

Where’s Pikachu: Route Optimization

in Location-Based Games

Thomas Tregel

Multimedia Communications Lab

TU Darmstadt

Darmstadt, Germany

thomas.tregel@kom.tu-darmstadt.de

Ralf Steinmetz

Multimedia Communications Lab

TU Darmstadt

Darmstadt, Germany

ralf.steinmetz@kom.tu-darmstadt.de

Philipp Müller

Multimedia Communications Lab

TU Darmstadt

Darmstadt, Germany

philipp.mueller@kom.tu-darmstadt.de

Stefan Göbel

Multimedia Communications Lab

TU Darmstadt

Darmstadt, Germany

stefan.goebel@kom.tu-darmstadt.de

Abstract—Along with the sudden rise in popularity of

location-based games, the demand for tools to assist players in

performance optimization increased. One major aspect lies

within the analysis and planning of routes that contain a high

amount of desirable game locations for the given player.

However, personalized routes cannot be created by hand due to

the amount of available in-game locations and the associated time

constraints for real-world travel.

This paper presents a system to dynamically create

personalized route for players, based upon previous game data.

These routes can be fully customized with regards to their time

and location as well as the player’s desired in-game goal, allowing

them to e.g. specifically target their favourite species or maximize

the amount of visited locations. The system is evaluated using a

dataset of Berlin containing over 30.000 distinct locations with

different associated in-game behaviour. Regarding the system’s

performance it is designed to work as an assistance system on a

mobile device to assure its applicability in the context of location-

based games.

Keywords—location-based games, optimization, player

assistance, mobile devices

I. INTRODUCTION

Popular location-based games like Ingress or Pokémon Go
have demonstrated the public interest in this genre quickly
reaching a user base of up to 45 million users worldwide [2].
Studies indicate that playing such games has a positive health
influence due to the players’ increase daily activity [1]. For the
respective target audience the availability of smartphones for
mobile games increases according to a yearly study in
Germany, which shows a steady increase in smartphone
availability for teenagers reaching 97% in 2017 [3].

Due to the nature of the game using a discovery-based
approach for Pokémon collection, players quickly tried to
investigate ways to improve their performance within the
game, which resulted in different services to automatically scan
the surrounding area.

However, in order to provide users with a way to use
efficient routes to maximize their progress, a user guidance

system is needed. The goal of this system is to allow users to
define their start and goal position as well as the amount of
time they intend to spend. Based upon previous data from the
aforementioned scan system, an optimal route can be
calculated on the mobile device which maximizes the user’s
goals.

II. RELATED WORK

A. Content representation in Pokémon Go

In Pokémon Go a spawn points is a distinct geolocation that
automatically generates a singular Pokémon every hour. In
order to determine which of the wide range of Pokémon to
spawn, the location’s context is used. Context like being
located in an industrial area or near a river directly influences
the distribution of possible Pokémon. Additionally, each spawn
point generates a Pokémon at a set number of seconds of each
hour, with them being available for 30 minutes most of the
time. Spawn points which are located within parks or similar
recreational areas additionally have a behaviour called “nests”.
Spawn points that belong to a nest are assigned a single distinct
Pokémon on a biweekly basis, which is spawned most
frequently at these locations [4].

B. Traveling Salesman Problem with Time Windows

The traveling salesman problem (TSP) is a well-known
problem in the fields of mathematics and computer science that
has been extensively studied ever since it was first brought up
as a mathematical problem by Karl Menger in 1930 [5, 6, 7, 8].
It is the problem of finding a cheapest (shortest) route that
visits all cities on a given set of cities and then returns to the
start location. The traveling salesman problem with time
windows (TSPTW) is a generalization of the TSP which adds
time windows to each city, limiting when a city may be visited
[9].

Both problems are typically modelled as a pathfinding
problem on a weighted graph where each node represents one
city, each edge between two nodes represents a path between
the two respective cities and each edge weight is equal to the
respective cost of the path, i.e. the minimum length of the path
between both cities. They can be shown to be in NP-hard and

rst
Textfeld
Thomas Tregel, Philipp Müller, Stefan Göbel, Ralf Steinmetz: Where's Pikachu: Route Optimization in Location-Based Games. In: Proceedings of the 10th International Conference on Virtual Worlds and Games for Serious Applications, p. 81- 87, IEEE, September 2018. ISBN 978-1-5386-7123-8.

furthermore in NP-complete, suggesting that they cannot be
solved in polynomial time unless 𝑃 = 𝑁𝑃 [10, 11, 12].

C. Solution Approaches

Solution approaches for both problems can be separated
into exact algorithms and approximative algorithms. Whereas
exact algorithms guarantee an optimal route, approximative
algorithms utilize heuristics in an attempt to find a route that’s
reasonably close to the optimal route within a significantly
shorter runtime.

