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ABSTRACT 
The heterogeneous, large-scale and decentralised nature of peer- 
to-peer systems creates significant issues when deploying new 
functionality and adapting Peer behaviour. The ability to 
autonomously deploy new adaptive fiinctionality is iherefore 
highly beneficial. This paper investigates middleware Support for 
evolving and adapting peers in divergent systems through 
reflective component based design. This approach allows self- 
contained funciionality to exist iii the network as a primary entity. 
This functionality is autonomously propagaied to suitable peers, 
ailowing nodes to be evolved and adapied to their individual 
constraints and the specific reqiiiremeiits of thejr environment. 
This results in effective functionality flourishing whilst sub- 
optimal functionality dies out. By this, a self-managed 
infrastructure is created ihat Supports the deployment of 
functionality following the evolutionary theory of rialur(i1 
selecrion. This approach is evaluated through simulations io 
highlight the potential of using natural selection for the 
deployment and management of software evolution. 

Categories and Subject Descriptors 
C.2.4 [Distributed Systems]: Distributed Applications; D.2.1 1 
[Software Architectures]: Patterns (Reflection) 

General Terms 
Design, Management 

Keywords 
Software evolution, natural selection, peer-to-peer. functional 
scalability, self-optimisation, reflective middleware 

1. INTRODUCTION 
Recent years have seen a proliferation in the number of widely 
deployed distributed systems with a particular focus on peer-to- 
peer applications. Such systems offer a number of benefits derived 
from their ability io self-organise and pool resoiirces. Their 
decentralised nature, however, creates significaiit issues when 
managing, deploying and optimising new System functionality. 

In a traditional client-server model, introducing new fiinctionality 
is not a significant issue as administrators can easily update Server 
software and insist that clients do so to gain coinpatibility. Such 
an approach, however, is not feasible in a peer-to-peer 
environment. This is because the lack of centralised management 
means that funciionality can be introduced through individual 
peers at any time in an uncontrolled way. Fiirther, due to the 
nature of peer-to-peer networks, specific functionality is not 
necessarily appropriate for different peers. This means that nodes 
must be adapted in a very fine grained inanner. However, to 
achieve this it is necessary for peers to be able to evolve their 
capabilities to address new constraints aiid requireineiits. Software 
evol~irion is the process by which applications can bc maintained 
and extended to incorporate new functionality [I I]. Research has 
largely indicated that the use of well-defined software 
architectures allows systems to effectively scale their funciionality 
through the manipulation of software building blocks. 

This form of evolution, however, is limited in scope and does not 
port well to the concept of fully decentralised sysiems. This is 
because it is only concerned with the practical issues of 
augmenting existing software. This does not take into account 
such things as the deployment, location or selection of new 
functionality. In contrast to this, a number of interesting 
correlations can be drawn between the evolutionary requirements 
of peer-to-peer sysiems and those of ecosysiems [IO]. In natural 
evolution, oganisms that are well suited to their environment 
flourish and propagate whilst ill-suited organisms die out. This is 
iermed the survivol of rhe jirresr and has been identified in the 
software market [7]. This paradigm can offer significant benefits 
if ported to peer-to-peer systems. Stich an approach would allow 
functionality to aiitonomously exist in a network in a similar way 
to life forms in an ecosystem. Through the concepi of tiorltral 
selectiotl [IO], effective functionality would then survive and 
propagate whilst poor functionality dies oiit. 

This paper investigates the potential of distributed functional 
adaptiition and evoliition in peer-to-peer systeins. To this end, an 
approach is outlined using the Juno middleware [I51 as a 
platform. Through self contained reflective components. iisers can 
develop and deploy fiinciionaliiy in a self-optimising and scalable 
manner. This functionalitv is theii auionomoiislv distributed in th* ... 
network through the automated evaluation of its performance. 
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ii) Self-Optimiscition - Functionality will naturally be 
dissemiiiated towards its optimal environmcnts. 
Similarly. inefficieni functionality will die out. This 
allows pecrs to be autonoinously configured. 

iii) Firrictioticil Sculnhiliry - The ability to dynainically 
exchange fuiictioiiality ensures that peers supporting the 
evolutionary platform will always be able to intenct by 
scaling their capabilities through functional exchaiige. 

The paper is stnictured as follows: Section 2 oiitlines Juno. the 
middleware plaiform uscd for the system. Section 3 otitlines the 
details of the evolutionary process. Subsequently, Section 4 
evaluates this mechanism. Section 5 then provides a brief 
background to the area. Finally, Section 6 concliides the work, 
identifying a number of areas of future work. 

