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Abstract—Along with the sudden rise in popularity of 

location-based games, the demand for tools to assist players in 

performance optimization increased. One major aspect lies 

within the analysis and planning of routes that contain a high 

amount of desirable game locations for the given player. 

However, personalized routes cannot be created by hand due to 

the amount of available in-game locations and the associated time 

constraints for real-world travel. 

This paper presents a system to dynamically create 

personalized route for players, based upon previous game data. 

These routes can be fully customized with regards to their time 

and location as well as the player’s desired in-game goal, allowing 

them to e.g. specifically target their favourite species or maximize 

the amount of visited locations. The system is evaluated using a 

dataset of Berlin containing over 30.000 distinct locations with 

different associated in-game behaviour. Regarding the system’s 

performance it is designed to work as an assistance system on a 

mobile device to assure its applicability in the context of location-

based games. 

Keywords—location-based games, optimization, player 

assistance, mobile devices 

I. INTRODUCTION 

Popular location-based games like Ingress or Pokémon Go 
have demonstrated the public interest in this genre quickly 
reaching a user base of up to 45 million users worldwide [2]. 
Studies indicate that playing such games has a positive health 
influence due to the players’ increase daily activity [1]. For the 
respective target audience the availability of smartphones for 
mobile games increases according to a yearly study in 
Germany, which shows a steady increase in smartphone 
availability for teenagers reaching 97% in 2017 [3]. 

Due to the nature of the game using a discovery-based 
approach for Pokémon collection, players quickly tried to 
investigate ways to improve their performance within the 
game, which resulted in different services to automatically scan 
the surrounding area. 

However, in order to provide users with a way to use 
efficient routes to maximize their progress, a user guidance 

system is needed. The goal of this system is to allow users to 
define their start and goal position as well as the amount of 
time they intend to spend. Based upon previous data from the 
aforementioned scan system, an optimal route can be 
calculated on the mobile device which maximizes the user’s 
goals. 

II. RELATED WORK 

A. Content representation in Pokémon Go 

In Pokémon Go a spawn points is a distinct geolocation that 
automatically generates a singular Pokémon every hour. In 
order to determine which of the wide range of Pokémon to 
spawn, the location’s context is used. Context like being 
located in an industrial area or near a river directly influences 
the distribution of possible Pokémon. Additionally, each spawn 
point generates a Pokémon at a set number of seconds of each 
hour, with them being available for 30 minutes most of the 
time. Spawn points which are located within parks or similar 
recreational areas additionally have a behaviour called “nests”. 
Spawn points that belong to a nest are assigned a single distinct 
Pokémon on a biweekly basis, which is spawned most 
frequently at these locations [4]. 

B. Traveling Salesman Problem with Time Windows 

The traveling salesman problem (TSP) is a well-known 
problem in the fields of mathematics and computer science that 
has been extensively studied ever since it was first brought up 
as a mathematical problem by Karl Menger in 1930 [5, 6, 7, 8]. 
It is the problem of finding a cheapest (shortest) route that 
visits all cities on a given set of cities and then returns to the 
start location. The traveling salesman problem with time 
windows (TSPTW) is a generalization of the TSP which adds 
time windows to each city, limiting when a city may be visited 
[9]. 

Both problems are typically modelled as a pathfinding 
problem on a weighted graph where each node represents one 
city, each edge between two nodes represents a path between 
the two respective cities and each edge weight is equal to the 
respective cost of the path, i.e. the minimum length of the path 
between both cities. They can be shown to be in NP-hard and 
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furthermore in NP-complete, suggesting that they cannot be 
solved in polynomial time unless 𝑃 =  𝑁𝑃 [10, 11, 12]. 

C. Solution Approaches 

Solution approaches for both problems can be separated 
into exact algorithms and approximative algorithms. Whereas 
exact algorithms guarantee an optimal route, approximative 
algorithms utilize heuristics in an attempt to find a route that’s 
reasonably close to the optimal route within a significantly 
shorter runtime. 

