
Gareth Tyson. Andreas Mauthe, Sebas:/an Kcune, M o MLL Tiiomas P I ' l a g e r n ~ l t ! ~ ; . ~ ~ ~ ~ : ~ ~ ~ . ,
Peer-to-Peer Dynamic Replication Service for Supoorting Latency-Dependent Content
in Cornrnunity Networks. i n : Reza Rejaie, Ketan D. klsyer-Fatel: Multimedia Computing r-i i i i f

Networking (MMCN '09), Multimedia Computing anc Networking (MMCN), S P I E and ISXI,
Jan~c i ry 2-99 ';rite

Corelli: A Peer-to-Peer Dynamic Replication Sewice for Supporting
Latency-Dependent Content in Community Networks

Gareth Tysona, Andreas Mauthea, Sebastian ~ a u n e ~ , Mu Mua and Thomas PlagemannC
'Computing Department, InfoLab2 1, Lancaster University, Lancaster, UK

'~ultimedia Communications (KOM), Darmstadt University of Technology, Germany
"Department of Infomatics, University of Oslo, Oslo, Nonvay

ABSTRACT

The quality of service for lateticy dependent content, such as video streaming, largely depends on the distance and available bandwidth
between the consumer and the content. Poor provision of these qualities results in reduced User experience and increased overhead. To
alleviate this, many systems operate caching and replication, utilising dedicated resources to niove the content closer to the consumer.
Latency-dependent content creates particular issues for communify nerworks, which often display the property of strong internal
connectivity yet poor external connectivity. However, unlike traditional networks, communities often cannot deploy dedicated
infrastructure for both monetary and practical reasons. To address these issues, this paper proposes Corelli, a peer-to-peer replication
infrastructure designed for use in community networks. In Corelli. high capacity peers in communities autonotnously build a
distributed cache to dynamically pre-fetch content early on in its popularity lifecycle. By exploiting the natural proximity of peers in
tlie community, users can gain extremely low latency access to content ~vhilst reducing egress utilisation. Tlirough simulation, it is
shown tliat Corelli considerably increases accessibility and improves performance for latency dependent content. Furtlier, Corelli is
shown to offer adaptive and resilient mechanisms that ensure hat it can respond to variations in chum, demand and popularity.

Keywords: Community networks, peer-to-peer, replication, caching. streaming, self-organization, autonomous systems.

1. INTRODUCTION
Caching and replication has been an effective approach for lowering overhead and increasing accessibility and
performance in distributed systems for a number of years. It has been used in a range of environments including web
page distribution [36], multimedia distribution [5] and distributed object location [26], helping to ensure that the Internet
remains robust and scalable. Large scale multimedia distribution and video streaming, in particular, can gain significant
advantages from effective caching and replication due to their high bandwidth, low latency requirements. Poor provision
of such facilities has been observed to create significant issues for ISPs when providing video content [3]. This has led to
a number of projects looking at effective methods of replicating and caching video content in the lnternet [15][16][3 I].
Whilst these approaches Iiave been largely effective, the problem still remains that it is often infeasible to deploy such
infrastructure in dynamic, small scale environments that are incapable of hosting dedicated caches. One interesting
example is community networking [7][8], a growing area in wliich geographical communities of equal users are
connected through an infrastructure that has the properties of strong internal connectivity alongside poor external
connectivity. Common examples of this are wireless networks, wired communities and rural mesh networks. The
effective provision of internal caching and replication for such communities is therefore critical to their performance.

In such environments, all users are seen as equal which creates significant issues when deploying and financing caching
infrastructure since resources are usually controlled and distributed amongst all members of the cornmunity. It therefore
becomes impossible to Support dedicated server-based caching and replication services. However, it is still evident that
significant gains in performance can be achieved if community environments were capable of deploying tlieir own
caching and replication services. Due to their unique constraints, a lack of such provision severely limits their
capabilities when dealing with the low latency, high bandwidtli requirements of video content. The need to repeatedly
fetch information from external sources (e.g. origin Servers and externally deployed peer-to-peer streaming services)
therefore results in i) poor performance - otten channel zapping and buffering times are unacceptable, i i) higher
overhead- frequent utilisation of egress points becomes necessary resulting in congestion and lower available bandwidth
and i i i) higher costs - many communities are required to pay for their egress bandwidth utilisation making external
communications extremely undesirable.