2. JUNO MIDDLEWARE 
To siipport distributed evolution ii is necessary for middleware 
support to be provided. The evolutionary process described in this 
paper has been designed to operate with the Juno middleware 
[IS]. This section outlines Juno's relevant operation. 

2.1 Overview of Juno 
Juno is a (re)configurable peer-to-peer middleware designed to 
address the heterogeneity of modern content networks [12]. 
Content networking refers to the progression of traditional content 
distribution technologies to more integrated, holistic content 
environments. Uiilike traditional coiitent distribution. conteiit 
networks view the content itself as the focal poini of the sysiem. 
This can be compared to systems such as BitTorrent [4] that view 
content as just a set of bytes. To this end, content networks iitilise 
informaiion to inielligently distribute content to end Users. taking 
inio account such things as User preferences and Quality of 
Service (QoS). Content networks are therefore often defined by a 
diverse range of delivery mechanisms and multimedia services, 
creating significant complexities when evolving applications. 
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Figure 1 Overview of Juno Middleware (per Host) 

Juno's approach to addressing these complexities is to encapsulate 
functionality in fine grain software components, shown in Fig I. 
These are independent software entities that offer abstracted 
services (interfaces) alongside well defined requiremenis 
(receptacles). In Jtino, multiple components are interconnected to 
build muliimedia delivery mechanisms and services (e.g. video 
streaming. transcoding etc). For example, a distributed objeci 
location overlay such as Pastiy [I41 has a number of identifiablc 
functional aspects e.g. joining. maintenance. routing etc. Juno 
therefore separates these aspecis through software inodiilariiation 
and dynamically interconnects ihem at runtime to construct a fiilly 
operaiional peer. This allows adapiable systems to be consiriicted 

by selectively connectirig ihe optimal components for the 
particular consiraints and requircinents ihe node is operating in. 

2.2 Reconfiguration in Juno 
The ability to dynarnically reconfigure funciionality creates a 
natural platform for adaptation and evolution. Thercforc, on 
receipt of a superior component, Juno dynamically reconfigures 
iis internal architecture to replace the existing component with the 
new one. For example, a node would evolve its maintenance 
algorithms by obtaining a new maintenance component ihat offers 
ihe correct interfacc. The old componcnt would then be reinoved 
from the software architecture and replaced by the new one. All 
subsequent maintenance functionality woiild ihen be performed 
by the new component. To  support this, interchangeable 
components must offer identical interfaces. 

2.3 Reflection in Juno 
One of the primary functions of Jiino is to create a bespoke high 
level plaiform for content network applications to operate over. It 
does this by dynamically construciing itself from optimal 
components based on environmental factors and application level 
reqiiirements. To achieve this, however, i t  is necessary for Juno to 
ascertain the quality and behaviour of individual components. 

To facilitate this decision process, Juno utilises reflection. 
Through the OpenCOM [6] component model, Juno can inspect 
the operntional perfonnance of each available component using 
quantitative meta-data. Each component implemenis OpenCOM's 
IMctaInterface which allows lag based meta-data to be associated 
with each of the component's interfaces. This is shown in Figure I 
with components Al and A2 offering the IMetaInterface to the 
Evoluiionary Manager. Each lag represents a particular evaluative 
metric of the component's performance (e.g. for a caching 
component, average-hit-rate, storage-overhead etc). To  allow 
comparisons, all coinponents offering a particular interface utilise 
ideiitical meta-tags. To support this, an application defines 
staiidard meta-iags for its defoult cornporients. All futiire 
evolirtionary components miist then be described using identical 
meta-tags to ihose defined by the default component they replace. 
This reduces flexibility but is necessary for comparabiliiy. 

TO inspect a component's performance, an application can call the 
getAttributeValue (String tag) operation on any 
component to gain a quantitative assessment of a pariicular facet 
e.g. the bandwidth-overhead of an overlay maintenance 
component. This operation returns a quantitative value for the 
requested meta-lag; the represeiiiation and assignment of these 
valiies will be looked at in Section 3. 

3. EVOLUTIONARY PROCESS 
For cvolution to take place it is necessary io describe how 
functionality is propagated in the network. The approach taken 
follows the theory of the srrrvival of tlze fittest. This section 
describes how this concept is ported io peer-to-peer environmenis. 