Because of their comparatively long runtimes, exact 
algorithms are nowadays almost exclusively used for small 
instances of the TSP(TW). Pure branch and bound algorithms 
such as proposed in [9] have been mostly replaced by branch 
and cut algorithms which combine branch and bound with 
cutting planes to solve the TSP(TW) formulated as an integer 
linear program [13, 14]. The best performing exact algorithm 
for the TSP we could find is a branch and cut algorithm called 
Concorde solver [15]. 

Particularly for real-time applications and larger problem 
instances, approximative algorithms are typically necessary in 
order to keep runtimes manageable. Some of the earliest 
approximative algorithms for the TSP use constructive 
heuristics in order to generate a route by iteratively adding arcs 
[16, 17]. A more recent approach utilizes local search 
heuristics such as Tabu search or k-Opt in order to find a local 
optimum in a neighbourhood of valid routes [18, 19, 20, 21]. 
Simulated annealing and evolutionary algorithms are currently 
some of the best-performing algorithms for the TSP(TW) 
utilizing such neighbourhood structures [21]. Simulated 
annealing is a metaheuristic which is inspired by the process of 
annealing in material science and has shown to perform well on 
many different problems [22, 23, 24, 25, 26, 27]. Inspired by 
biological evolution, on the other hand, evolutionary 
algorithms show similar performance to simulated annealing 
[28, 29]. A different approach to neighbourhood-based 
algorithms called variable neighbourhood search utilizes 
multiple different neighbourhoods in order to achieve a similar 
performance on the TSPTW [30]. Based on the behaviour of 
ants when searching for paths to food sources, ant colony 
optimization algorithms such as BEAM-ACO [31] and Ant-Q 
[32] have been successfully applied to the TSP, matching other 
state of the art algorithms in performance. Machine learning 
approaches, particularly self-organizing maps, have also been 
successful in achieving similar performance to other state of 
the art algorithms on the TSP [33, 34]. An approach which 
combines nested Monte-Carlo search with other techniques has 
been able to match but not surpass any of the commonly used 
algorithms for the TSPTW [35]. Other, more novel approaches 
such as programming a carbon nanotube [36] or simulating a 
shrinking material blob [37] have been successfully applied to 
the TSP but lack in either scalability or performance. 

III. PROBLEM DEFINITION 

A problem definition for the problem of route finding in 
location-based games can be developed by considering typical 
player requirements and system restrictions. Player 
requirements are typical requirements a player would have 
towards a desirable route. System restrictions, on the other 

hand, are imposed on a route based on the functionality of 
spawn locations in typical location-based games. 

A player would typically want a route to start at a specific 
point in time and location, e.g. at their current time and 
location. Since a player cannot be expected to have an 
unlimited amount of time available, the route would have to 
finish at a specific location before a specific point in time. 
Depending on the player’s circumstances, the target location of 
a route can either be the same as the start location or another 
location entirely. In order to maximize the game progress a 
player is expected to achieve on a route, the route needs to 
maximize the number of viable spawn locations visited. In the 
context of Pokémon Go, a viable spawn location is one that is 
currently active and capable of spawning a Pokémon that is 
beneficial to the player. Depending on the player’s goals in the 
game, this could either be any Pokémon or a number of 
specific Pokémon such as those the player has not yet caught. 
A player would therefore want an option to specify which 
Pokémon they are interested in catching, i.e. which Pokémon 
are relevant to them. 

A typical system-based restriction for routes found in 
location-based games is the limited active time of spawn 
locations, i.e. a route may only visit a spawn location when it is 
currently active. In Pokémon Go, a spawn location is 
considered currently active if there is currently a chance of a 
Pokémon being found at that location. Since Pokémon at a 
given spawn location respawn periodically and regardless of 
whether a player has previously caught a Pokémon at that 
location, a spawn location may be revisited at a later active 
period to increase the chances of encountering a desired 
Pokémon or catching multiple Pokémon at that location.  

