
[TGMK08] Garefh Tyson, Paul Grace, Andreas Mauthe, ~ebas t i an Kaune ; The Survival of the Fittest:
An Evolutionary Approach to Deploying Adaptive Functionality in Peer-to-Peer - Svstems. In: 7th Workshop on Adaptive and Reflective Middleware (ARM'08). December

The Survival of the Fittest: An Evolutionary Approach to
Deploying Adaptive Functionality in Peer-to-Peer Systems

Gareth Tysona, Paul Gracea, Andreas Mauthea, Sebastian ~ a u n e ~
alnfoLab21, Lancaster University, Lancaster, UK.

?echnishe Universitat Darmstadt, Darmstadt, Germany.

a{g.tyson, p.grace, andreas}@comp.lancs.ac.uk, bkaune@kom.tu-darmstadt.de

ABSTRACT
The heterogeneous, large-scale and decentralised nature of peer-
to-peer systems creates significant issues when deploying new
functionality and adapting Peer behaviour. The ability to
autonomously deploy new adaptive fiinctionality is iherefore
highly beneficial. This paper investigates middleware Support for
evolving and adapting peers in divergent systems through
reflective component based design. This approach allows self-
contained funciionality to exist iii the network as a primary entity.
This functionality is autonomously propagaied to suitable peers,
ailowing nodes to be evolved and adapied to their individual
constraints and the specific reqiiiremeiits of thejr environment.
This results in effective functionality flourishing whilst sub-
optimal functionality dies out. By this, a self-managed
infrastructure is created ihat Supports the deployment of
functionality following the evolutionary theory of rialur(i1
selecrion. This approach is evaluated through simulations io
highlight the potential of using natural selection for the
deployment and management of software evolution.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed Applications; D.2.1 1
[Software Architectures]: Patterns (Reflection)

General Terms
Design, Management

Keywords
Software evolution, natural selection, peer-to-peer. functional
scalability, self-optimisation, reflective middleware

1. INTRODUCTION
Recent years have seen a proliferation in the number of widely
deployed distributed systems with a particular focus on peer-to-
peer applications. Such systems offer a number of benefits derived
from their ability io self-organise and pool resoiirces. Their
decentralised nature, however, creates significaiit issues when
managing, deploying and optimising new System functionality.

In a traditional client-server model, introducing new fiinctionality
is not a significant issue as administrators can easily update Server
software and insist that clients do so to gain coinpatibility. Such
an approach, however, is not feasible in a peer-to-peer
environment. This is because the lack of centralised management
means that funciionality can be introduced through individual
peers at any time in an uncontrolled way. Fiirther, due to the
nature of peer-to-peer networks, specific functionality is not
necessarily appropriate for different peers. This means that nodes
must be adapted in a very fine grained inanner. However, to
achieve this it is necessary for peers to be able to evolve their
capabilities to address new constraints aiid requireineiits. Software
evol~irion is the process by which applications can bc maintained
and extended to incorporate new functionality [I I]. Research has
largely indicated that the use of well-defined software
architectures allows systems to effectively scale their funciionality
through the manipulation of software building blocks.

This form of evolution, however, is limited in scope and does not
port well to the concept of fully decentralised sysiems. This is
because it is only concerned with the practical issues of
augmenting existing software. This does not take into account
such things as the deployment, location or selection of new
functionality. In contrast to this, a number of interesting
correlations can be drawn between the evolutionary requirements
of peer-to-peer sysiems and those of ecosysiems [IO]. In natural
evolution, oganisms that are well suited to their environment
flourish and propagate whilst ill-suited organisms die out. This is
iermed the survivol of rhe jirresr and has been identified in the
software market [7]. This paradigm can offer significant benefits
if ported to peer-to-peer systems. Stich an approach would allow
functionality to aiitonomously exist in a network in a similar way
to life forms in an ecosystem. Through the concepi of tiorltral
selectiotl [IO], effective functionality would then survive and
propagate whilst poor functionality dies oiit.

