

with Android, the data was interpolated before the features were extracted. The inter-

polation was achieved on the one hand through the assumption of the nearer value and

on the other hand through a linear interpolation. The six characteristics were the time

between extreme values TBP, the mean AVG, the standard deviation STD, the aver-

age absolute difference, the average resulting acceleration AAD and the class division

BIN. The time between the extreme values is calculated as the absolute difference

between the minima i and maxima A, which in turn are recorded by a change from

slopes to positive or negative values.

The average difference is calculated using 𝑎𝑎𝑑 =
1

𝑛
∑ |𝑎𝑖 − �̅�|𝑛

𝑖=1 and the resulting

average acceleration using 𝑎𝑟𝑎 =
1

𝑛
∑ √𝑥𝑖

2 + 𝑦𝑖
2 + 𝑧𝑖

2𝑛
𝑖=1 .

Classification is the division of the span between the maximum and minimum into

ten equally sized classes and the subsequent counting of the values that can be as-

signed to an axis by a class. First, a one-way test was performed on the computer with

one-third of the data. This related to the classification algorithm, the features, the

interpolated sample rate, the duration of the data acquisition and the type of interpola-

tion. In this case, raw data was also compared to preprocessed data in order to be

surer of the effect of preprocessing. The 18 algorithms available at the time of this

approach in Weka were run with all feature combinations and sample rates of 50Hz,

100Hz and 150Hz with a data acquisition duration of 2 seconds, 5 seconds, 10 sec-

onds and 15 seconds and the two interpolation data. In addition to classifying up-to-

date data from the Accelerometer, the training of the Classifier has been implemented

on the smartphone to optionally use newly acquired data to improve the classifier.

The activities were classified with Weka, maintaining the default parameters.

There were 151 records, of which 51 were intended for fast walking, 49 for normal

walking and 51 for slow walking. The data was collected from 51 subjects who were

walking on level ground with the HTC G1 for about 17 seconds without any turns.

The REPTree algorithm achieved the best result when using the test data with a data

collection time of 10 seconds. Thus, this combination was used for implementation on

smartphones.

The classification took 0.29 seconds with the Motorola Defy and 0.79 seconds with

the HTC G1. The former detected 80% of the correct mode of mobility in a test by 20

subjects and 75% with the latter.

2.3 “Accelerometer-Based Transportation Mode Detection on Smartphones”

In the approach of Hemminki et al. [4] investigates techniques for discriminating

modes of transport travel using smart phone sensors on Android devices.

The GPS receiver is not used in this approach, as it is efficient with the existing

signal, but consumes a lot of battery and is dependent on uninterrupted view to the

satellites. This can be a problem not only in buildings, but also on a route through

subway stations, or even in vehicles where the user sits too far away from a window.

Another problem with using the GPS receiver is only mediocre accuracy, should

many different vehicle rides be distinguished. Instead, the accelerometer is mainly

used for this approach because it does not have the aforementioned problems. Be-

cause it is consumed with this less battery, there is no dependence on external infor-

mation sources such as satellites and it was a particularly fast and detailed query pos-

sible. For more accurate results, gravity is estimated. As a result, the horizontal speed

can be determined more accurately, which is to be used to distinguish start-up and

braking sequences. For the estimation an own algorithm was presented, which in con-

trast to the simple formation of the average is more robust against sudden changes of

the orientation of the smartphone. These sequences are different from means of mo-

bility to means of transportation. In addition, new features called 'peak features' are

introduced, which are intended to model patterns of acceleration and deceleration and

to increase the performance of recognition. The process of mobility detection is divid-

ed into four different classifiers in this approach. First of all, the 'Kinematic Motion’

Classifier attempts to detect the general mode of mobility. Depending on the outcome

of this classifier, it will be passed to one of the three more specific classifiers for

'Walking', 'Stationary' or 'Motorized'. With "Stationary" is to be distinguished whether

the user is in a vehicle or in a fixed location. If the former is the case, it is forwarded

to the classifier "Motorized", with which a distinction from the means of transporta-

tion bus, train, tram, metro and car is provided. Between modes of travel in vehicles, a

segment is assumed on foot, in which the user runs to the next means of transporta-

tion. To increase the accuracy, no frames are used for the classification of the raw

data, but segments, which are formed depending on the types of mobility. The raw

data is first revised with a low-pass filter to reduce noise. Then the data is aggregated

with a sliding window approach with 50% overlap and a length of 1.2 seconds. The

length was chosen to be able to react quickly to a change of mobility types and to

distinguish them. Afterwards the calculated gravity is calculated with the accelerome-

ter data and the result uses the integral as the current speed. The algorithm is an im-

provement to the simpler approach of Mizell et al. thought.