Because of their comparatively long runtimes, exact
algorithms are nowadays almost exclusively used for small
instances of the TSP(TW). Pure branch and bound algorithms
such as proposed in [9] have been mostly replaced by branch
and cut algorithms which combine branch and bound with
cutting planes to solve the TSP(TW) formulated as an integer
linear program [13, 14]. The best performing exact algorithm
for the TSP we could find is a branch and cut algorithm called
Concorde solver [15].

Particularly for real-time applications and larger problem
instances, approximative algorithms are typically necessary in
order to keep runtimes manageable. Some of the earliest
approximative algorithms for the TSP use constructive
heuristics in order to generate a route by iteratively adding arcs
[16, 17]. A more recent approach utilizes local search
heuristics such as Tabu search or k-Opt in order to find a local
optimum in a neighbourhood of valid routes [18, 19, 20, 21].
Simulated annealing and evolutionary algorithms are currently
some of the best-performing algorithms for the TSP(TW)
utilizing such neighbourhood structures [21]. Simulated
annealing is a metaheuristic which is inspired by the process of
annealing in material science and has shown to perform well on
many different problems [22, 23, 24, 25, 26, 27]. Inspired by
biological evolution, on the other hand, evolutionary
algorithms show similar performance to simulated annealing
[28, 29]. A different approach to neighbourhood-based
algorithms called variable neighbourhood search utilizes
multiple different neighbourhoods in order to achieve a similar
performance on the TSPTW [30]. Based on the behaviour of
ants when searching for paths to food sources, ant colony
optimization algorithms such as BEAM-ACO [31] and Ant-Q
[32] have been successfully applied to the TSP, matching other
state of the art algorithms in performance. Machine learning
approaches, particularly self-organizing maps, have also been
successful in achieving similar performance to other state of
the art algorithms on the TSP [33, 34]. An approach which
combines nested Monte-Carlo search with other techniques has
been able to match but not surpass any of the commonly used
algorithms for the TSPTW [35]. Other, more novel approaches
such as programming a carbon nanotube [36] or simulating a
shrinking material blob [37] have been successfully applied to
the TSP but lack in either scalability or performance.

III. PROBLEM DEFINITION

A problem definition for the problem of route finding in
location-based games can be developed by considering typical
player requirements and system restrictions. Player
requirements are typical requirements a player would have
towards a desirable route. System restrictions, on the other

hand, are imposed on a route based on the functionality of
spawn locations in typical location-based games.

A player would typically want a route to start at a specific
point in time and location, e.g. at their current time and
location. Since a player cannot be expected to have an
unlimited amount of time available, the route would have to
finish at a specific location before a specific point in time.
Depending on the player’s circumstances, the target location of
a route can either be the same as the start location or another
location entirely. In order to maximize the game progress a
player is expected to achieve on a route, the route needs to
maximize the number of viable spawn locations visited. In the
context of Pokémon Go, a viable spawn location is one that is
currently active and capable of spawning a Pokémon that is
beneficial to the player. Depending on the player’s goals in the
game, this could either be any Pokémon or a number of
specific Pokémon such as those the player has not yet caught.
A player would therefore want an option to specify which
Pokémon they are interested in catching, i.e. which Pokémon
are relevant to them.

A typical system-based restriction for routes found in
location-based games is the limited active time of spawn
locations, i.e. a route may only visit a spawn location when it is
currently active. In Pokémon Go, a spawn location is
considered currently active if there is currently a chance of a
Pokémon being found at that location. Since Pokémon at a
given spawn location respawn periodically and regardless of
whether a player has previously caught a Pokémon at that
location, a spawn location may be revisited at a later active
period to increase the chances of encountering a desired
Pokémon or catching multiple Pokémon at that location.

Additional properties necessary to determine whether a
route is feasible in practice include an estimation for the
retention time of a player at each location as well as an
estimated travel time between two locations for each pair of
spawn locations. In Pokémon Go, the expected retention time
would estimate how long it takes for a player to catch a
Pokémon at a given location. In practice, this could either be a
constant value selectable by the player or be determined
adaptively by the route-finding system based on statistical
player data. To determine the expected travel time between two
spawn locations, different approaches are thinkable. A simple
approach would let the player select an estimated travel speed
and calculate an estimated travel time based on the linear
distance between both locations. More sophisticated
approaches might incorporate advanced route data and
expected traffic conditions such as provided by the Google
Maps Directions API [38] when estimating travel times
between locations.

In order to apply the problem to other location-based games
which function similar to Pokémon Go but provide different
properties to determine whether a spawn location is desirable
to a player, we introduce a single numerical value for each
spawn location representing the value it provides to a player
when visited. For Pokémon Go, this value is calculated by
summing up the spawn probabilities of all Pokémon relevant to
a player for a given location, resulting in a value between 0 (no
Pokémon capable of spawning at that location are relevant to

the player) and 1 (all Pokémon capable of spawning at that
location are relevant to the player). When applying the problem
to other location-based games, only this conversion formula
would have to be adjusted to correspond to the respective
game’s spawn location properties.