This paper investigates the potential of distributed functional
adaptiition and evoliition in peer-to-peer systeins. To this end, an
approach is outlined using the Juno middleware [I51 as a
platform. Through self contained reflective components. iisers can
develop and deploy fiinciionaliiy in a self-optimising and scalable
manner. This functionalitv is theii auionomoiislv distributed in th* ...
network through the automated evaluation of its performance.

pemlission to make digital or hard copies of al l or pnn of th i s werk for Once deployed. functionality can either floiirish or dic. This
personal or clüssroom use is granted without fee provided th;l[copies arc reSultS in functionality in suitable en~ir0rItnent~ virdly
not made or distributed for profit or commerci;il iidvantage and thnr propagating whilst ill-siiiting functionality becomes extinci. This
copies bear this notice and tlie fiill citiition on tlie first page. T0 copy approach provides three attractive properties:
oiherwise. or repiiblish. to post on Servers or to redistribute to lists.
reqiiires prior specific permissioii :ind/or :i fee. i) Autorrornoirs Mnnager~lenr - Peers can inject
ARM 2008. Decenrber I. 2008. Lerrven, BeIxiiim. functionality into the network. If the fiinctionality is
Copyright 2008 ACM 978-1-60558-367-9108112 ... $5.00. effective it will be autonomously distributed.

ii) Self-Optimiscition - Functionality will naturally be
dissemiiiated towards its optimal environmcnts.
Similarly. inefficieni functionality will die out. This
allows pecrs to be autonoinously configured.

iii) Firrictioticil Sculnhiliry - The ability to dynainically
exchange fuiictioiiality ensures that peers supporting the
evolutionary platform will always be able to intenct by
scaling their capabilities through functional exchaiige.

The paper is stnictured as follows: Section 2 oiitlines Juno. the
middleware plaiform uscd for the system. Section 3 otitlines the
details of the evolutionary process. Subsequently, Section 4
evaluates this mechanism. Section 5 then provides a brief
background to the area. Finally, Section 6 concliides the work,
identifying a number of areas of future work.

2. JUNO MIDDLEWARE
To siipport distributed evolution ii is necessary for middleware
support to be provided. The evolutionary process described in this
paper has been designed to operate with the Juno middleware
[IS]. This section outlines Juno's relevant operation.

2.1 Overview of Juno
Juno is a (re)configurable peer-to-peer middleware designed to
address the heterogeneity of modern content networks [12].
Content networking refers to the progression of traditional content
distribution technologies to more integrated, holistic content
environments. Uiilike traditional coiitent distribution. conteiit
networks view the content itself as the focal poini of the sysiem.
This can be compared to systems such as BitTorrent [4] that view
content as just a set of bytes. To this end, content networks iitilise
informaiion to inielligently distribute content to end Users. taking
inio account such things as User preferences and Quality of
Service (QoS). Content networks are therefore often defined by a
diverse range of delivery mechanisms and multimedia services,
creating significant complexities when evolving applications.

\I, Operations

I Abstracted Interface I Evolutionarv Manaaer I
I .,

Juno

I I

Figure 1 Overview of Juno Middleware (per Host)

Juno's approach to addressing these complexities is to encapsulate
functionality in fine grain software components, shown in Fig I.
These are independent software entities that offer abstracted
services (interfaces) alongside well defined requiremenis
(receptacles). In Jtino, multiple components are interconnected to
build muliimedia delivery mechanisms and services (e.g. video
streaming. transcoding etc). For example, a distributed objeci
location overlay such as Pastiy [I41 has a number of identifiablc
functional aspects e.g. joining. maintenance. routing etc. Juno
therefore separates these aspecis through software inodiilariiation
and dynamically interconnects ihem at runtime to construct a fiilly
operaiional peer. This allows adapiable systems to be consiriicted

by selectively connectirig ihe optimal components for the
particular consiraints and requircinents ihe node is operating in.