3.1 Evolutionary Dissemination 
To allow a fully distributed application to evolve, it is necessary 
to allow functionality to be disseminated to appropriate hos i .  In a 
peer-10-peer environment frequent inieractioiis occiir between 
nodes in ihe system. These interactions consist of service requests 
and provisions. For example, in a peer-to-peer content delivery 
system, nodes will issue requests to each other for data. These 
interactions are cxploited to exchange reflective meia-data 
beiween pecrs. This is because inieracting nodes will often share 



similar appliciition level requirements and constraints. Juno 
thcreforc monitors the application's interaction with other nodes 
and subsequently contacts thein to offer them new fiinctionality. 
This approach therefore does not involve any additional overhead 
for node location or topology niaintenance. When two peers 
interact they concurrently exchange reflective meta-data about any 
extension components considered to be of interest. Each node 
then analyses this data in order to select any functionality of 
interest with evolutionary potential. This therefore allows nodes to 
flexibly inspecl individual attributes considered important for a 
particular sei of individual requirements. This provides Support 
for extremely fine grained evolutionary decisions. 

If two interacting peers offer each other similar component 
functionality and meta-data, these two nodes create a link. These 
links create clusters, of a limited size, containing peers that have 
similar requirements and environmental constraints. These are 
termed environrnentctl clusters. If a node locates a piece of 
effective functionality, it Shares it with its cliister. This allows 
functionality to be quickly disseminated in suitable environments 
without the overhead of actively locating suitable peers. 

3.2 Evolutionary Adaptation 
When a node receives reflective information about a new 
component it is necessary to compare it with the equivalent 
coinponent it is currently using. To  allow this, all meta-values are 
defined relative to the defartlt component. The default component 
therefore Sets a base-line that all evolutionary components are 
compared against. Therefore if a default overlay inaintenance 
component, on average, generates IOKB overhead per minute and 
a new overlay component only generates SKI3 then its assigned 
bandwidthoverhead meta-value will be 20%. This is because it 
improves the overhead by 20%. If, alternatively, a new component 
generates 12KB then the valiie will be -20%. This is because it 
creates 20% more overhead. This approach removes the necessity 
for other components and applications to possess semantic 
knowledge of quantitative values. Instead, it is possible to simply 
consider their capabilities as relative to each other. The 
assignment of these values will be described in Section 3.3. 

Using these meta-tag values, Juno can easily compare multiple 
coinponents to ascertain the superior choice. To  assist in this, an 
application built over Juno must weight the importance of each 
meta-tag associated with its constituent components. Both Juno 
and the application then dynamically modify these values to 
reflect changes in requirements and constraints. For example. a 
caching Service will place considerable weight on the 
average-hit-rate ineta-tag associated with its replacement 
algorithm compoiient. However, if the host becomes overloaded it 
will lower this in favour of decreasing resource consumption. 

When an evolutionary component is offered, both the new and old 
components calculate their scores based on the current 
weightings. This is done by multiplying each meta-tag value by its 
designated weighting. If a new component achieves a higher Score 
than the existing components then Jiino will evolve to incorporate 
the new functionality. Importantly, a peer can reconfigure itself at 
any time to utilise aiiy component it possesses. Therefore an old 
component can bc iitilised again if it is considered optimal. 

3.3 Reflective Meta-Data Assignment 
An important aspect of the systcm is the assignment of values to 
each meta-tag. It is unwise to allow developers to assign relative 
values themselves as this is easily Open to abuse. Fiirther, this 
non-adaptive approach will limit the accuracy of values iri 

divergent environments. Instead. as each node operates the 
component i t  actively manipulates the relative vaiues to reflect the 
current experience. It then uses this informatioii when later 
advertising components to other nodes. Therefore. when a peer 
receives a new compoiient i t  takes the existing meta-tag values 
and incrementally changes them to reflect its experience. The 
resulting values therefore reflect the aggregated experience of all 
peers that the particular instance of the component has passed 
through. As a component penetrates a specific environment these 
values then become more specialised for that particiilar 
environment. If a component does not offer the performance that 
its meta-data stated then this process automatically rectifies this. 
Tlirough the adaptive process outlined earlier, the new values 
assigned to this coinponent will result in it being automatically 
removed from operation in favour of a superior alternative. 

To achieve this measurement process it is necessary for the default 
components to be bundled with the necessary functionality to 
measure and allocate meta-values to new components. The 
process is supported through Juno's Open architecture. This 
allows coinponents to easily monitor each other. The 
measurement functionality associated with the default component 
therefore passively monitors all components involved in the 
application. This is done through Open state inonitoring (ability to 
inspect component state) and Open eventlinterface monitoring 
(ability to inspect coinponent interactions). For example, a default 
component can measure the Iateiicy between nodes by listening to 
the interactions of the networking components. This, therefore, 
does not require evaluative information to be provided by the 
components that are under inspection, mitigatiiig the potential for 
biased decisions or malicioiis interference. However, further 
investigation of this is an important area of futiire work. 