Additional properties necessary to determine whether a 
route is feasible in practice include an estimation for the 
retention time of a player at each location as well as an 
estimated travel time between two locations for each pair of 
spawn locations. In Pokémon Go, the expected retention time 
would estimate how long it takes for a player to catch a 
Pokémon at a given location. In practice, this could either be a 
constant value selectable by the player or be determined 
adaptively by the route-finding system based on statistical 
player data. To determine the expected travel time between two 
spawn locations, different approaches are thinkable. A simple 
approach would let the player select an estimated travel speed 
and calculate an estimated travel time based on the linear 
distance between both locations. More sophisticated 
approaches might incorporate advanced route data and 
expected traffic conditions such as provided by the Google 
Maps Directions API [38] when estimating travel times 
between locations. 

In order to apply the problem to other location-based games 
which function similar to Pokémon Go but provide different 
properties to determine whether a spawn location is desirable 
to a player, we introduce a single numerical value for each 
spawn location representing the value it provides to a player 
when visited. For Pokémon Go, this value is calculated by 
summing up the spawn probabilities of all Pokémon relevant to 
a player for a given location, resulting in a value between 0 (no 
Pokémon capable of spawning at that location are relevant to 



the player) and 1 (all Pokémon capable of spawning at that 
location are relevant to the player). When applying the problem 
to other location-based games, only this conversion formula 
would have to be adjusted to correspond to the respective 
game’s spawn location properties. 

Based on aforementioned requirements, restrictions and 
properties, we specify the following problem definition for 
route finding in location-based games: 

Given a start location 𝑠𝑠 , a target location 𝑠𝑡 , an earliest 
start time 𝑡𝑠, a latest finish time 𝑡𝑓, a set of 𝑛 spawn locations 

𝑆 = {𝑠1, … , 𝑠𝑛}  and for each spawn location 𝑠  an expected 
retention time 𝑡𝑟(𝑠) ≥ 0, a value 𝑣(𝑠) ≥ 0, an expected travel 
time 𝑑(𝑠, 𝑠2) ≥ 0 to each other spawn location 𝑠2 and uptime 
information consisting of a period length between spawns 
𝑡𝑝𝑒𝑟𝑖𝑜𝑑(𝑠) , a relative spawn time 𝑡𝑠𝑝𝑎𝑤𝑛(𝑠)  and a relative 

despawn time 𝑡𝑑𝑒𝑠𝑝𝑎𝑤𝑛(𝑠) , find the shortest valid route 𝑅 

consisting of a sequence of spawn locations 𝐿 and a sequence 
of arrival times 𝑇 which maximizes the sum of all values on 
the route.  

A valid route is a route which starts at 𝑠𝑠 no earlier than 𝑡𝑠, 
ends at 𝑠𝑡 no later than 𝑡𝑓 and visits spawn locations only when 

they are currently active but never twice within the same active 
time window. For each spawn location 𝑠1 on the route, given 
its arrival time 𝑡1, the arrival time 𝑡2 of the next spawn location 
𝑠2 on the route can be no earlier than 𝑡𝑟(𝑠1) + 𝑑(𝑠1, 𝑠2). The 
time between arrivals on two consecutive spawn locations 
𝑠1, 𝑠2 on the route has to be at least equal to the expected travel 
time in addition to the retention time on the first spawn 
location 𝑑(𝑠1, 𝑠2) 

It can be shown that the TSP is a specialization of the 
specified problem when particular input values are chosen. The 
specified route finding problem is therefore at least as 
computationally difficult as the TSP and has to be in the 
complexity class of NP-hard problems as well. 

IV. CONCEPT 

In the following we evaluate existing approaches to the 
TSP and TSPTW with respect to performance and adaptability 
to the specified route-finding problem. We then outline 
optimization algorithms capable of approximatively solving the 
problem in real-time which were developed based on two 
versatile metaheuristics that have shown to perform well on the 
TSPTW. 

A. Feasibility of existing approaches 

Whereas we would ideally want to find an optimal route for 
any given problem instance, we don’t consider exact 
algorithms to be currently feasible to be used in real-time for 
typical instance sizes. The best-performing exact algorithm for 
the TSP known to us, the Concorde solver, already shows 
runtimes of multiple days per problem instance for an instance 
size of just 4,500 nodes [16]. For a more computationally 
complex problem such as discussed in this paper and for larger 
problem instances, e.g. the Berlin dataset consisting of more 
than 30,000 spawn locations that is available to us, exact 
algorithms can currently only be expected to further exceed 
this runtime figure and therefore be unfit for use in real-time. 