2.2 Reconfiguration in Juno
The ability to dynarnically reconfigure funciionality creates a
natural platform for adaptation and evolution. Thercforc, on
receipt of a superior component, Juno dynamically reconfigures
iis internal architecture to replace the existing component with the
new one. For example, a node would evolve its maintenance
algorithms by obtaining a new maintenance component ihat offers
ihe correct interfacc. The old componcnt would then be reinoved
from the software architecture and replaced by the new one. All
subsequent maintenance functionality woiild ihen be performed
by the new component. To support this, interchangeable
components must offer identical interfaces.

2.3 Reflection in Juno
One of the primary functions of Jiino is to create a bespoke high
level plaiform for content network applications to operate over. It
does this by dynamically construciing itself from optimal
components based on environmental factors and application level
reqiiirements. To achieve this, however, i t is necessary for Juno to
ascertain the quality and behaviour of individual components.

To facilitate this decision process, Juno utilises reflection.
Through the OpenCOM [6] component model, Juno can inspect
the operntional perfonnance of each available component using
quantitative meta-data. Each component implemenis OpenCOM's
IMctaInterface which allows lag based meta-data to be associated
with each of the component's interfaces. This is shown in Figure I
with components Al and A2 offering the IMetaInterface to the
Evoluiionary Manager. Each lag represents a particular evaluative
metric of the component's performance (e.g. for a caching
component, average-hit-rate, storage-overhead etc). To allow
comparisons, all coinponents offering a particular interface utilise
ideiitical meta-tags. To support this, an application defines
staiidard meta-iags for its defoult cornporients. All futiire
evolirtionary components miist then be described using identical
meta-tags to ihose defined by the default component they replace.
This reduces flexibility but is necessary for comparabiliiy.

TO inspect a component's performance, an application can call the
getAttributeValue (String tag) operation on any
component to gain a quantitative assessment of a pariicular facet
e.g. the bandwidth-overhead of an overlay maintenance
component. This operation returns a quantitative value for the
requested meta-lag; the represeiiiation and assignment of these
valiies will be looked at in Section 3.

3. EVOLUTIONARY PROCESS
For cvolution to take place it is necessary io describe how
functionality is propagated in the network. The approach taken
follows the theory of the srrrvival of tlze fittest. This section
describes how this concept is ported io peer-to-peer environmenis.

3.1 Evolutionary Dissemination
To allow a fully distributed application to evolve, it is necessary
to allow functionality to be disseminated to appropriate hos i . In a
peer-10-peer environment frequent inieractioiis occiir between
nodes in ihe system. These interactions consist of service requests
and provisions. For example, in a peer-to-peer content delivery
system, nodes will issue requests to each other for data. These
interactions are cxploited to exchange reflective meia-data
beiween pecrs. This is because inieracting nodes will often share

similar appliciition level requirements and constraints. Juno
thcreforc monitors the application's interaction with other nodes
and subsequently contacts thein to offer them new fiinctionality.
This approach therefore does not involve any additional overhead
for node location or topology niaintenance. When two peers
interact they concurrently exchange reflective meta-data about any
extension components considered to be of interest. Each node
then analyses this data in order to select any functionality of
interest with evolutionary potential. This therefore allows nodes to
flexibly inspecl individual attributes considered important for a
particular sei of individual requirements. This provides Support
for extremely fine grained evolutionary decisions.

If two interacting peers offer each other similar component
functionality and meta-data, these two nodes create a link. These
links create clusters, of a limited size, containing peers that have
similar requirements and environmental constraints. These are
termed environrnentctl clusters. If a node locates a piece of
effective functionality, it Shares it with its cliister. This allows
functionality to be quickly disseminated in suitable environments
without the overhead of actively locating suitable peers.