Based on aforementioned requirements, restrictions and
properties, we specify the following problem definition for
route finding in location-based games:

Given a start location 𝑠𝑠 , a target location 𝑠𝑡 , an earliest
start time 𝑡𝑠, a latest finish time 𝑡𝑓, a set of 𝑛 spawn locations

𝑆 = {𝑠1, … , 𝑠𝑛} and for each spawn location 𝑠 an expected
retention time 𝑡𝑟(𝑠) ≥ 0, a value 𝑣(𝑠) ≥ 0, an expected travel
time 𝑑(𝑠, 𝑠2) ≥ 0 to each other spawn location 𝑠2 and uptime
information consisting of a period length between spawns
𝑡𝑝𝑒𝑟𝑖𝑜𝑑(𝑠) , a relative spawn time 𝑡𝑠𝑝𝑎𝑤𝑛(𝑠) and a relative

despawn time 𝑡𝑑𝑒𝑠𝑝𝑎𝑤𝑛(𝑠) , find the shortest valid route 𝑅

consisting of a sequence of spawn locations 𝐿 and a sequence
of arrival times 𝑇 which maximizes the sum of all values on
the route.

A valid route is a route which starts at 𝑠𝑠 no earlier than 𝑡𝑠,
ends at 𝑠𝑡 no later than 𝑡𝑓 and visits spawn locations only when

they are currently active but never twice within the same active
time window. For each spawn location 𝑠1 on the route, given
its arrival time 𝑡1, the arrival time 𝑡2 of the next spawn location
𝑠2 on the route can be no earlier than 𝑡𝑟(𝑠1) + 𝑑(𝑠1, 𝑠2). The
time between arrivals on two consecutive spawn locations
𝑠1, 𝑠2 on the route has to be at least equal to the expected travel
time in addition to the retention time on the first spawn
location 𝑑(𝑠1, 𝑠2)

It can be shown that the TSP is a specialization of the
specified problem when particular input values are chosen. The
specified route finding problem is therefore at least as
computationally difficult as the TSP and has to be in the
complexity class of NP-hard problems as well.

IV. CONCEPT

In the following we evaluate existing approaches to the
TSP and TSPTW with respect to performance and adaptability
to the specified route-finding problem. We then outline
optimization algorithms capable of approximatively solving the
problem in real-time which were developed based on two
versatile metaheuristics that have shown to perform well on the
TSPTW.

A. Feasibility of existing approaches

Whereas we would ideally want to find an optimal route for
any given problem instance, we don’t consider exact
algorithms to be currently feasible to be used in real-time for
typical instance sizes. The best-performing exact algorithm for
the TSP known to us, the Concorde solver, already shows
runtimes of multiple days per problem instance for an instance
size of just 4,500 nodes [16]. For a more computationally
complex problem such as discussed in this paper and for larger
problem instances, e.g. the Berlin dataset consisting of more
than 30,000 spawn locations that is available to us, exact
algorithms can currently only be expected to further exceed
this runtime figure and therefore be unfit for use in real-time.

This leaves only approximative algorithms as feasible to
generate routes for location-based games in real-time. Amongst
the many different approximative approaches showing a
similar performance on the TSP(TW), we decided to base our
algorithm on those which we consider particularly simple to
adapt to our problem, allowing us to put a larger focus on
optimization over adaptation. We therefore chose to use two
approaches which are very similar in nature, namely simulated
annealing and an evolutionary algorithm. Both approaches
utilize a neighbourhood structure to generate new route
candidates and an objective function to evaluate generated
route candidates.

B. Pre-processing

Before generating a route using either of the two selected
metaheuristics, multiple pre-processing steps are applied to a
problem instance. Frequently used values are pre-calculated
and the number of locations to be considered is reduced in
order to improve the performance of our route finding
algorithms.

In the first pre-processing step, a value 𝑣(𝑠) is calculated
for each spawn location 𝑠 which represents the player’s
expected desirability of Pokémon spawning at that location.
Based on the relevancy 𝑟𝑖 for each Pokémon 𝑖 and its spawn
probability 𝑝𝑖(𝑠) ∈ [0,1] at a given spawn location 𝑠 , it is
calculated as follows:

𝑣(𝑠) = ∑(𝑝𝑖(𝑠) ⋅ 𝑟𝑖)

𝑝

𝑖=1

Under the assumption that the expected travel time
𝑑(𝑠1, 𝑠2) always takes the shortest route between 𝑠1 and 𝑠2 ,
any spawn location with a value of 0 cannot be on the optimal
route and is therefore filtered out of the dataset.

When using approximated linear distances and an expected
travel speed to calculate expected travel times between spawn
locations, all necessary conversions are applied to their
coordinates during pre-processing in order to allow efficient
calculation of travel times during route generation. Coordinates
are first realigned relative to the smallest occurring coordinates.
These are then converted into approximated metric units as
described in [39]. Lastly, the approximated metric units are
converted into seconds of travel time based on the expected
travel speed. Optionally, if sufficient memory is available, a
distance matrix consisting of distances between all spawn
location pairs can be generated.