This leaves only approximative algorithms as feasible to 
generate routes for location-based games in real-time. Amongst 
the many different approximative approaches showing a 
similar performance on the TSP(TW), we decided to base our 
algorithm on those which we consider particularly simple to 
adapt to our problem, allowing us to put a larger focus on 
optimization over adaptation. We therefore chose to use two 
approaches which are very similar in nature, namely simulated 
annealing and an evolutionary algorithm. Both approaches 
utilize a neighbourhood structure to generate new route 
candidates and an objective function to evaluate generated 
route candidates. 

B. Pre-processing 

Before generating a route using either of the two selected 
metaheuristics, multiple pre-processing steps are applied to a 
problem instance. Frequently used values are pre-calculated 
and the number of locations to be considered is reduced in 
order to improve the performance of our route finding 
algorithms. 

In the first pre-processing step, a value 𝑣(𝑠) is calculated 
for each spawn location 𝑠  which represents the player’s 
expected desirability of Pokémon spawning at that location. 
Based on the relevancy 𝑟𝑖  for each Pokémon 𝑖 and its spawn 
probability 𝑝𝑖(𝑠) ∈ [0,1]  at a given spawn location 𝑠 , it is 
calculated as follows: 

𝑣(𝑠) = ∑(𝑝𝑖(𝑠) ⋅ 𝑟𝑖)

𝑝

𝑖=1

  

Under the assumption that the expected travel time 
𝑑(𝑠1, 𝑠2)  always takes the shortest route between 𝑠1  and 𝑠2 , 
any spawn location with a value of 0 cannot be on the optimal 
route and is therefore filtered out of the dataset. 

When using approximated linear distances and an expected 
travel speed to calculate expected travel times between spawn 
locations, all necessary conversions are applied to their 
coordinates during pre-processing in order to allow efficient 
calculation of travel times during route generation. Coordinates 
are first realigned relative to the smallest occurring coordinates. 
These are then converted into approximated metric units as 
described in [39]. Lastly, the approximated metric units are 
converted into seconds of travel time based on the expected 
travel speed. Optionally, if sufficient memory is available, a 
distance matrix consisting of distances between all spawn 
location pairs can be generated. 

In a third pre-processing step, all spawn locations are 
filtered out which cannot be reached within the available 
amount of time. The filtered set of spawn locations 𝑆′  is 
calculated as follows: 

𝑆′ = {𝑠 ∈ 𝑆|𝑑(𝑠𝑠 , 𝑠) + 𝑡𝑟(𝑠) + 𝑑(𝑠, 𝑠𝑡) ≤ 𝑡𝑓 − 𝑡𝑠} 

In a fourth pre-processing step, a grid is generated which 
divides the area of all remaining spawn locations into quadratic 
cells with a fixed side length. For each cell, the spawn 
locations it contains as well as its centre coordinates are stored. 
Furthermore, a distance matrix is generated which stores 
distances between all pairs of cells. This distance matrix is later 



used in our heuristic neighbourhood function to efficiently 
determine feasible spawn locations to add to the route. 

C. Optimization algorithms 

Because of their similar nature, simulated annealing and 
evolutionary algorithms can utilize the same structures, 
functions and heuristics in order to be applied to a problem. 
This property allowed us to simultaneously develop two 
optimization algorithms, each based on one metaheuristic. In 
the following, we provide an overview over concepts which we 
utilize in our optimization algorithms to adapt both 
metaheuristics to the problem of route finding in location-based 
games. 

For simulated annealing, we chose a cooling schedule of 

𝑇𝑡 =
𝐶

log (𝑡)
 based on its convergence properties shown in [26]. 