3.2 Evolutionary Adaptation
When a node receives reflective information about a new
component it is necessary to compare it with the equivalent
coinponent it is currently using. To allow this, all meta-values are
defined relative to the defartlt component. The default component
therefore Sets a base-line that all evolutionary components are
compared against. Therefore if a default overlay inaintenance
component, on average, generates IOKB overhead per minute and
a new overlay component only generates SKI3 then its assigned
bandwidthoverhead meta-value will be 20%. This is because it
improves the overhead by 20%. If, alternatively, a new component
generates 12KB then the valiie will be -20%. This is because it
creates 20% more overhead. This approach removes the necessity
for other components and applications to possess semantic
knowledge of quantitative values. Instead, it is possible to simply
consider their capabilities as relative to each other. The
assignment of these values will be described in Section 3.3.

Using these meta-tag values, Juno can easily compare multiple
coinponents to ascertain the superior choice. To assist in this, an
application built over Juno must weight the importance of each
meta-tag associated with its constituent components. Both Juno
and the application then dynamically modify these values to
reflect changes in requirements and constraints. For example. a
caching Service will place considerable weight on the
average-hit-rate ineta-tag associated with its replacement
algorithm compoiient. However, if the host becomes overloaded it
will lower this in favour of decreasing resource consumption.

When an evolutionary component is offered, both the new and old
components calculate their scores based on the current
weightings. This is done by multiplying each meta-tag value by its
designated weighting. If a new component achieves a higher Score
than the existing components then Jiino will evolve to incorporate
the new functionality. Importantly, a peer can reconfigure itself at
any time to utilise aiiy component it possesses. Therefore an old
component can bc iitilised again if it is considered optimal.

3.3 Reflective Meta-Data Assignment
An important aspect of the systcm is the assignment of values to
each meta-tag. It is unwise to allow developers to assign relative
values themselves as this is easily Open to abuse. Fiirther, this
non-adaptive approach will limit the accuracy of values iri

divergent environments. Instead. as each node operates the
component i t actively manipulates the relative vaiues to reflect the
current experience. It then uses this informatioii when later
advertising components to other nodes. Therefore. when a peer
receives a new compoiient i t takes the existing meta-tag values
and incrementally changes them to reflect its experience. The
resulting values therefore reflect the aggregated experience of all
peers that the particular instance of the component has passed
through. As a component penetrates a specific environment these
values then become more specialised for that particiilar
environment. If a component does not offer the performance that
its meta-data stated then this process automatically rectifies this.
Tlirough the adaptive process outlined earlier, the new values
assigned to this coinponent will result in it being automatically
removed from operation in favour of a superior alternative.

To achieve this measurement process it is necessary for the default
components to be bundled with the necessary functionality to
measure and allocate meta-values to new components. The
process is supported through Juno's Open architecture. This
allows coinponents to easily monitor each other. The
measurement functionality associated with the default component
therefore passively monitors all components involved in the
application. This is done through Open state inonitoring (ability to
inspect component state) and Open eventlinterface monitoring
(ability to inspect coinponent interactions). For example, a default
component can measure the Iateiicy between nodes by listening to
the interactions of the networking components. This, therefore,
does not require evaluative information to be provided by the
components that are under inspection, mitigatiiig the potential for
biased decisions or malicioiis interference. However, further
investigation of this is an important area of futiire work.

3.4 Survival of the Fittest
Once a peer has identified a new component as a good candidate
for evolution it will request it and reconfigure itself. However, it
is also important that ineffective coinponents are removed from
the network. This improves performance and overhead by
ensuring poor functionality is not advertised and exchanged in the
evolutionary process. To achieve this, each node is restricted to
maintaining a limited set of instances for each component type
e.g. Pastry maintenance components. Once this Set has reached
capacity, the worst performing component is removed to make
room for the new one. This results in a situation in which
components existing in ill-suited environments die whilst
components in well-suited environinents virally propagate.