This paper proposes Corelli, a peer-to-peer alternative to dedicated video caching, designed for deployment in
community environments. Corelli, like existing Server based systems, can be utilised alongside any supporting video
streaming service. Corelli's uniqueness, however, comes in its ability to be dynamically instantiated, managed and scaled
by communities of users without administrative intervention, monetary investment or dedicated resources. Instead,
Corelli autonomously manages itself by constructing and adapting caches using the resources of community members.
This means that replication and caching infrastructure can be dynamically constructed to match the demand observed in
individual communities. Through this approach, Corelli can allocate resources in a highly responsive manner to provide
extremely low latency internal access to users without the necessity to endure lengthy and expensive interactions with
external systems and networks. This allows communities incapable of deploying dedicated infrastructure to collectively
improve their own performance whilst reducing overhead.

The paper is structured as follows; Section 2 provides a background to the research area. Section 3 introduces Corelli and
outlines its design. Section 4 then evaluates Corelli based on a number of factors; primarily, Corelli's ability to adapt to
changes in demand, content popularity and churn. These factors are then qualified against the overhead measured in the
system. Section 5 then provides a performance evaluation to investigate the utility of operating replication in this
manner. Lastly, Section 6 then concludes the paper, highlighting areas of future work.

2. BACKGROUND AND RELATED WORK
There has been an extensive body of work carried out in the fields of caching, replication and video streaming. Caching
is the process of passively storing replicas of content as it passes through an ingress point, whilst replicafion is the
process of directly copying content between points. Replication can either be passive or active; passive replication occurs
when a host desires a piece of content and therefore downloads it. This benefits the system by creating replicas but is
done out of the user's self-interest. Conversely, acfive replication occurs when the system actively copies content
between points; this occurs regardless of whether or not these hosts desire the content.

We define a community network [SI as a geographically grouped Set of peers that cooperate as equals. As a community,
these members then share any available egress connections. One example of this is a rural village consisting of wireless
Ethernet enabled Iiouses but no broadband infrastructure. Such villages struggle to access conventional wired broadband
services and therefore utilise point-to-point wireless connections to the Internet instead e.g. [7]. To enable this, an ad-hoc
community is built between the houses in tlie village, providing community access to the out-band connection. This
results in a cluster of strongly connected nodes sharing a restricted egress link (e.g. to the Internet).

A number of requirements can be derived from the unique nature of multimedia content provision in community
networks. Unlike server-oriented approaches possessing high resources, it is important to be able to dynamically adapt
the system to ensure effective resource utilisation. Further, this adaptation must be able to respond to variations in churn,
demand and requirements. This allows a variety of potentially divergent communities to be serviced by Corelli.
Importantly, replication must also be highly responsive since caching and active replication is only beneficial early on in
the content's lifecycle as later requests can often be serviced through passive replication in the community. It must also
be possible to dynamically construct (or remove) caches in communities. By this, communities with large variations in
demand can easily utilise caches when necessary, allowing dynamic placement. Importantly, the system must also be
able to provide low latency access to content with sufficient bandwidth to satisG the encoding rate. Without this, users
will witness extended buffering times and poor channel zapping. Also, due to the decentralised nature of communities,
caches must be capable of autonomous self-management without the need for individuals in the community to perform
the role of administrators. Similarly, cache construction must not have associated monetary costs, as the nature of
communities makes it difficult to apportion costs or retrieve monetary contributions. Importantly, the mechanism must
also be efficient, taking into account fair resource utilisation and load balancing. Therefore traditional caching cannot
take place as it would be necessary to route all content through the cache, leading to a significant bottleneck. Instead,
active replication must be utilised, ensuring only popular content is replicated onto the cache. Lastly, the approach must
not be restricted to individual streaming systems since it must be possible to replicate content from a range of providers.