In a third pre-processing step, all spawn locations are
filtered out which cannot be reached within the available
amount of time. The filtered set of spawn locations 𝑆′ is
calculated as follows:

𝑆′ = {𝑠 ∈ 𝑆|𝑑(𝑠𝑠 , 𝑠) + 𝑡𝑟(𝑠) + 𝑑(𝑠, 𝑠𝑡) ≤ 𝑡𝑓 − 𝑡𝑠}

In a fourth pre-processing step, a grid is generated which
divides the area of all remaining spawn locations into quadratic
cells with a fixed side length. For each cell, the spawn
locations it contains as well as its centre coordinates are stored.
Furthermore, a distance matrix is generated which stores
distances between all pairs of cells. This distance matrix is later

used in our heuristic neighbourhood function to efficiently
determine feasible spawn locations to add to the route.

C. Optimization algorithms

Because of their similar nature, simulated annealing and
evolutionary algorithms can utilize the same structures,
functions and heuristics in order to be applied to a problem.
This property allowed us to simultaneously develop two
optimization algorithms, each based on one metaheuristic. In
the following, we provide an overview over concepts which we
utilize in our optimization algorithms to adapt both
metaheuristics to the problem of route finding in location-based
games.

For simulated annealing, we chose a cooling schedule of

𝑇𝑡 =
𝐶

log (𝑡)
 based on its convergence properties shown in [26].

𝐶 is set to the maximum value of all spawn locations in the
dataset to ensure that the algorithm doesn’t get stuck in a local
minimum. In order to achieve more consistent results, the
algorithm is restarted a variable number of times.
Configuration parameters include the number of temperatures,
iterations per temperature and restarts. The returned route is the
best seen route during any iteration as defined by its objective
value.

For the evolutionary algorithm, we chose a genetic
algorithm with mutations based on a single parent. A variable
survival rate determines the percentage of all routes in the
population which are removed between generations and
replaced by mutations of the remaining routes. Roulette wheel
selection such as described in [40] is used in order to select
routes during the removal and mutation processes based on
their objective value. Configuration parameters include the
population size, number of generations and survival rate.
Again, the best seen route during any generation as defined by
its objective value is returned.

We store routes as sequences of visited locations and
notably don’t explicitly store arrival times. The represented
route is then the shortest valid route with that sequence of
visited locations for a given dataset. In particular, arrival times

can be iteratively calculated as the earliest possible arrival
times which adhere to the requirements of a valid route
according to the problem specification. By representing routes
like this, the problem’s search space can be reduced, allowing
for better performance of optimization algorithms on the
problem. Furthermore, a representation similar to those
commonly used in genetic algorithms, loosely based on DNA
sequences, is achieved, allowing for our neighbourhood
function to apply similar mutation steps.

In order to evaluate a route’s quality, we present the
following objective function:

𝑜𝑟𝑜𝑢𝑡𝑒 =
𝑣𝑟𝑜𝑢𝑡𝑒

1 +
√min{𝑡𝑟𝑜𝑢𝑡𝑒, 𝑡𝑚𝑎𝑥} + max{0, 𝑡𝑟𝑜𝑢𝑡𝑒 − 𝑡𝑚𝑎𝑥}2

𝑡𝑚𝑎𝑥

Fig. 1 exemplarily shows the behaviour of this objective
function for a desired maximum travel time 𝑡𝑚𝑎𝑥 of 120
minutes under the assumption that the summed value 𝑣𝑟𝑜𝑢𝑡𝑒 of
all spawn locations on the route increases proportionally to its
total travel time 𝑡𝑟𝑜𝑢𝑡𝑒. The objective value is proportional to
the total route value 𝑣𝑟𝑜𝑢𝑡𝑒 and decreases for routes with larger
travel times. In order to promote routes which maximize total
value, any time spent before the desired maximum travel time
𝑡𝑚𝑎𝑥 is exceeded is only taken into account as its square root.
By squaring the amount of time exceeding 𝑡𝑚𝑎𝑥, the function
simultaneously penalizes routes which don’t adhere to 𝑡𝑚𝑎𝑥
while still assigning them a meaningful objective value for
optimization algorithms to work with.

In order to generate a new route based on an existing route
(mutate a route), we developed two different neighbourhood
functions. A simple neighbourhood function generates a new
route based on an existing route by randomly adding a spawn
location, removing a spawn location, replacing a spawn
location by another or swapping the position of two spawn
locations on the route. An advanced neighbourhood function,
called heuristic neighbourhood in the following, prioritizes
operations which are likely to improve a route’s quality. Most
notably, when adding a spawn location to the route, the route’s
remaining time before 𝑡𝑚𝑎𝑥 is reached is calculated and spawn
locations which are likely to cause the route to exceed 𝑡𝑚𝑎𝑥 are
not considered. This is achieved by filtering out grid cells and
thus spawn locations on the grid generated during pre-
processing based on their distance to the two consecutive
spawn locations on the route between which a new spawn
location is supposed to be added.