4. EVALUATION
To evaluate the system a simulator has been developed. The
simulator operates a peer-to-peer video streaming application
based on measurements taken from an existing Video on Demand
systein 1161. Nodes interact with each other based on this . .

application. These interactions are iitilised by the evolutionary
process to exchange reflective meta-data about new functionality.

Nodes are bootstrapped in one of a number of possible
environments. An environinent consists of all peers in the system
operating with the same type of device and connectivity. Two
video streaming system variants are considered: a relatively
homogeneous system (5 environments) and a heterogcneous
system (I 5 environments). A hornogetrous system operates over a
limited set of network connections and devices (c.g. PCs, laptops.
DSL, wireless etc). Alternatively, the helerogeneous system has a
inuch greater range of environments (e.g. PCs, laptops over DSL,

T I n 3 etc; PDAs over wireless and Bluetooth; inobile phones
over GPRS. UMTS and Bluetooth; TVs over Cable and DSL).
Each of thesc devices and connections has diffcrent requirements.
For example. a mobile phone will require sources providing low
coinputation decoding; something that will not affect PCs. Due to
space constraints details are not provided of individual component
specifications or ineta-data. The distribution of nodes in these
environments is modelled iising a Zipf distribution [I] with PCs
(over DSL) constituting the greatest nuinber of peers and PDAs
(over Bluetooth) constituting the least.

1 Parameters I Values I

t Nilmber of Nodes I 20.000

Niiinber of Environments 1 5 / 15

Number of Evolution;iry Components I I0 125 150

Node Distribiition per Environment I Zipf (a = 0.5)

Request Distribution I Poisson (L =0.693/sec)

Number of Node lnteractions per Reqiiest (8

Table 1 Default Parameter Configuration

Mnxirnum Niimber of Stored Components

Environmentnl Cluster Size

Number of lniection Points

At bootstrap each node possesses the default source selector.
Subsequently, a number of new source selector components are
developed and injected at random points in the network. The
source selector component decides which peers should be used to
download video data from. A number of variants therefore exist
including latency, bandwidth, monetary and encoding preference

5 per node

16

8 (Röndorn oeersb

mechanisms; active and passive probing mechanisins; gossip-
based knowled~e sharinr! and social ~reference mechanisms. Peers

W W

therefore try to gain their optimal source selector through Juno's
evolutionary mechanism. Before execution, the simulator
allocates each node an ordered list of component rankings. These
rankings represent the suitability of each component for the
environinent that the node operates in (position 0 is optimal).
Using this, the siinulator measures the performance of the
mechanism by inspecting the effectiveness of the decisions taken
by each node. This section will inspect the results based on the
number of optimisations, the distribiition of these optimisations
and, fiiially. the extinction of component in the system. The
default simulation Parameters are in Table I .

4.1 Optimisation Levels
An important evaliiaiive metric is how many nodes in the network
gain their optimal source selector component. Simulatioiis have
first been performed with five environments over 48 hours, shown
in Figure 2. Deployments of 10 and 50 new components are
shown. Optimisation is fast with a small number of components
(10). with 90% of nodes self-optimising after 17 hours. However,
even with high numbers of components (50), this is only extended
by 5 hours. The final 10% of optimisations. however. is
significantly greater in both systems; this is termed the tniling off
period.

The reason for this decrease in gradient is the existence of frirzge
peers that reside in small environments with few communications.
Such peers therefore rarely come into contact with similar peers
and fail to construct adequate environmental clusters to gain rare
(yet optimal) fiinctionality for their individual requirements. For

both 10 and 50 deployed compoiients, the speed of optiiiiisation
begins to noticeably slow once the inajority (85%) of peers have
optimised. The final 15% of peers therefore constitute the fringe.