𝐶 is set to the maximum value of all spawn locations in the 
dataset to ensure that the algorithm doesn’t get stuck in a local 
minimum. In order to achieve more consistent results, the 
algorithm is restarted a variable number of times. 
Configuration parameters include the number of temperatures, 
iterations per temperature and restarts. The returned route is the 
best seen route during any iteration as defined by its objective 
value. 

For the evolutionary algorithm, we chose a genetic 
algorithm with mutations based on a single parent. A variable 
survival rate determines the percentage of all routes in the 
population which are removed between generations and 
replaced by mutations of the remaining routes. Roulette wheel 
selection such as described in [40] is used in order to select 
routes during the removal and mutation processes based on 
their objective value. Configuration parameters include the 
population size, number of generations and survival rate. 
Again, the best seen route during any generation as defined by 
its objective value is returned. 

We store routes as sequences of visited locations and 
notably don’t explicitly store arrival times. The represented 
route is then the shortest valid route with that sequence of 
visited locations for a given dataset. In particular, arrival times 

can be iteratively calculated as the earliest possible arrival 
times which adhere to the requirements of a valid route 
according to the problem specification. By representing routes 
like this, the problem’s search space can be reduced, allowing 
for better performance of optimization algorithms on the 
problem. Furthermore, a representation similar to those 
commonly used in genetic algorithms, loosely based on DNA 
sequences, is achieved, allowing for our neighbourhood 
function to apply similar mutation steps. 

In order to evaluate a route’s quality, we present the 
following objective function: 

𝑜𝑟𝑜𝑢𝑡𝑒 =
𝑣𝑟𝑜𝑢𝑡𝑒

1 +
√min{𝑡𝑟𝑜𝑢𝑡𝑒, 𝑡𝑚𝑎𝑥} + max{0, 𝑡𝑟𝑜𝑢𝑡𝑒 − 𝑡𝑚𝑎𝑥}2

𝑡𝑚𝑎𝑥

 

Fig. 1 exemplarily shows the behaviour of this objective 
function for a desired maximum travel time 𝑡𝑚𝑎𝑥  of 120 
minutes under the assumption that the summed value 𝑣𝑟𝑜𝑢𝑡𝑒 of 
all spawn locations on the route increases proportionally to its 
total travel time 𝑡𝑟𝑜𝑢𝑡𝑒. The objective value is proportional to 
the total route value 𝑣𝑟𝑜𝑢𝑡𝑒 and decreases for routes with larger 
travel times. In order to promote routes which maximize total 
value, any time spent before the desired maximum travel time 
𝑡𝑚𝑎𝑥 is exceeded is only taken into account as its square root. 
By squaring the amount of time exceeding 𝑡𝑚𝑎𝑥, the function 
simultaneously penalizes routes which don’t adhere to 𝑡𝑚𝑎𝑥 
while still assigning them a meaningful objective value for 
optimization algorithms to work with. 

In order to generate a new route based on an existing route 
(mutate a route), we developed two different neighbourhood 
functions. A simple neighbourhood function generates a new 
route based on an existing route by randomly adding a spawn 
location, removing a spawn location, replacing a spawn 
location by another or swapping the position of two spawn 
locations on the route. An advanced neighbourhood function, 
called heuristic neighbourhood in the following, prioritizes 
operations which are likely to improve a route’s quality. Most 
notably, when adding a spawn location to the route, the route’s 
remaining time before 𝑡𝑚𝑎𝑥 is reached is calculated and spawn 
locations which are likely to cause the route to exceed 𝑡𝑚𝑎𝑥 are 
not considered. This is achieved by filtering out grid cells and 
thus spawn locations on the grid generated during pre-
processing based on their distance to the two consecutive 
spawn locations on the route between which a new spawn 
location is supposed to be added. 

Because of limited availability of advanced route data such 
as provided by the Google Maps Directions API [38], we 
calculate estimated travel times based on Euclidean distances 
between spawn locations and a variable estimated travel 
velocity. Given the frequency of estimated travel time 
calculations in our algorithms and a relatively close proximity 
of spawn locations, we furthermore estimate distances as linear 
distances instead of calculating great circle distances using e.g. 
the Haversine formula described in [41]. In order to reduce the 
number of calculations, calculated values can be stored in a 
distance matrix if sufficient memory is available. 