Preprocessing is followed by extracting features. This approach extracts frame-

based features, peak-based features, and segment-based features, each applied to the

appropriate situations. Frame-based features are designed to differentiate types of

mobility on the basis of higher frequencies of the data, as they occur when walking on

foot. Here, 27 features were calculated in the vertical and horizontal directions by, for

example, average �̅�, variance, double integral, entropy, and sum of FFT coefficients.

Peak-based features should characterize lower frequencies for mobility detection by

extracting regions with strong changes through a stream-based algorithm. Segment-

based features are used to characterize patterns of acceleration and deceleration. It

identifies the frequency of accelerations and brakes, the frequency and duration of

intermediate pauses in mobility, and the variance of individual peak-based features.

Subsequently, the data is used for classification. AdaBoost is used to improve the

learning algorithms. Decision trees with a depth of two were used for the Kinamtic

Motion classifier. Also in the Motorized classifier AdaBoost is used along with deci-

sion trees with a depth of two.

2.4 “Activity Recognition Using Smartphone Sensors”

The approach described below was developed in 2013 by Anjum and Ilyas [5].

It was implemented on an Android smartphone, which in this case was a Samsung

Galaxy Y with Android 2.3.3. No exact orientation of the smartphone was given.

The activities 'walking', 'running', 'climbing stairs', 'going down stairs', 'driving',

'cycling' and 'being inactive' should be differentiated. For detection, a classifier with

the best found configurations is developed. This classifier was implemented in an

Android application that performs real-time activity detection using this classifier.

Initially, a dataset with 510 activity shots was created, for which an Android applica-

tion was written that enabled data collection. In this application, additional user in-

formation such as size, age, gender and the most used smartphone position were que-

ried. The recorded sensor data was divided by a comma into a file specially written

for this activity. The written data consisted of the three axes for the accelerometer and

for the gyroscope, and the GPS data based on longitude, latitude and speed. In the

Android version used in this approach, the sampling rates in 'Normal' with 5Hz, 'UI'

with 15Hz, 'Game' with 50Hz and 'Fastest' with platform-dependent 50Hz to 100Hz

were selected. In this case, the 'UI' mode was used because a Nyquist rate of 15-16Hz

would allow a maximum signal frequency of 8Hz to distinguish it from human activi-

ty. To compensate for the dependence on the orientation of the smartphone, the data

was rotated to selected axes d1, d2 and d3.

The data was collected by 10 different people aged 12 to 25 years. The data from

four of these people were used to train the classifier while the remaining data was

used for testing.

Existing data was divided into ten different datasets using 10-fold Cross Valida-

tion. Different classifiers were trained, with the most performant, judged by iterating

over all ten sets of data with the test set, used for the implementation. The examined

classifiers used the algorithms C4.5, Naive Bayes, KNN and SVM. The classifier with

method C4.5 had the best performance with a true positive rate of 95.2%, a false posi-

tive rate of 1.1%, a precision of 94.4% and a recall rate of 94.2%.

2.5 Comparison

In the following assessment of the approaches, a comparison of the existing ap-

proaches as well as relevant aspects of other approaches will be made. Based on this

comparison, the approaches for their usability are evaluated for our own approach.

Table 1. Comparison of existing approaches in related work.