3.4 Survival of the Fittest 
Once a peer has identified a new component as a good candidate 
for evolution it will request it and reconfigure itself. However, it 
is also important that ineffective coinponents are removed from 
the network. This improves performance and overhead by 
ensuring poor functionality is not advertised and exchanged in the 
evolutionary process. To achieve this, each node is restricted to 
maintaining a limited set of instances for each component type 
e.g. Pastry maintenance components. Once this Set has reached 
capacity, the worst performing component is removed to make 
room for the new one. This results in a situation in which 
components existing in ill-suited environments die whilst 
components in well-suited environinents virally propagate. 

4. EVALUATION 
To evaluate the system a simulator has been developed. The 
simulator operates a peer-to-peer video streaming application 
based on measurements taken from an existing Video on Demand 
systein 1161. Nodes interact with each other based on this . . 

application. These interactions are iitilised by the evolutionary 
process to exchange reflective meta-data about new functionality. 

Nodes are bootstrapped in one of a number of possible 
environments. An environinent consists of all peers in the system 
operating with the same type of device and connectivity. Two 
video streaming system variants are considered: a relatively 
homogeneous system (5 environments) and a heterogcneous 
system ( I 5  environments). A hornogetrous system operates over a 
limited set of network connections and devices (c.g. PCs, laptops. 
DSL, wireless etc). Alternatively, the helerogeneous system has a 
inuch greater range of environments (e.g. PCs, laptops over DSL, 



T I n 3  etc; PDAs over wireless and Bluetooth; inobile phones 
over GPRS. UMTS and Bluetooth; TVs over Cable and DSL). 
Each of thesc devices and connections has diffcrent requirements. 
For example. a mobile phone will require sources providing low 
coinputation decoding; something that will not affect PCs. Due to 
space constraints details are not provided of individual component 
specifications or ineta-data. The distribution of nodes in these 
environments is modelled iising a Zipf distribution [ I ]  with PCs 
(over DSL) constituting the greatest nuinber of peers and PDAs 
(over Bluetooth) constituting the least. 

1 Parameters I Values I 

t Nilmber of Nodes I 20.000 

Niiinber of Environments 1 5 / 15 

Number of Evolution;iry Components I I0 125 150 

Node Distribiition per Environment I Zipf (a = 0.5) 

Request Distribution I Poisson (L =0.693/sec) 

Number of Node lnteractions per Reqiiest ( 8 

Table 1 Default Parameter Configuration 

Mnxirnum Niimber of Stored Components 

Environmentnl Cluster Size 

Number of lniection Points 

At bootstrap each node possesses the default source selector. 
Subsequently, a number of new source selector components are 
developed and injected at random points in the network. The 
source selector component decides which peers should be used to 
download video data from. A number of variants therefore exist 
including latency, bandwidth, monetary and encoding preference 

5 per node 

16 
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mechanisms; active and passive probing mechanisins; gossip- 
based knowled~e sharinr! and social ~reference mechanisms. Peers 

W W 

therefore try to gain their optimal source selector through Juno's 
evolutionary mechanism. Before execution, the simulator 
allocates each node an ordered list of component rankings. These 
rankings represent the suitability of each component for the 
environinent that the node operates in (position 0 is optimal). 
Using this, the siinulator measures the performance of the 
mechanism by inspecting the effectiveness of the decisions taken 
by each node. This section will inspect the results based on the 
number of optimisations, the distribiition of these optimisations 
and, fiiially. the extinction of component in the system. The 
default simulation Parameters are in Table I .  

4.1 Optimisation Levels 
An important evaliiaiive metric is how many nodes in the network 
gain their optimal source selector component. Simulatioiis have 
first been performed with five environments over 48 hours, shown 
in Figure 2. Deployments of 10 and 50 new components are 
shown. Optimisation is fast with a small number of components 
(10). with 90% of nodes self-optimising after 17 hours. However, 
even with high numbers of components (50), this is only extended 
by 5 hours. The final 10% of optimisations. however. is 
significantly greater in both systems; this is termed the tniling off 
period. 