Because of limited availability of advanced route data such
as provided by the Google Maps Directions API [38], we
calculate estimated travel times based on Euclidean distances
between spawn locations and a variable estimated travel
velocity. Given the frequency of estimated travel time
calculations in our algorithms and a relatively close proximity
of spawn locations, we furthermore estimate distances as linear
distances instead of calculating great circle distances using e.g.
the Haversine formula described in [41]. In order to reduce the
number of calculations, calculated values can be stored in a
distance matrix if sufficient memory is available.

Fig. 1. Objective function value compared to total route value for routes

with varying total travel times.

V. IMPLEMENTATION

In the following, we provide a small overview of the
implementation that was used to evaluate our proposed
algorithms. Included are a parser for datasets of spawn
sightings, a command-line interface (CLI) for quick access to
the implemented algorithms and a prototypical graphical user
interface (GUI) providing a visualization of spawn locations
and generated routes.

A. Dataset preparation

Based on a list of spawn sightings in the .csv format, our
implemented dataset parser generates a serialized set of spawn
locations to be used by our route finding algorithms. Each
spawn sighting consists of the Pokémon sighted (by Pokémon
number), a location ID with coordinates and a despawn time.
The despawn time specifies the number of minutes into an hour
after which the Pokémon despawns. Since all spawn locations
in Pokémon Go use the same period of one hour between
spawns and despawns always occur exactly 30 minutes later, it
is possible to precisely calculate all active time windows of a
spawn location based on just the despawn time of one of its
respective spawn sightings. This is used in order to generate a
set of unique spawn locations, each consisting of its
coordinates, its relative active time window and a list of
Pokémon with their spawn probabilities for that location.

B. GUI

The GUI consists primarily of a geographical world map
which is used to display generated routes between spawn
locations. By clicking on the map, a user can select desired
start and target locations respectively. Additionally, the user
can input desired start and target times, their expected travel
speed and whether they’re looking for a specific Pokémon. In a
mobile application, some of these inputs could be
automatically set to relevant default values, e.g. using the
user’s current time and location.

A quality slider provides users with the option of choosing
between faster route generation and better route quality. In
order for this quality slider to be useful for a large range of use
cases and systems, a quadratic function is used to translate the
quality slider’s setting into configuration parameters for our
optimization algorithms. The quality scale ranging from 0 to 10
results in a number of temperatures between 30 and 30,030 for
simulated annealing or a number of generations between 1,000
and 1,001,000 for the evolutionary algorithm. The respective
configuration parameters to be adjusted were chosen based on
how good of a trade-off they provide between runtime and
route quality. Other configuration parameters were kept at the
default values used in our evaluation.

VI. EVALUATION

We assessed our algorithms for different configuration
parameters by generating a test set of 100 routes for each
combination of parameter values. Unless the assessed
parameter was specific to either metaheuristic, this was done
once for each metaheuristic. The generated route data was then
statistically evaluated to obtain information on runtime
performance of route generation and quality of generated
routes as defined by our objective function for each test set.
Utilizing our GUI implementation, we furthermore confirmed

the validity of generated routes with respect to the problem
specification and practical applicability on a sample basis.

Based on the runtime performance of exact solvers such as
the Concorde solver [15] on the less computationally complex
TSP, it doesn’t appear feasible to us to determine optimal
routes for the problem instances used in our evaluation. A
comparison of generated routes to optimal routes was therefore
not possible.

The test sets were generated on a desktop PC utilizing an
Intel Core i5-4670K processor running at a maximum clock
speed of 3.4 GHz with a maximum heap size of 2 GB.

The dataset utilized in our assessment is generated based on
5,181,910 unique spawn sightings in Berlin and consists of
32,148 unique Pokémon spawn locations across an area of 309
square kilometres, resulting in a density of 104 spawn locations
per square kilometre. Within this dataset, the Brandenburger
Tor and Potsdamer Platz were selected as respective start and
target locations for the routes to be generated. Given their
location within the city of Berlin and their close proximity to
another, the number of spawn locations filtered out during pre-
processing is kept comparatively low in order to obtain close to
worst case performance data for our algorithms.

A. Default Parameter Values

The default problem parameter values are chosen to be
representative of a typical use case of our route finding
algorithms. The player starts at the Brandenburger Tor at
18:00, wants to be at the Potsdamer Platz by 20:00 and hasn’t
recently visited any spawn locations. They move at an average
speed of four kilometres per hour and stay at each spawn
location visited for one minute. They don’t have any preferred
Pokémon to catch and therefore the relevancy 𝑟𝑖 is set to 1 for
all Pokémon. The time between spawn events is set to 60
minutes and the time before Pokémon despawn is set to 30
minutes based on observations in Pokémon Go.