100

Figure 2 Percentage of Optimisations with 5 Environments

Figiire 3 Percentage of Optimisations with 15 Environments

Figure 3 shows the percentage of optimisations when operating a
heterogeneous system with 15 environments over 96 hoiirs. These
experiments highlight the scalability of the approach. Wheii
compared to the homogenous system, it can be seen that the speed
of optimisation slows down. Further, the tailing off process can
also be observed in the same manner as highlighted in the
homogenous system. When deploying 10 components, this effect
is least noticeable with significant slowing only occurring after
-85% of optimisations. Conversely, when deploying 25 and 50
components, the tailing off proccdure occurs in a far smoother
manner beginning after -75%. Iinportantly, as the number of
components grows this tailing off procedure stays fairly constant.
Further. the speed of optimisation only marginally decreases. For
example, when the number of components increases from 10 to
25, the time taken to reach 90% optimisation increases by 17
hours. However, this can be compared to an increase of only 9
hours when increasing component niiinbers from 25 to 50.

When comparing the heterogeneous and homogenous systems it
caii be observed that increasing the number of environments and
components only slows the optimisation process; it does not
prevent it. For example, after 8 hours, approximately half of all
nodes have self-optimised in the homogenous system when
deploying 25 components. This can be compared to only 32% in
the hcterogeneous systein. This highlights the complexities
encountered when deploying large nuinbers of components to

many different divergent environinents. As both systems enter
their tailing off period, however. this difference considerably
decreases. After 48 hours, there is only a 7% difference in the
level of optimisation between the homogenous and heterogeneoiis
systems (98%, 9 1%).

This data shows that cven when deploying large numbers of
componeiits in different types of networks i t is possible to
effcctively evolve functionality in a fully distributed way. The
speed of this process is dependent on the number of environments
and components. However, the data shows that increasing the
number of components does not have a significant impact on the
overall optimisation time. Fiirther, even when operating in diverse
sets of environments this process can effectively be carried out.

4.2 Environmental Penetration
It has been shown that a significant proportion of the peers are
able to self-optimise through Juno's evolutionary process. It is
important, however. to investigate the distribution of optiinised
nodes in environments. Environments with a large number of
members (e.g. PCs over DSL) find it easy to gain a high degree of
penetration. However, fringe environments with few constituent
members (e.g. PDAs over Bluetooth) are less susceptible to fast
functional penetration. This is becaiise their limited number of
members makes it less likely for a node to interact with another
Peer possessing the required functionality. To investigate this.
simulations are performed to monitor the number of nodes from
each environment that optimise. Figure 4 shows each
environment's percentage deviation from the overall average
percentage of optimisations. These are performed in a
heterogeneous system (15 environments) deploying 25
evolutionary components.

I1 can be Seen that early after the components' deployinent the
deviation between different environments is noticeable.
Environment 1 constitutes the largest environment whilst
Environment 15 is the sinallest. After 48 hours, significant
deviations are still identifiable; this is because ihe larger
environments have gained high penetrations whilst the smaller
environments have gained lower penetrations. However, after 72
hours these deviations have decreased substantially. For example,
between 48 and 7 2 hoiirs, Environment 7 improves its deviation
from -33% to -16%. These experimeiits corroborate the earlier
optimisation experiments, highlighting the difficulty in
penetrating small fringe enviroiiments. A downward trend can
therefore be identified with Environment I gaining high levels of
penetration whilst Environment 15 gains lower. Interestingly it is
also identifiable that some more populous environmenis (e.g. 7)
gain lower penetration than some less populous eiivironments
(e.g. 15). This is due to the passive nature of node discovery i.e.
evolutionary interactions are based on the higher level
application. Therefore, some environments can gain better
penetration because their constituent nodes interact more
frequently. The enviroiimental penetration is therefore based,
more specifically, on the number of intenctions; soinething which
is clearly an artefact of the application that is operating. This is an
interesting observation that will form a body of future work.

As the time after deployment increases all the environments
become closely inline witli the average optimisation level.
Therefore the deviation of populous environments reduces (e.g.
after 96 hours. Environment I has a 0% deviation) whilst the less
populous environments gain higher levels of penetration (e.g.
after 96 hours. Environment 8 only has a -6.5% deviation).