The reason for this decrease in gradient is the existence of frirzge 
peers that reside in small environments with few communications. 
Such peers therefore rarely come into contact with similar peers 
and fail to construct adequate environmental clusters to gain rare 
(yet optimal) fiinctionality for their individual requirements. For 

both 10 and 50 deployed compoiients, the speed of optiiiiisation 
begins to noticeably slow once the inajority (85%) of peers have 
optimised. The final 15% of peers therefore constitute the fringe. 

100 

Figure 2 Percentage of Optimisations with 5 Environments 

Figiire 3 Percentage of Optimisations with 15 Environments 

Figure 3 shows the percentage of optimisations when operating a 
heterogeneous system with 15 environments over 96 hoiirs. These 
experiments highlight the scalability of the approach. Wheii 
compared to the homogenous system, it can be seen that the speed 
of optimisation slows down. Further, the tailing off process can 
also be observed in the same manner as highlighted in the 
homogenous system. When deploying 10 components, this effect 
is least noticeable with significant slowing only occurring after 
-85% of optimisations. Conversely, when deploying 25 and 50 
components, the tailing off proccdure occurs in a far smoother 
manner beginning after -75%. Iinportantly, as the number of 
components grows this tailing off procedure stays fairly constant. 
Further. the speed of optimisation only marginally decreases. For 
example, when the number of components increases from 10 to 
25, the time taken to reach 90% optimisation increases by 17 
hours. However, this can be compared to an increase of only 9 
hours when increasing component niiinbers from 25 to 50. 

When comparing the heterogeneous and homogenous systems it 
caii be observed that increasing the number of environments and 
components only slows the optimisation process; it does not 
prevent it. For example, after 8 hours, approximately half of all 
nodes have self-optimised in the homogenous system when 
deploying 25 components. This can be compared to only 32% in 
the hcterogeneous systein. This highlights the complexities 
encountered when deploying large nuinbers of components to 



many different divergent environinents. As both systems enter 
their tailing off period, however. this difference considerably 
decreases. After 48 hours, there is only a 7% difference in the 
level of optimisation between the homogenous and heterogeneoiis 
systems (98%, 9 1%). 

This data shows that cven when deploying large numbers of 
componeiits in different types of networks i t  is possible to 
effcctively evolve functionality in a fully distributed way. The 
speed of this process is dependent on the number of environments 
and components. However, the data shows that increasing the 
number of components does not have a significant impact on the 
overall optimisation time. Fiirther, even when operating in diverse 
sets of environments this process can effectively be carried out. 

4.2 Environmental Penetration 
It has been shown that a significant proportion of the peers are 
able to self-optimise through Juno's evolutionary process. It is 
important, however. to investigate the distribution of optiinised 
nodes in environments. Environments with a large number of 
members (e.g. PCs over DSL) find it easy to gain a high degree of 
penetration. However, fringe environments with few constituent 
members (e.g. PDAs over Bluetooth) are less susceptible to fast 
functional penetration. This is becaiise their limited number of 
members makes it less likely for a node to interact with another 
Peer possessing the required functionality. To investigate this. 
simulations are performed to monitor the number of nodes from 
each environment that optimise. Figure 4 shows each 
environment's percentage deviation from the overall average 
percentage of optimisations. These are performed in a 
heterogeneous system (15 environments) deploying 25 
evolutionary components. 

I1 can be Seen that early after the components' deployinent the 
deviation between different environments is noticeable. 
Environment 1 constitutes the largest environment whilst 
Environment 15 is the sinallest. After 48 hours, significant 
deviations are still identifiable; this is because ihe larger 
environments have gained high penetrations whilst the smaller 
environments have gained lower penetrations. However, after 72 
hours these deviations have decreased substantially. For example, 
between 48 and 7 2  hoiirs, Environment 7 improves its deviation 
from -33% to -16%. These experimeiits corroborate the earlier 
optimisation experiments, highlighting the difficulty in 
penetrating small fringe enviroiiments. A downward trend can 
therefore be identified with Environment I gaining high levels of 
penetration whilst Environment 15 gains lower. Interestingly it is 
also identifiable that some more populous environmenis (e.g. 7) 
gain lower penetration than some less populous eiivironments 
(e.g. 15). This is due to the passive nature of node discovery i.e. 
evolutionary interactions are based on the higher level 
application. Therefore, some environments can gain better 
penetration because their constituent nodes interact more 
frequently. The enviroiimental penetration is therefore based, 
more specifically, on the number of intenctions; soinething which 
is clearly an artefact of the application that is operating. This is an 
interesting observation that will form a body of future work. 