 

Fig. 1. Objective function value compared to total route value for routes 

with varying total travel times. 



V. IMPLEMENTATION 

In the following, we provide a small overview of the 
implementation that was used to evaluate our proposed 
algorithms. Included are a parser for datasets of spawn 
sightings, a command-line interface (CLI) for quick access to 
the implemented algorithms and a prototypical graphical user 
interface (GUI) providing a visualization of spawn locations 
and generated routes. 

A. Dataset preparation  

Based on a list of spawn sightings in the .csv format, our 
implemented dataset parser generates a serialized set of spawn 
locations to be used by our route finding algorithms. Each 
spawn sighting consists of the Pokémon sighted (by Pokémon 
number), a location ID with coordinates and a despawn time. 
The despawn time specifies the number of minutes into an hour 
after which the Pokémon despawns. Since all spawn locations 
in Pokémon Go use the same period of one hour between 
spawns and despawns always occur exactly 30 minutes later, it 
is possible to precisely calculate all active time windows of a 
spawn location based on just the despawn time of one of its 
respective spawn sightings. This is used in order to generate a 
set of unique spawn locations, each consisting of its 
coordinates, its relative active time window and a list of 
Pokémon with their spawn probabilities for that location. 

B. GUI 

The GUI consists primarily of a geographical world map 
which is used to display generated routes between spawn 
locations. By clicking on the map, a user can select desired 
start and target locations respectively. Additionally, the user 
can input desired start and target times, their expected travel 
speed and whether they’re looking for a specific Pokémon. In a 
mobile application, some of these inputs could be 
automatically set to relevant default values, e.g. using the 
user’s current time and location.  

A quality slider provides users with the option of choosing 
between faster route generation and better route quality. In 
order for this quality slider to be useful for a large range of use 
cases and systems, a quadratic function is used to translate the 
quality slider’s setting into configuration parameters for our 
optimization algorithms. The quality scale ranging from 0 to 10 
results in a number of temperatures between 30 and 30,030 for 
simulated annealing or a number of generations between 1,000 
and 1,001,000 for the evolutionary algorithm. The respective 
configuration parameters to be adjusted were chosen based on 
how good of a trade-off they provide between runtime and 
route quality. Other configuration parameters were kept at the 
default values used in our evaluation. 

VI. EVALUATION 

We assessed our algorithms for different configuration 
parameters by generating a test set of 100 routes for each 
combination of parameter values. Unless the assessed 
parameter was specific to either metaheuristic, this was done 
once for each metaheuristic. The generated route data was then 
statistically evaluated to obtain information on runtime 
performance of route generation and quality of generated 
routes as defined by our objective function for each test set. 
Utilizing our GUI implementation, we furthermore confirmed 

the validity of generated routes with respect to the problem 
specification and practical applicability on a sample basis. 

Based on the runtime performance of exact solvers such as 
the Concorde solver [15] on the less computationally complex 
TSP, it doesn’t appear feasible to us to determine optimal 
routes for the problem instances used in our evaluation. A 
comparison of generated routes to optimal routes was therefore 
not possible. 

The test sets were generated on a desktop PC utilizing an 
Intel Core i5-4670K processor running at a maximum clock 
speed of 3.4 GHz with a maximum heap size of 2 GB. 

The dataset utilized in our assessment is generated based on 
5,181,910 unique spawn sightings in Berlin and consists of 
32,148 unique Pokémon spawn locations across an area of 309 
square kilometres, resulting in a density of 104 spawn locations 
per square kilometre. Within this dataset, the Brandenburger 
Tor and Potsdamer Platz were selected as respective start and 
target locations for the routes to be generated. Given their 
location within the city of Berlin and their close proximity to 
another, the number of spawn locations filtered out during pre-
processing is kept comparatively low in order to obtain close to 
worst case performance data for our algorithms. 