The default configuration parameter values were
empirically obtained in an attempt to achieve the best trade-off
between runtime and route quality for use in real-time
applications. In order not to exceed a few seconds of runtime
on slower mobile CPUs, we decided upon a maximum median
runtime of one second per generated route on our system. We
then searched for configuration parameter values which
maximize route quality as defined by a route’s objective value
without exceeding the one second runtime limit.

By default, distances are approximated as linear distances
and not stored in a distance matrix. Instead of a simple random
neighbourhood function, our heuristic neighbourhood function
is used. The grid used within our heuristic neighbourhood
function has a cell size of 500x500 metres. Simulated
annealing restarts five times, each going through 300 different
temperatures and 120 iterations per temperature for a total of
216,000 iterations. The evolutionary algorithm uses a
population size of 40 route candidates, a survival rate of 50%
per generation and runs for 10,000 generations, resulting in
approximately 200,000 mutations in total.

For the default configuration, both algorithms show
performance within 1% of another with respect to runtime and

quality of generated routes as indicated by their objective
value. Compared to the evolutionary algorithm, simulated
annealing shows a significantly lower variance in both metrics.
Routes generated by both algorithms never exceeded the
desired maximum route travel time of 120 minutes by more
than 30 seconds, suggesting that our objective function
adequatly limits route travel times for use in practice. As
expected, the number of locations visited on generated routes is
distributed similarly to the objective value. The median number
of locations visited is 42.0 for both algorithms. If you exclude
the retention time of one minute, this results in an average
travel time of 1.93 minutes between two visited spawn
locations. Based on the assumed travel speed of four kilometres
per hour, an average distance between visited spawn locations
of 128 metres can be calculated. After manually assessing
generated routes and available spawn locations, we believe
these to be very reasonable values for good routes. In
particular, we expect these routes to be significantly better than
routes users would typically come up with when manually
planning their routes, even if they had all spawn information
available to them in an accessible format.

A limitation based on our usage of linear distances instead
of more advanced route data such as provided by the Google
Maps Directions API [38] is the lack of practicability for some
of the generated routes. Some routes would, for example,
repeatedly cross a river in a location where no bridge is nearby.
Our approach using linear distances is therefore mostly suited
for more open areas such as fields and forests whereas areas
with large scale obstacles such as rivers or housing blocks
would benefit from using more sophisticated distance
functions, e.g. by pre-calculating a distance matrix for each
dataset based on advanced route data in order to keep route
generation times low.

Based on these results, we consider both optimization
algorithms to be feasible for use in practice if distance
calculation is appropriately handled. Whereas simulated
annealing is showing more consistent results compared to the
evolutionary algorithm, we consider the difference to be small
enough to be dominated by other factors such as
implementation details or chosen configuration parameters in
practice.

B. Selected parameters with interesting outcomes

In total, we individually assessed 15 different problem and
configuration parameters with respect to their impact on
runtime and route quality when generating routes with both
optimization algorithms. In the following, we will present
select parameters with noteworthy effects on route generation.

Whereas both optimization algorithms generally performed
very similarly when varying different problem parameters, the
evolutionary algorithm performed notably better for higher
travel speeds. For the highest tested travel speed of 25 km/h, it
was able to generate routes with a 5% larger median objective
value in 15% less median runtime compared to simulated
annealing. When varying maximum travel time, objective
values no longer increased proportionally to maximum travel
time for routes longer than one hour whereas runtimes
increased overproportionately, suggesting a decline in relative
route quality and overall performance for routes longer than
one hour. We expect this to be a result of the larger problem
instance size, partially caused by fewer spawn locations being
filtered out by the distance filter during pre-processing.

Compared to the simple neighbourhood function, the
heuristic neighbourhood function has shown to have
significantly different effects on runtime and route quality
depending on which optimization algorithm is used. For
simulated annealing, it has shown to be largely beneficial as it
resulted in a 162% increase in median objective value at a 71%
increase in median runtime with a lower runtime variance. For
the evolutionary algorithm, however, the median objective
value only increased by 78% at a 159% increase in median
runtime with higher variances in both values. A more
favourable trade-off between runtime performance and route
quality can be achieved by choosing a larger value for the size
of grid cells used by the heuristic neighbourhood function.

C. Pre-processing

Pre-processing runtimes were tracked for all routes
generated during our evaluation. The highest recorded pre-
processing time was still below 50ms with typical values
between 2ms and 5ms, resulting in a relatively small impact on
total runtime.

Whereas some pre-processing steps are mandatory for our
algorithms to properly function, distance and value filtering

Fig. 2. Berlin dataset without pre-processing (left), after distance filtering (centre) and after value filtering (right).

have proven to be valuable tools to keep the problem instance
size manageable. For our default parameter values in particular,
the number of spawn locations is reduced from 32,148 to 7,375
during pre-processing, a reduction of more than 77%. Fig. 2
shows the Berlin dataset unfiltered (left), after distance filtering
(centre) and after distance plus value filtering with one sought-
after Pokémon (right). Each dot represents one spawn location
with the colour determining whether a spawn location is the
selected start location (green), the selected target location (red),
on the generated route (grey) or none of the aforementioned
(yellow). As can be seen, value filtering can further
significantly reduce the number of spawn locations by up to
more than 99% depending on which Pokémon is sought after.