Ap-

proach

Hard-

ware

Movement

types

Sam-

pling

rates

Win

dow

size

Ov

er-

lap

Features Classifier

(1) Nokia

N95

with

Sym-

bian

S60

Walking,

Standing,

Sitting,

Stairs up,

Stairs

down

5Hz

10Hz

20Hz

40Hz

0.5s

1s

2s

4s

50

%

�̅� , 𝜎 of

raw data,

FFT

Decision Tree,

BN, NB,

KNN, SVM +

10-Fold Cross

Validation,

JRip, SMO

(2) HTC

An-

Fast, nor-

mal, slow

50Hz

100Hz

2s

5s

- 𝑇𝑒 , �̅� , 𝜎 ,

average

REPTree &

all other Weka

droid

1.6

and

2.1

walking 150Hz 10s

15s

absolute

differ-

ence,

average

resulting

accelera-

tion

classifiers

(3) Nexus

S,

Gal-

axy S2

& S3

Standing,

Running,

Car, Bus,

Tram,

Train,

Metro

60Hz,

100Hz

1.2s 50

%

Lowpass

90% &

own

Frame-/

Peak-/

Segment-

based

features

AdaBoost

(4) Sam-

sung

Gal-

axy Y

with

An-

droid

2.3.3

Walking,

Running,

Stairs up,

Stairs

down,

Bike, Ve-

hicle,

None

15Hz 5s - �̅� , 𝜎 , Ac-

celera-

tion-

magni-

tude, FFT

C4.5 Decision

Tree, NB,

KNN, SVM +

10-Fold Cross

Validation

The above table compares existing approaches in their significant points. Signifi-

cant for the assessment were the hardware used, the recognizable mobility types, the

sampling rates, the window sizes in seconds, and the overlapping of the windows in

which Weka was used, as well as the algorithms examined for the classification. The

highlighted entries indicate favoritism by the authors of the approaches, which were

assessed by evaluations.

In the table it can be seen that there is no mode of mobility, which is recognizable

from all examined approaches. In addition, specifications for data entry are made in

all approaches, which are differentially restrictive depending on the approach. The

approach described in [2] was to carry the smartphone in your pocket. In addition,

two different situations were examined, which specified the orientation and the side of

the smartphone in one case and, in the other case, allowed any orientation and side.

As a result of these restrictive requirements, an accuracy of almost 100% was

achieved, in particular with an exact specification of the position of the smartphones

in the trouser pocket. Even with a rotation of the device or a change of the side of the

trouser pocket, the accuracy dropped by about three percent from 99.27% to 96.59%.

In the approach in [3] the devices were attached vertically to the belt and a flat and

straight path was chosen, while in [4] the subjects were given whether the smartphone

should be in the bag, trouser pocket or jacket pocket. In the approach described in [5],

the data was collected with an indication of how the user transports the smartphone in

most cases. Here, for example, a trouser pocket, shirt pocket, handbag and hand were

distinguished. This approach also uses user data to include size, weight, and gender.

In this approach, the accuracy was not nearly 100%, but decreased to 94% -95%.

The sampling rates are also very different. The choice was justified in the approach

in [2] and the approach in [5]. In the former, the rates of 10Hz and 20Hz are based on

the evaluation results, while in the latter; the 15Hz is due to the Nyquist frequency,

which allows a maximum recoverable signal frequency of 8Hz. These 8Hz were con-

sidered sufficient to detect human mobility. Also the window sizes vary depending on

the approach. In the approach described in [3], a duration of ten seconds was consid-

ered best after evaluation, while in [2] four seconds were chosen as a result of evalua-

tion. In half of the approaches, an overlap of the windows was mentioned, which in

both cases had a size of 50%. Also half of the approaches used for coaching and using

the classifier Weka. For this purpose, different features were extracted from approach

to approach. The use of raw data and the use of Fourier transforms was also compared

in [2]. The result of this comparison was that it was more accurately classified with

raw data. Most commonly, the mean and standard deviation were used as features,

with additional features defined in [3]. In [4], the noise in the data was reduced with a

low-pass filter with 90% energy. As versatile as the selected features are the classifi-

ers. For this comparison, the following table with classifiers is also included in further

comparable approaches.

3 Existing Frameworks

In comparison to the previously presented approaches the following two frame-

works can be directly integrated and evaluated on mobile devices. In contrast to the

previous approaches the decision-making process is not described. We aim to com-

pare them regarding their prediction accuracy and the time required to identify and

switch towards the real type of movement.

3.1 Awareness API

Google introduced the Awareness API at the Google I/O 2016 conference [6].

With this API the context recognition has to be implemented in a resource-saving

way. There are seven different types of contexts to distinguish. These seven types are

local time, location and location, headset state, weather, mobility, and nearby interest-

ing places called beacons. The distinct modes of mobility are vehicle, bicycle, stand-

ing, running, walking, without movement and unknown. A detailed distinction be-

tween vehicles does not take place.