A. Default Parameter Values 

The default problem parameter values are chosen to be 
representative of a typical use case of our route finding 
algorithms. The player starts at the Brandenburger Tor at 
18:00, wants to be at the Potsdamer Platz by 20:00 and hasn’t 
recently visited any spawn locations. They move at an average 
speed of four kilometres per hour and stay at each spawn 
location visited for one minute. They don’t have any preferred 
Pokémon to catch and therefore the relevancy 𝑟𝑖   is set to 1 for 
all Pokémon. The time between spawn events is set to 60 
minutes and the time before Pokémon despawn is set to 30 
minutes based on observations in Pokémon Go. 

The default configuration parameter values were 
empirically obtained in an attempt to achieve the best trade-off 
between runtime and route quality for use in real-time 
applications. In order not to exceed a few seconds of runtime 
on slower mobile CPUs, we decided upon a maximum median 
runtime of one second per generated route on our system. We 
then searched for configuration parameter values which 
maximize route quality as defined by a route’s objective value 
without exceeding the one second runtime limit. 

By default, distances are approximated as linear distances 
and not stored in a distance matrix. Instead of a simple random 
neighbourhood function, our heuristic neighbourhood function 
is used. The grid used within our heuristic neighbourhood 
function has a cell size of 500x500 metres. Simulated 
annealing restarts five times, each going through 300 different 
temperatures and 120 iterations per temperature for a total of 
216,000 iterations. The evolutionary algorithm uses a 
population size of 40 route candidates, a survival rate of 50% 
per generation and runs for 10,000 generations, resulting in 
approximately 200,000 mutations in total. 

For the default configuration, both algorithms show 
performance within 1% of another with respect to runtime and 



quality of generated routes as indicated by their objective 
value. Compared to the evolutionary algorithm, simulated 
annealing shows a significantly lower variance in both metrics. 
Routes generated by both algorithms never exceeded the 
desired maximum route travel time of 120 minutes by more 
than 30 seconds, suggesting that our objective function 
adequatly limits route travel times for use in practice. As 
expected, the number of locations visited on generated routes is 
distributed similarly to the objective value. The median number 
of locations visited is 42.0 for both algorithms. If you exclude 
the retention time of one minute, this results in an average 
travel time of 1.93 minutes between two visited spawn 
locations. Based on the assumed travel speed of four kilometres 
per hour, an average distance between visited spawn locations 
of 128 metres can be calculated. After manually assessing 
generated routes and available spawn locations, we believe 
these to be very reasonable values for good routes. In 
particular, we expect these routes to be significantly better than 
routes users would typically come up with when manually 
planning their routes, even if they had all spawn information 
available to them in an accessible format. 

A limitation based on our usage of linear distances instead 
of more advanced route data such as provided by the Google 
Maps Directions API [38] is the lack of practicability for some 
of the generated routes. Some routes would, for example, 
repeatedly cross a river in a location where no bridge is nearby. 
Our approach using linear distances is therefore mostly suited 
for more open areas such as fields and forests whereas areas 
with large scale obstacles such as rivers or housing blocks 
would benefit from using more sophisticated distance 
functions, e.g. by pre-calculating a distance matrix for each 
dataset based on advanced route data in order to keep route 
generation times low. 

Based on these results, we consider both optimization 
algorithms to be feasible for use in practice if distance 
calculation is appropriately handled. Whereas simulated 
annealing is showing more consistent results compared to the 
evolutionary algorithm, we consider the difference to be small 
enough to be dominated by other factors such as 
implementation details or chosen configuration parameters in 
practice. 

B. Selected parameters with interesting outcomes 

In total, we individually assessed 15 different problem and 
configuration parameters with respect to their impact on 
runtime and route quality when generating routes with both 
optimization algorithms. In the following, we will present 
select parameters with noteworthy effects on route generation. 