As the time after deployment increases all the environments 
become closely inline witli the average optimisation level. 
Therefore the deviation of populous environments reduces (e.g. 
after 96 hours. Environment I has a 0% deviation) whilst the less 
populous environments gain higher levels of penetration (e.g. 
after 96 hours. Environment 8 only has a -6.5% deviation). 
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Figure 4 Deviation from Overall Average Percentage of 
Optimal Nodes for each Environment 

48 Hours 
72 Hours - - 
96 Hours - 

These experiments have highlighted the complexities in 
penetrating small environments. However. the experiments have 
proved the system to be capable of effectively evolving 
functionality when operating in a Iarge number of environments. 

4.3 Functional Extinction 
To accurately reflect the evolutionary process it is necessary for 
siiboptimal functionality to die. However, it is important to ensure 
that functionality is not removed before being given the 
opportunity to reach its optimal environments and flourish. 
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Figure 5 Percentage of each Component in Environment 0 

To investigate the death of functionality. the most populoiis 
environment is inspected in a heterogeneous system with 25 
injected components. Figiire 5 shows the percentage of nodes in 
this environment possessing each of the 25 components after 48 
hours. Component 0 represents the optimal source selector for the 
environment whilst Component 24 represents the least effective. 
99% of nll nodes in this environment are optimised with 
Component 0. Further, 63% of the nodes possess the component 
ranked as the second most optimal. However, very few nodes 
possess the lower ranked components. For instance, Compoiient 
24 is posscssed by only 1% of peers. This represents the 
extinction of functionality in particular environments. 11 should be 
recognised, however, that this functionality flourishes in other 
environments. For instaiice, there are no instances of Component 
17 in Environment 0. However, 99% of PDAs connected through 
wireless Ethernet possess the component. This shows the system's 
ability to reinove poor functionality from an environment whilst 
propagating i t  in other environinents. 



5. RELATED WORK 
A range of work has becn carried out into various types of 
softwcrre evolrrtion. Early work such as [I I] looked at evolving 
software for inaintenance purposes. This promoted the iise of 
architectural Patterns and coinponent interceptors to dynaniically 
expand fiinctionality throiigh component models such as 
OpenCOM [6]. This, however, only deals with internal software 
concerns rather than deploying and adapting remote nocles. A 
biological view of software evolution can also be found in [IO]. 

Hales et al [9] utilise an autonomic approach to the evolution and 
selection of peer-to-peer protocols by inspecting the 'utility' of 
other peers using alternate protocols. This, however, does not 
support fine-grained service composition as our approach does. 
Nor does i t  allow the exchange of reflective information to permit 
flexible decisions based on individiial node preferences. Instead, 
only a single universal utility value is exchanged. 

To support evolution a number of other systems utilise reflectiori 
which is the ability for a system to reflect on its own operations 
and behaviour. This has been exploited in such systems as [I31 to 
allow software to effectively evolve. There are also middleware, 
such as QUA [8]. RAMES [5] and [2] that specifically attempt to 
address system evolution. These middlewares, however, consider 
the locol extension of functionality rather than the distributed 
aspects investigated in this paper. To address this, mobile agents 
have been used [3]. However. agents rnust be constrocted on 
centralised Servers and do not support fine grained evolution for 
peers iii  different environments. To the best of our knowledge, 
this work is the first to look at a natural selection approach to 
disseminating evolutionary functionality in heterogeneoiis. 
deceiitralised environmcnts. 

6. CONCLUSION AND FUTURE WORK 
This paper has investigated the potential of large scale functional 
evolution in peer-to-peer systems through the paradigms of 
natural selection [I01 and the survival of the fittest [7]. Based on 
this, an approach using the Juno middleware [I51 has been 
designed and evaluated. In this approach, evolutionary 
functionality is encapsulated in reflective components that are 
exchanged by peers based on their performance and capabilities. 
This results in effective functionality flourishing in desirable 
environments whilst poor functionality dies out. Through 
extensive simulations, the approach was shown to perform well in 
a VoD scenario, allowing peers to be evolved and adapted in a 
fine grained manner. 

A number of areas of future work can be identified. A major area 
of further investigation is the system's performance when used 
with a variety of applications. The evolution of multiple 
cooperating components is also an important area. The evaluation 
will be continued to involve these concerns alongside the 
integration of dynamic environmental changes. Further, the effects 
of progressive deployments of components will be looked at. 
Lastly. i t  is also important to investigate the security of the system 
by protecting is against the propagation of malicious functionality. 
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