VII. SUMMARY & OUTLOOK

We have developed, implemented and evaluated different
algorithms and heuristics for route optimization in location-
based games. In order to do so, we analysed a location-based
game and developed a problem definition for route finding in
this game. We then abstracted this problem definition to be
applicable to other location-based games and identified its
properties with respect to potential solution approaches. We
assessed the feasibility of applying different solution
approaches commonly used in dealing with the traveling
salesman problem to the problem of route finding in location-
based games. Based on this assessment, we elaborated on
promising solution approaches and developed different
concepts necessary to apply selected solution approaches to the
specified problem. This includes a series of pre-processing
steps to improve performance and offer additional
functionality, a route representation, an objective function and
two different neighbourhood functions which allow two
different metaheuristics to be applied to the problem.

We implemented two configurable optimization algorithms
which utilize all developed concepts. Additionally, we
implemented parsers for spawn location data, an extensive
command-line interface (CLI) and a prototypical graphical user
interface (GUI) which serves as a prototype for a mobile
application which could allow users to effortlessly optimize
their routes in location-based games.

We evaluated all concepts with respect to functionality and
performance for different problem and configuration parameter
values and when using different heuristics. We manually
reviewed routes generated within the GUI regarding their
quality and practical value. Using the CLI, we generated a
large number of test sets which we then statistically analysed to
obtain and evaluate data about runtime performance and route
quality for both optimized algorithms. Based on this data, we
evaluated the performance and usability of both optimization
algorithms on different problem instances. Furthermore, we
evaluated the impact on overall performance that different
heuristics and configuration parameter values have.

In addition to the simulation of realistic movement using
distance matrices on the real road network, modality-based
interaction is an interesting aspect. Using the user’s current
movement type or to incorporate public transport routes to
possibly bridge larger gaps in suggested routes is a promising
extension possibility.

REFERENCES

[1] T. Althoff, R. W. White, and E. Horvitz, “Influence of Pokémon Go on
physical activity: Study and implications” Journal of Medical Internet
Research 18(12). 2016.

[2] The Guardian.: Pokémon No: game’s daily active users, downloads and
engagement are down. URL https://www.theguardian.com/technology/
2016/aug/23/pokemon-go-active-users-down-augmented-reality-games.
2016. [Online, accessed April 23, 2017].

[3] JIM 2017. Jugend, Information, (Multi-) Media. Basisstudie zum
Medienumgang 12- bis 19-Jähriger in Deutschland.
Medienpädagogischer Forschungsverbund Südwest. 2017.

[4] Researching Pokémon GO Spawn Mechanics. URL
https://pokemongohub.net/generation-2/researching-pokemon-go-
spawn-mechanics/ [Online, accessed April 06, 2018].

[5] David L Applegate, Robert E Bixby, Vasek Chvatal, and William J
Cook. The traveling salesman problem: a computational study. Princeton
university press, 2011.

[6] Karla L Hoffman, Manfred Padberg, and Giovanni Rinaldi. Traveling
salesman problem. In Encyclopedia of operations research and
management science, pages 1573–1578. Springer, 2013.

[7] Jérôme Monnot and Sophie Toulouse. The traveling salesman problem
and its variations. Paradigms of Combinatorial Optimization: Problems
and New Approaches, Volume 2, pages 173–214, 2014.

[8] Karl Menger. Untersuchungen über allgemeine metrik. Mathematische
Annalen, 103(1):466–501, 1930.

[9] Edward K Baker. Technical note-an exact algorithm for the time-
constrained traveling salesman problem. Operations Research,
31(5):938–945, 1983.

[10] Richard M Karp. Reducibility among combinatorial problems. In 50
Years of Integer Programming 1958-2008, pages 219–241. Springer,
2010.

[11] Jan Karel Lenstra and AHG Kan. Complexity of vehicle routing and
scheduling problems. Networks, 11(2):221–227, 1981.

[12] Lance Fortnow. The status of the p versus np problem. Communications
of the ACM, 52(9):78–86, 2009.

[13] Anna Arigliano, Gianpaolo Ghiani, Antonio Grieco, and Emanuela
Guerriero. Time dependent traveling salesman problem with time
windows: Properties and an exact algorithm. Technical report, 2014.

[14] Norbert Ascheuer, Matteo Fischetti, and Martin Grötschel. Solving the
asymmetric travelling salesman problem with time windows by branch-
and-cut. Mathematical Programming, 90(3):475–506, 2001.

[15] Holger H Hoos and Thomas Stützle. On the empirical scaling of run-
time for finding optimal solutions to the travelling salesman problem.
European Journal of Operational Research, 238(1): 87–94, 2014.