Current caching systems are primarily based on server-oriented technology [5][36]. These systems generally passively
inspect protocols such as HTTP and RTCP to Store content. However, they are severely limited by their passive role in
the system, which prevents them from gaining intelligent insights into trends and other system characteristics. For
example, they are incapable of interpreting replication rates in communities to exploit peer-to-peer distribution; this
means that they can actually have a detrimental effect when working against other oblivious mechanisms. As an

alternative to caching, replication systems have also been proposed [3 1 1 . These dedicated servers, however, are
inflexible and are statically placed in the network meaning that they struggle to deal with dynamicity in demand [32]. To
alleviate this, distributed mechanisms have been introduced. Systems such as [12][19] interconnect multiple servers to
improve performance whilst alternative mechanisms attempt to increase scalability and resilience e.g. [32].

Server based approaches offer simplistic management, however, their static nature means that they struggle to adapt to
different scenarios. Further, tlieir poor scalability and expense make them undesirable i n large scale systems. In response
to these issues a number of peer-to-peer approaches have been proposed. Cooperative networking [22] has been the focus
of much study. Cooperative caching architectures such as SHARK [2] allow peers to augment existing file servers to
improve performance. Cooperative video streaming and caching has also been investigated e.g [16][35]. Hybrid
approaches such as PROP [I51 reduce the role of centralised instances although dedicated resources are still necessary
for system operation. Squirrel [I71 and Coral [I31 perform cooperate caching by utilising hlly distributed object lookup
[26] to locate replicas of web content. However, they deal with small, latency tolerant objects and cannot subsequently
be ported to video distribution. Larger scale systems such as Flashback [I I] and Overhaul [23] have also been proposed
to augment web servers by utilising clients during periods of high demand. Such approaches. however, do not focus on
reducing external communications or minimising latency; instead tlie focus is on dealing with flash crowds and
improving scalability. This makes them inappropriate for provisioning video in communities that are restricted by their
egress connectivity. Work such as [20][21] deals with the concept of replica~ion groups; these are groups of nodes that
cooperatively replicate content for each other. Corelli communities can be considered as a type of replication group,
however, Corelli extends this concept to involve a peer-to-peer role-based infrastructure that specitically aims at high-
bandwidth provision of latency intolerant media. A variety of replication algorithms for these systems have been studied;
these have included studies into replication based on objects sizes, requests rates and space constraints [40]; peer-to-peer
replication of objects [I 81; and video replication [35]. These have been considered in the design of Corelli, however, our
work focuses on the autonomic aspects of the infrastructure rather than the replication algorithms. Alternate approaches
such as Pastry [26] and PAST [27] use more structured replication mechanisms. Though these systems are aimed at
supporting individual applications (e.g. persistent storage) therefore preventing them from being used with streaming
services. Further, their adherence to structured replications makes them too inflexible to be deployed in divergent
communities. A number of peer-to-peer streaming systems also utilise end hosts as passive replication points. Examples
include ZigZag [34] and CoolSteaming [39], however. these systems are not directed at community environments. This
is due to their requirement for external communications making it necessary for peers to access nodes outside the
community during bootstrapping and data exchange.

3. CORELLI DESIGN
Based on the requirements and motivation outlined in the previous section, Corelli has been designed to offer low latency
content access in networked communities. Corelli caches are dynamically built fiom a subset of high capacity nodes in
the community. These peers work in cooperation to monitor request trends and pre-fetch popular content early on in its
lifecycle. When a client node operating in the system wishes to access a video, it issues a request through its
community's Corelli cache; if the cache contains the requested object it is accessed locally. Further, Corelli's application
level position in the distribution system allows it to gain insights not possible in a passive generic cache. This therefore
allows Corelli to monitor replication levels in the community. This results in a two tier caching architecture in which
requests can be easily redirected to other client nodes to improve performance and resilience.

Figure 1 Location of Corelli on the Spectrum of Distribution

Corelli

Corelli's behaviour can therefore be considered to lie between centralised and peer-to-peer technologies, shown in
Figure 1. Corelli caches are constructed in a distributed manner, however, tlie use of high capacity nodes creates an
autonomous cluster that can perform the supplemental role of a traditional caching Server. Unlike traditional cooperative
networking, this protects lower-capacity peers from the act of replication. This contrast hrther provides Corelli with a
responsiveness, flexibility and ease of management not possible in conventional peer-to-peer caching approaches (e.g.
[17][27]). Therefore Corelli can easily achieve tasks such as interchanging caching algorithms, adapting behaviour and
monitoring community trends. This section Covers the instantiation? adaptation and management of the Corelli caching
and replication system alongside the caching and replacement algorithms utilised.