-40

2 J 6 8 10 12 14

Environmenls

Figure 4 Deviation from Overall Average Percentage of
Optimal Nodes for each Environment

48 Hours
72 Hours - -
96 Hours -

These experiments have highlighted the complexities in
penetrating small environments. However. the experiments have
proved the system to be capable of effectively evolving
functionality when operating in a Iarge number of environments.

4.3 Functional Extinction
To accurately reflect the evolutionary process it is necessary for
siiboptimal functionality to die. However, it is important to ensure
that functionality is not removed before being given the
opportunity to reach its optimal environments and flourish.

100

90

80

Figure 5 Percentage of each Component in Environment 0

To investigate the death of functionality. the most populoiis
environment is inspected in a heterogeneous system with 25
injected components. Figiire 5 shows the percentage of nodes in
this environment possessing each of the 25 components after 48
hours. Component 0 represents the optimal source selector for the
environment whilst Component 24 represents the least effective.
99% of nll nodes in this environment are optimised with
Component 0. Further, 63% of the nodes possess the component
ranked as the second most optimal. However, very few nodes
possess the lower ranked components. For instance, Compoiient
24 is posscssed by only 1% of peers. This represents the
extinction of functionality in particular environments. 11 should be
recognised, however, that this functionality flourishes in other
environments. For instaiice, there are no instances of Component
17 in Environment 0. However, 99% of PDAs connected through
wireless Ethernet possess the component. This shows the system's
ability to reinove poor functionality from an environment whilst
propagating i t in other environinents.

5. RELATED WORK
A range of work has becn carried out into various types of
softwcrre evolrrtion. Early work such as [I I] looked at evolving
software for inaintenance purposes. This promoted the iise of
architectural Patterns and coinponent interceptors to dynaniically
expand fiinctionality throiigh component models such as
OpenCOM [6]. This, however, only deals with internal software
concerns rather than deploying and adapting remote nocles. A
biological view of software evolution can also be found in [IO].

Hales et al [9] utilise an autonomic approach to the evolution and
selection of peer-to-peer protocols by inspecting the 'utility' of
other peers using alternate protocols. This, however, does not
support fine-grained service composition as our approach does.
Nor does i t allow the exchange of reflective information to permit
flexible decisions based on individiial node preferences. Instead,
only a single universal utility value is exchanged.

To support evolution a number of other systems utilise reflectiori
which is the ability for a system to reflect on its own operations
and behaviour. This has been exploited in such systems as [I31 to
allow software to effectively evolve. There are also middleware,
such as QUA [8]. RAMES [5] and [2] that specifically attempt to
address system evolution. These middlewares, however, consider
the locol extension of functionality rather than the distributed
aspects investigated in this paper. To address this, mobile agents
have been used [3]. However. agents rnust be constrocted on
centralised Servers and do not support fine grained evolution for
peers iii different environments. To the best of our knowledge,
this work is the first to look at a natural selection approach to
disseminating evolutionary functionality in heterogeneoiis.
deceiitralised environmcnts.

6. CONCLUSION AND FUTURE WORK
This paper has investigated the potential of large scale functional
evolution in peer-to-peer systems through the paradigms of
natural selection [I01 and the survival of the fittest [7]. Based on
this, an approach using the Juno middleware [I51 has been
designed and evaluated. In this approach, evolutionary
functionality is encapsulated in reflective components that are
exchanged by peers based on their performance and capabilities.
This results in effective functionality flourishing in desirable
environments whilst poor functionality dies out. Through
extensive simulations, the approach was shown to perform well in
a VoD scenario, allowing peers to be evolved and adapted in a
fine grained manner.

A number of areas of future work can be identified. A major area
of further investigation is the system's performance when used
with a variety of applications. The evolution of multiple
cooperating components is also an important area. The evaluation
will be continued to involve these concerns alongside the
integration of dynamic environmental changes. Further, the effects
of progressive deployments of components will be looked at.
Lastly. i t is also important to investigate the security of the system
by protecting is against the propagation of malicious functionality.