The Awareness API consists of two different APIs. The Snapshot API can be used

to make a request about the user's current context. The Fence API, on the other hand,

defines so-called fences for describing a context to be observed. If the user enters

such a fence, the app will be notified without having to open it. For continuous detec-

tion of mobility types, notification of a change makes the Fence API more suitable

than the Snapshot API. However, if you only need to know the mode of travel at that

particular time at certain times, the Snapshot API can also be used to actively run a

query.

3.2 Neura SDK

The NeuraLabs Neura SDK [7] provides comprehensive context recognition for

both iOS and Android. The time of origin can be assumed according to the code on

Github5 at the end of 2016. In addition other contextual information, the user's mode

of travel may determine whether the user has just started or stopped walking, running,

or driving a vehicle. Thus, it is the modes of travel, on foot 'and' drive vehicle 'distin-

guishable. In addition, after one hour and two hours, a notification can be received

that the user has not moved during this period. These types of mobility can be used

when including the Neura SDK named userStartedRunning, userFinishedRunning,

userStartedWalking, userFinishedWalking, userStartedTransitByWalking, userFin-

ishedTransitByWalking, userIsIdleFor1Hour, userIsIdleFor2Hours, userStartedDriv-

ing and userFinishedDriving.

3.3 Comparison

Figure 1: Comparison of a test scenario over 45 minutes using two available Android

frameworks.

In a 40-minute-long test scenario we used the presented frameworks in parallel and

logged the identified mobility types. Figure 1 shows that mobility detection by no

means works perfectly.

Waiting times cannot be detected by the Neura SDK, so they are ignored. This is

particularly evident in the longer journey in a vehicle, which is detected instead of the

switch to the tram. The Fence API more reliably detects the changeover between

modes of transport. The part of the tram ride in which the tram has been waiting was

considered missing. In addition, the detection of a change of mobility takes place only

after a time delay. Based on the test results, the Neura SDK has a minimum delay of

Time (Minutes)

Fence API

Neura SDK

Real

five minutes and a maximum delay of seven minutes. For the Fence API, the mini-

mum delay is one minute, while the maximum delay is four minutes.

In summary, it can be seen that the Awareness API for mobility detection offers

more advantages due to more detailed distinctions, less extensive implementation,

less impact on application design, lower resource consumption, and less delay in

recognition than the Neura SDK. In addition, if only an active query of the current

mode of transport is required, the Snapshot API would be preferred to the Fence API,

in particular due to less implementation effort. But even the Awareness API does not

provide a sufficient distinction for the mobility detection, since in particular no vehi-

cles can be differentiated among themselves.

4 Consolidated approach

For our own approach the goal is to be able to distinguish between the different

modes of transportation like bike, car, bus or tram.

The identification of the modes of movement in this concept should refer exclu-

sively to the data of these sensors. The use of GPS data was reported by (3) is consid-

ered inappropriate because the collection of data places restrictive conditions on the

environment. Thus, the user may not be in a subway or train station or other building,

and should sit as close to the window as possible in a car for a clear view of the satel-

lites delivering the GPS data.

In order to differentiate between these modes of transportation we choose similar

features as these presented in the related work, with all of them being calculated in a

parameterized time window with a default value of five seconds:

 Arithmetic mean: for each axis the mean values are calculated

 Standard deviation: for each axis the standard deviation is calculated

 Time between extreme values: the time between minima and maxima is deter-

mined separated for each axis.

 Standard deviation of time between extreme values: instead of using the average

time between extreme values, the standard deviation of time differences is used.

The extracted information represents how irregular the extreme values are.

 Number of extreme values: Analogue to the calculation of time between extreme

values and their standard deviation the number of extreme values is extracted in the

given time window.

In a WEKA-based [8] evaluation using 722 collected samples spread across seven

categories with the main focus on vehicular modes of transportation we achieved an

accuracy of 87% using 10-fold cross validation on both a random forest and an IBk

algorithm as shown in Table 2. While these algorithms have comparable accuracy the

mean absolute error for the k-nearest neighbors-based algorithm with IBk is substan-

tially smaller.