Peer-IoSeer L:% .. . , % .Y
Caching I I

Dedicated
Caching

3.1 Joining the Corelli System

When a new node joins the system it is necessary for it to first locate its community's Corelli cache(s). Due to the
diversity in potential community networks it is not efficient to strictly define a single discovery mechanism. This is
therefore abstracted away from, allowing any mechanism to be used. This flexibility allows the most effective discovery
mechanisms to be utilised for each environment. For example, JESA [25] might be used in a wireless community whilst
Meridian [37] might be used in peer-to-peer community. This diversity can be easily managed through middleware such
as ReMMoC [I41 which Supports the utilisation of multiple discovery mechanisms.

Once the cache has been located, the new node registers itself with it. This involves informing the cache of the objects
that it possesses so that the cache can calculate how well items are replicated in the community. If the new node also has
the capabilities to become a caching Peer then this is also registered with the cache so that its resources can be utilised if
necessary. The minimum requirements for caching peers are currently 128KBps connectivity, alongside IGB of storage.
It is also possible for the join request to be rejected by the cache if it is overloaded. This occurs if all the available
caching resources are currently fully utilised. If no alternative accepting cache is located and the new node is capable of
acting as a caching peer, it initiates itself in the role. This node then publishes its caching services through its
community's service discovery mechanism.

Video Strearning Clienl I

Figure 2. Corelli Request Redirection

Once this process has completed it is necessary for client nodes to route their content requests through their community's
Corelli cache, shown in Figure.2. This must be done transparently for the video provider, to allow generic compatibility.
A client middleware therefore offers a local proxy interface to applications which then forward RTCPRTSP requests
through it. A local stream is then established between the middleware and the application transparently whilst the
middleware contacts the Corelli cache and any external content services (e.g. requesting chunks from BitTorrent [4]).

3.2 Cache Adaptation

Duiing periods of high utilisation a single caching peer will become unable to sei-vice all requests. To remedy this,
Corelli caches can dynamically adapt by enlisting the assistance of local peers to build a distributed cache. To select new
peers, Corelli takes into account both Peer resources (i.e. storage and bandwidth) and burn-in characteristics [10]. This
dictates that only nodes that have been a member of the system for longer than m minutes are eligible as caching peers.
Through this, the churn level in the cache is considerably reduced. This process therefore creates a reliable virtual cache
that contains multiple peers workiiig in cooperation. There are two occasions in which a cache might wish to expand: i)
when it requires increased storage capacity and ii) when it requires increased bandwidth.

The need for increased storage capacity is signitied by the cache reaching its capacity. In this event, content can either be
ejected from the cache or the cache can expand. This decision is made using trend analysis. The hit rate is monitored
throughout the cache's existence. If previous expansions have shown to increase the hit rate by an adequate amount (e%)
then the cache expands. If the cache has not previously expanded, the trend analysis is based on a previous hit rate of 0%
which, in practise, always results in expansion. If the trend analysis indicates that cache expansion has ceased to offer
improved hit rates then free space is created by ejecting content. An alternative situation is requiring increased
bandwidth (this occurs during periods of high demand). If a cache reaches its provisioned bandwidth saturation for
longer than three contiguous requests, it enlists the assistance of a new caching peer. The new Peer then obtains its
delegated chunks from the community (existing caching peers and clients) and begins hosting them.

As well as expanding the cache it is also possible to reduce its size. This allows resources to be freed for utilisation
elsewhere during periods of disuse; this is done through churn. The decision to not replace a lost Peer is made through
trend analysis; if, based on recent activity, the loss of one caching Peer is shown to lower the hit rate by less than C% then
a failed Peer is not replaced. The remaining caching peers then remove their least popular content, replacing it with the
most popular content from the failed peer. This, however, is only performed if current demand can be adequately
serviced by the remaining peers without exceeding 50% bandwidth utilisation. Generally, the contraction of a cache is a
rare event as it is better to spread the load over a larger number of peers; this is achieved by setting C to a low percentage.