[16] Michel Gendreau, Alain Hertz, Gilbert Laporte, and Mihnea Stan. A
generalized insertion heuristic for the traveling salesman problem with
time windows. Operations Research, 46(3):330–335, 1998.

[17] Andrew B Kahng and Sherief Reda. Match twice and stitch: a new tsp
tour construction heuristic. Operations Research Letters, 32(6):499–509,
2004.

[18] Martin WP Savelsbergh. Local search in routing problems with time
windows. Annals of Operations research, 4(1):285–305, 1985.

[19] Fred Glover. Tabu search-part i. ORSA Journal on computing, 1(3):190–
206, 1989.

[20] Fred Glover. Tabu search-part ii. ORSA Journal on computing, 2(1):4–
32, 1990.

[21] David S Johnson and Lyle A McGeoch. The traveling salesman
problem: A case study in local optimization. Local search in
combinatorial optimization, 1:215–310, 1997.

[22] Anthony Rollett, FJ Humphreys, Gregory S Rohrer, and M Hatherly.
Recrystallization and related annealing phenomena. Elsevier, 2004.

[23] Emile Aarts, Jan Korst, and Wil Michiels. Simulated annealing. In
Search methodologies, pages 265–285. Springer, 2014.

[24] Lester Ingber. Simulated annealing: Practice versus theory.
Mathematical and computer modelling, 18(11):29–57, 1993.

[25] Scott Kirkpatrick, C Daniel Gelatt, Mario P Vecchi, et al. Optimization
by simulated annealing. science, 220(4598):671–680, 1983.

[26] Bruce Hajek. Cooling schedules for optimal annealing. Mathematics of
operations research, 13(2): 311–329, 1988.

[27] Mathias Ortner, Xavier Descombes, and Josiane Zerubia. An adaptive
simulated annealing cooling schedule for object detection in images.
PhD thesis, INRIA, 2007.

[28] David B Fogel. Evolutionary algorithms in theory and practice, 1997.

[29] Huai-Kuang Tsai, Jinn-Moon Yang, Yuan-Fang Tsai, and Cheng-Yan
Kao. An evolutionary algorithm for large traveling salesman problems.
IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), 34(4):1718–1729, 2004.

[30] Nenad Mladenovi´c, Raca Todosijevi´c, and Dragan Uroševi´c. An
efficient general variable neighborhood search for large travelling
salesman problem with time windows. Yugoslav Journal of Operations
Research, 23(1):19–30, 2013.

[31] Manuel López-Ibáñez and Christian Blum. Beam-aco for the travelling
salesman problem with time windows. Computers & Operations
Research, 37(9):1570–1583, 2010.

[32] Marco Dorigo and LM Gambardella. Ant-q: A reinforcement learning
approach to the traveling salesman problem. In Proceedings of ML-95,
Twelfth Intern. Conf. on Machine Learning, pages 252–260, 2016.

[33] Thiago AS Masutti and Leandro N de Castro. A self-organizing neural
network using ideas from the immune system to solve the traveling
salesman problem. Information Sciences, 179(10):1454–1468, 2009.

[34] SM Abdel-Moetty. Traveling salesman problem using neural network
techniques. In Informatics and Systems (INFOS), 2010 The 7th
International Conference on, pages 1–6. IEEE, 2010.

[35] Stefan Edelkamp, Max Gath, Tristan Cazenave, and Fabien Teytaud.
Algorithm and knowledge engineering for the tsptw problem. In
Computational Intelligence in Scheduling (SCIS), 2013 IEEE
Symposium on, pages 44–51. IEEE, 2013.

[36] Kester Dean Clegg, Julian Francis Miller, Kieran Massey, and Mike
Petty. Travelling salesman problem solved ´Sin materioŠby evolved
carbon nanotube device. In International Conference on Parallel
Problem Solving from Nature, pages 692–701. Springer, 2014.

[37] Jeff Jones and Andrew Adamatzky. Computation of the travelling
salesman problem by a shrinking blob. Natural Computing, 13(1):1–16,
2014.

[38] Google Maps Directions API. URL
https://developers.google.com/maps/documentation/directions/ [Online,
accessed January 12, 2017].

[39] Martin Kompf. Distance calculation. URL
http://mkompf.com/gps/distcalc.html. [Online, accessed January 12,
2017].

[40] Jinghui Zhong, Xiaomin Hu, Jun Zhang, and Min Gu. Comparison of
performance between different selection strategies on simple genetic
algorithms. In Computational Intelligence for Modelling, Control and
Automation, 2005 and International Conference on Intelligent Agents,
Web Technologies and Internet Commerce, International Conference on,
volume 2, pages 1115–1121. IEEE, 2005.

[41] Andrew Hedges. Finding distances based on latitude and longitude, July
2002. URL http://andrew.hedges.name/experiments/haversine/. [Online,
accessed May 20, 2017].