Table 2. Algorithm performance using 10-fold cross validation

Algorithm
Accuracy Mean Absolute

Error

Root Mean

Squared Error

JRip (rule-based)
79.499% 0.0713 0.217

J48 (decision-tree)
85.133% 0.0498 0.1994

IBk (k-NN)
87.167% 0.0392 0.1904

Random forest
86.698% 0.0735 0.1721

Going into detail it can be seen from the classifiers’ confusion matrix in Table 3

that a differentiation, in particular between car and bus, is not exact. With 10-fold

cross evaluation, about 8% of the car's records were classified as a bus, while about

22% of the bus's records were classified as cars. In the case of rail, the misclassifica-

tion as a car or bus is less than about 6% less. A misclassification of the vehicles as a

lack of mobility has also occurred, but more misclassifications were expected here as

busses, trains or cars often stop at traffic lights or intersections. The reason for this

may be that in this time the engine is on and the vibration of the vehicle can be de-

tected by the sensors, so that a difference to the lack of mobility can be detected here.

The only class without misclassification is the one to classify standing still.

Table 3. Confusion matrix for the best random forest classifier

Bike Car Bus Tram On

foot

Still Unknown

Bike
121 2 1 0 0 0 0

Car
1 259 21 0 0 0 0

Bus
0 41 144 0 0 1 1

Tram
0 3 2 23 1 0 2

On foot
0 4 0 3 19 0 0

Still
0 0 0 0 0 66 0

Unknown
0 2 0 0 0 2 5

5 Conclusion

In this paper we examined and compared six approaches for mobility detection. All

four scientific approaches present different features and parameters that promise good

detection results. However, because the frameworks are not openly available for test-

ing they cannot be evaluated in a comparative study. For the two openly available

frameworks our evaluation has shown problems regarding live detection of mobility

change due to minute-long delays in detection. Additionally, neither of the presented

systems is able to distinguish between different vehicle-based modes of transportation

like car, bus, tram or train.

We presented an approach designed to distinguish between these vehicle-based

modes of transportation in addition to those covered by the existing approaches.

Our approach can be improved in accuracy by collecting more sensor data over a

longer period of time. Another aspect that can be implemented with today's common

resources is the comparison of the isolated classifier presented in this work with a

combination with Markov chains or automata. This would allow the start and stop

sequences, which are significant for buses and trams, to be included in the classifica-

tion.

The integration into a mobility-based mobile game is the next step to follow in or-

der to provide an appealing game experience and furthermore to collect additional

data to improve prediction accuracy.

6 Acknowledgment

The research presented in this paper was par-

tially funded by the LOEWE initiative (Hessen,

Germany) within the research project „Infra-

struktur – Design – Gesellschaft” as project mo.de.

References

1. Schonfeld, Erick. Mobile OS 2009 Market Share. [Online] 2017. [Cited: 6 15, 2018.]

https://techcrunch.com/2010/02/23/smartphone-iphone-sales-2009-gartner/.

2. Lau, Sian L. and David, Klaus. Movement recognition using the accelerometer in

smartphones. Future Network and Mobile Summit. 2010.

3. Wirtl, Tobias and Nickel, Claudia. Aktivitätserkennung auf Smartphones. International

Conference of the Biometrics Special Interest Group. 2011.

4. Hemminki, Samuli, Nurmi, Petteri and Tarkoma, Sasu. Accelerometer-based

Transportation Mode Detection on Smartphones. Proceedings of the 11th ACM

Conference on Embedded Networked Sensor Systems. 2013.

5. Anjum, Alvina and Ilyas, Muhammad U. Activity recognition using smartphone sensors.

IEEE 10th Consumer Communications and Networking Conference. 2013.

6. Google. Google Awareness API. [Online] 2016. [Cited: 6 15, 2018.]

https://developers.google.com/awareness/.

7. Neura. Neura SDK. [Online] 2017. [Cited: 6 15, 2018.] https://dev.theneura.com/.

8. Holmes, Geoffrey, Andrew Donkin, and Ian H. Witten. Weka: A machine learn-

ing workbench. Proceedings of the 1994 Second Australian and New Zealand

Conference on Intelligent Information Systems. 1994.

https://dev.theneura.com/