3.3 Cache Management

Once a cache becomes distributed over multiple peers it also becomes necessary to make distributed decisions. One
possibility is to designate a single Peer as a cache coordina~or. This, however, is an undesirable solution due to the
inherent vulnerabilities of a centralised entity. However, it is similarly undesirable to have iülly distributed management
as this can create high levels of overhead and complexity. Instead a hybrid approach is taken using roles. This separates
management functionality into components based on certain roles that must be fulfilled. These role components can then
be hosted on either a single Peer or alternatively multiple peers. These then transparently interoperate through remote
procedure calls. This allows different areas of functionality to be distributed in different ways depending on individual
requirements. Six roles are identified in Corelli, outlined in Table I .

Table I. Role Components in Corelli

Initially, all role components exist on a single peer; however, as the cache expands, these role components are deployed
onto the other members of the cache. The Caching Manager, Slorage Manager, Adapration Manager are all hosted on
single peers. By hosting these complex algorithms on single peers, overhead is reduced and efficiency improved. To
ensure resilience, however, peers hosting these role components are monitored; on the detection of a failure. another Peer
is randomly elected to replace it. To allow this process it is necessary to replicate state information to ensure the failure
of a Peer does not remove important state data from the cache. To remedy this, a Stute Manager component exists on
every peer in the cache and periodically, probabilistically replicates its node's state information to other State Managers
(hosted on other peers). This ensures that up-to-date replicas of state information always exist in the cache. Therefore,
upon detecting a failure, the new node hosting the role component broadcasts a request for recovered state information.
Any remote State Manager component possessing copies of the information then responds. Finally, all the caching peers
also host the Request Handler and Dislribution Handler components; this allows all the caching peers to store content
and act as access points for client nodes. This is done due to the comparative simplicity of these roles. This therefore
allows them to be fully distributed amongst all the caching peers.

Role Component
Caching Manager

Storage Monager

Adapralion Manager

Reqiiesr Handler

Disrrrburion Handler

S~are Manager

3.4 Content Placement Strategy

Responsibilities

Execiites caching/replacement algoritliins

Decides which peers to Store chunks on, indexing content in the cache

Executes adaptation algorithin, deciding when to expand/contract

Receives content requests liom client peers

Provides chuiiks to clients upon request

Provides persistent, retrievable state access to all caching peers

An important issue is how content is stored on the cache. Fair storage and bandwidth distribution is of the uppermost
importance, as the restricted resources of the caching peers means that poor load balancing will result in signiticantly
lower performance. To this end, a striped RAID 0 [24] placement strategy is employed where every object is broken up
into chunks and then placed consecutively on caching peers. This approach allows storage and bandwidth loading to be
evenly distributed amongst caching peers. Further, it allows client peers to download from multiple caching peers [4] to
Support the high bandwidth requirements of video provision. Such an approach has been selected over redundant
strategies (e.g. RAID 5) for two reasons; firstly, sacrificing large space for parity data can have a significant effect on
performance and secondly, because passive replication on clients allows data to be easily restored from the community.

Due to the distributed nature of the cache it is possible that different caching peers will have different distances from the
client therefore returning varying quality levels. The strong internal connectivity of the community, however, alleviates
this issue. Further, the use of multi-source distribution means that latency is measured as the average latency between the
client and all the caching peers. This is because the client middleware combines all the chunks into an individual RTP
stream provided to the application. One further issue is that the addition or loss of a caching peer requires data in the
cache to be redistributed. When this occurs a replacement Peer is located using the expansion process. This Peer then
downloads the chunks that existed on it predecessor from local replicas in the community (if available).

3.5 Caching and Replacement Algorithms

The primary difference between caching in Corelli and conventional caching is that as content becomes more popular it
becomes unnecessary to maintain the content in the Corelli cache. This is because, as popular content becomes passively

replicated, sufticient sources exist within a community to handle the demand. Thus, Corelli's approach is a combination
of both caching and replication. All requests are routed through the community's Corelli cache in a similar way to
traditional caching. It would be inefficient, however, to have all data routed through the cache; therefore, only popular
content is actively placed on the cache, creating high bandwidth, low latency sources early in the content's lifecycle.