Whereas both optimization algorithms generally performed 
very similarly when varying different problem parameters, the 
evolutionary algorithm performed notably better for higher 
travel speeds. For the highest tested travel speed of 25 km/h, it 
was able to generate routes with a 5% larger median objective 
value in 15% less median runtime compared to simulated 
annealing. When varying maximum travel time, objective 
values no longer increased proportionally to maximum travel 
time for routes longer than one hour whereas runtimes 
increased overproportionately, suggesting a decline in relative 
route quality and overall performance for routes longer than 
one hour. We expect this to be a result of the larger problem 
instance size, partially caused by fewer spawn locations being 
filtered out by the distance filter during pre-processing. 

Compared to the simple neighbourhood function, the 
heuristic neighbourhood function has shown to have 
significantly different effects on runtime and route quality 
depending on which optimization algorithm is used. For 
simulated annealing, it has shown to be largely beneficial as it 
resulted in a 162% increase in median objective value at a 71% 
increase in median runtime with a lower runtime variance. For 
the evolutionary algorithm, however, the median objective 
value only increased by 78% at a 159% increase in median 
runtime with higher variances in both values. A more 
favourable trade-off between runtime performance and route 
quality can be achieved by choosing a larger value for the size 
of grid cells used by the heuristic neighbourhood function. 

C. Pre-processing 

Pre-processing runtimes were tracked for all routes 
generated during our evaluation. The highest recorded pre-
processing time was still below 50ms with typical values 
between 2ms and 5ms, resulting in a relatively small impact on 
total runtime. 

Whereas some pre-processing steps are mandatory for our 
algorithms to properly function, distance and value filtering 

       

Fig. 2. Berlin dataset without pre-processing (left), after distance filtering (centre) and after value filtering (right). 



have proven to be valuable tools to keep the problem instance 
size manageable. For our default parameter values in particular, 
the number of spawn locations is reduced from 32,148 to 7,375 
during pre-processing, a reduction of more than 77%. Fig. 2 
shows the Berlin dataset unfiltered (left), after distance filtering 
(centre) and after distance plus value filtering with one sought-
after Pokémon (right). Each dot represents one spawn location 
with the colour determining whether a spawn location is the 
selected start location (green), the selected target location (red), 
on the generated route (grey) or none of the aforementioned 
(yellow). As can be seen, value filtering can further 
significantly reduce the number of spawn locations by up to 
more than 99% depending on which Pokémon is sought after. 

VII. SUMMARY & OUTLOOK 

We have developed, implemented and evaluated different 
algorithms and heuristics for route optimization in location-
based games. In order to do so, we analysed a location-based 
game and developed a problem definition for route finding in 
this game. We then abstracted this problem definition to be 
applicable to other location-based games and identified its 
properties with respect to potential solution approaches. We 
assessed the feasibility of applying different solution 
approaches commonly used in dealing with the traveling 
salesman problem to the problem of route finding in location-
based games. Based on this assessment, we elaborated on 
promising solution approaches and developed different 
concepts necessary to apply selected solution approaches to the 
specified problem. This includes a series of pre-processing 
steps to improve performance and offer additional 
functionality, a route representation, an objective function and 
two different neighbourhood functions which allow two 
different metaheuristics to be applied to the problem. 

We implemented two configurable optimization algorithms 
which utilize all developed concepts. Additionally, we 
implemented parsers for spawn location data, an extensive 
command-line interface (CLI) and a prototypical graphical user 
interface (GUI) which serves as a prototype for a mobile 
application which could allow users to effortlessly optimize 
their routes in location-based games.  

We evaluated all concepts with respect to functionality and 
performance for different problem and configuration parameter 
values and when using different heuristics. We manually 
reviewed routes generated within the GUI regarding their 
quality and practical value. Using the CLI, we generated a 
large number of test sets which we then statistically analysed to 
obtain and evaluate data about runtime performance and route 
quality for both optimized algorithms. Based on this data, we 
evaluated the performance and usability of both optimization 
algorithms on different problem instances. Furthermore, we 
evaluated the impact on overall performance that different 
heuristics and configuration parameter values have. 

In addition to the simulation of realistic movement using 
distance matrices on the real road network, modality-based 
interaction is an interesting aspect. Using the user’s current 
movement type or to incorporate public transport routes to 
possibly bridge larger gaps in suggested routes is a promising 
extension possibility. 
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