7. ACKNOWLEDGEMENTS
The authors would like to thank Yehia EI-khatib and Danny
Hughes for their valuable contributions. This work is supported
by the Eoropean Network of Excellence CONTENT (FP6-IST-
038423).

8. REFERENCES
[I] Adamic, L.A. and Huberman, B.A. Zipfs law and the

internet. Glottometrics 3 p143-150 (2002).

[2] Arcelli, F. and Raibulet, C. Evolution of an Adaptive
Middleware Exploiting Architectural Reflection. Iii Proc.
ECOOP Workshop on Reflection. AOP and Meta-Data for
Software Evolution, Nantes, France (2006).

[3] Bettini, L., De Nicola, R.. and Loreti, M. Software update via
mobile agent based programming. In Proc. of ACM
Symposium on Applied Computing, Madrid, Spain (2002).

[4] BitTorrent Specification.
http://www.bittorrent.org/beps/bep~00033html.

[5] Cazzola W., Ghoneim, A., and Saake, G. RAMSES: a
Reflective Middleware for Software Evolution. In Proc. of
ECOOP Workshop on Reflection, AOP and Meta-Data for
Software Evolution. Oslo, Norway (2004).

[6] Coulson, G., Blair, G., Grace, P., Joolia, A., Lee. K..
Ueyama, J. and Sivaharan. T. A Generic Component Model
for Building Systems Software. In ACM Transactions on
Computer Systems, 27(1): 1-42, February (2008).

[7] David, J.S., McCarthy, W.E., and Sommer, B.S. Agility: the
key to siirvival of the fittest in the software market.
Coinmunications of ACM 46.5 p65-69 May (2003).

[8] Eliassen, F., Gj@wen, E.. Eide, V.S., and Michaelsen. J.A.
Evolving self-adaptive sewices using planning-based
reflective middleware. In Proc. of Workshop on Adaptive
and Reflective Middleware (2006).

[9] Hales, D. and Babaoglu, 0. Towards Aiitomatic Social
Bootstrapping of Peer-to-Peer Protocols. In ACM SIGOPS
Operating Systems Review vol. 40, no. 3, July (2006).

[I01 Hiitchins. D. A Biologist's Vicw of Software Evolution. In
Proc. ECOOP Workshop on Reflection, AOP and Meta-Data
for Software Evolution, Glasgow. UK (2005).

[I I] Oreizy, P., Medvidovic, N., and Taylor, R.N. Architecture-
based runtiine software evolution. In Proc. of Intl.
Conference on Software Engineering Kyoto. Japan (1998).

[I21 Plagemann, T. Goebel, V., Mauthe, A., Mathy, L., Turletti.
T. arid Urvoy-Keller, G., From Content Distribution to
Content Networks - Issues and Challenges. Computer
Communications, vol. 29, issue 5, pp. 55 1-562 (2006).

[I31 Rank, S. Architectural reflection for software evolution. In
Proc. ECOOP Workshop on Reflection, AOP and Meta-Data
for Software Evolution, Glasgow, UK (2005).

[I41 Rowstron, A. and Druschel, P. Pastry: Scalable, Distributed
Object Location and Routing for Large-scale Peer-to-Peer
Systeins. In Proc. of Middleware, Heidelberg (2001).

[I51 Tyson, G., Maiithe, A., Plageinann, T. and EI-khatib, Y.
Juno: Reconfigurable Middleware for Heterogeneous
Content Networking. In Proc. Intl. Workshop on Next
Generation Networking Middleware, Samos Islands (2008).

[I61 Yu, H., Zheng, D., Zhao, B. Y.. and Zheng, W.
Unclerstanding User Behavior in Large-Scale Video-on-
Demand Systems. In Proc. of ACM SigopsEurosys
European Conference on Computer Systems (2006).