Content is replicated onto the cache after n request for an item; this is termed the caching poinf. If the cache has reached
capacity (and it has decided not to expand) an item with the least priority is removed to free up space. Priorities are
defined by the priority list; this is an ordered list of importance for all the items in the cache. Two properties are taken
into account when constructing and maintaining the list: i) the number of requests for each object and ii) the number of
community replicas. Each object in the list is grouped with other objects that have received the Same number of requests.
These groups are fui-ther ordered by the number of local replicas available in the vicinity. Therefore, if there is contention
over which item to remove based on the number of requests received, the decision is based on the number of local
replicas available. Objects with a high replication rate are removed before objects with lower replication rates. To
account for changes in popularity, request Counters also age; after an object has been cached, every hour its Counter is
halved. This ensures items do not remain in the cache afler their popularity has ceased.
Corelli does not store small objects as these objects are quickly replicated; nor does is store large objects (e.g. entire
movies) as this would quickly exhaust resources. To remedy this, prefix caching [30] is employed by which the high
demand periods of videos are cached. It is observed in [9] that 77-79% of video sessions last under 10 minutes. Further,
[38] found a correlation between the popularity of content and the length of time users watch it. It was demonstrated that
tlie average viewing time for the most popular items of content is approximately 10 minutes. Similarly in content such as
football matches users are inclined to skip to high points such as goals [6]. This indicate that the use of high poinf
caching can be employed to allow nodes to gain a low latency 'head start', allowing them to patch the rest of the video
from other community clients or more distant nodes if necessary.

4. SYSTEM ASSESSMENT AND EVALUATION

The evaluation focuses on the central aspects reflecting the specific issues determining Corelli's behaviour. A number of
requirements have been identified in Section 2, focussing on the need for responsive mechanisms to react efficiently to
variations in demand, content popularity and churn. These are critical for performance in potentially divergent
communities. To this end, this section firstly investigates Corelli's adaptive resource utilisation and resilience
mechanisms to highlight how variations in demand and churn are managed. Following this, an overhead evaluation is
provided to qualib Corelli's behaviour against its resource requirements.

Table 2. Default Simulation Configuration

Object Nirtnber 1 7036
Client Ntrntber 1 160

Parameter
Popiilariry Distribrrtion

Reairest Distribtrliot~

Nurnber of Potenrial Caching Peers 1 16 (10%)
Client Chrrrn Distribidion (Weibull (k=0.38,1=42.4)

Value
Zipf-Mandelbrot (aa0.199)
Poisson (1=3 realmin)

I Roofstra~ Cache Size 1 8 ~ e e r s I

- ~

Video encoding 1 MPEG4 (426*240,45Okpbs)
Prejx Caching Size I 32MB (-10 min at 450kpbs)

Caching Peer Storage

Cachinp Peer Bandwidth

Client Peer Bandwidth

I Caching Point 1 3

I GB per peer
128KBps per peer
64KB~s

To evaluate these areas a discrete event based simulator has been developed in Java based on communities constructed
from clients and caching Peers. A Poisson distribution is used to model request rates whilst a Zipf-Mandelbrot
distribution is used to model content popularity [28][29]. Using these distributions, clients then request content. If it is
not cached and no community replicas exist, the client fetches the content from outside of the community. The models
and simulations are configured using measurements taken from three real-world Systems: China Telecom VoD [38],
BitTorrent [33] and 40D [I]. These studies provide detailed information about content and User behaviour. Table 2

provides an overview of the derived default contiguration used in experiments. Through simulation. a free VoD scenario,
based on [38], has been devised in which origin servers provide video content to clients. Communities of these clients
then autonomously build Corelli infrastructures to augment the origin servers.

4.1 Cache Adaptability

A major requirement of Corelli is that it can adapt to changes in demand; this is necessary to ensure sufficient resources
are available to serve the community. Cache adaptation consists of the addition (or removal) of peers from the distributed
cache. This occurs when it is desirable to increaselreduce resources; the resources monitored are slorage and bandiuidth.
Figure 3 shows the expansion of three independent Corelli caches (indicated by crosses). To study how Corelli behaves
in different environments, each cache receives requests using a different Zipfskew based on the average, maximum and
minimum skew measurements taken from [38]. This highlights how caches observing different request trends behave.
Each cache is bootstrapped from a single Peer and expansions are performed solely on storage monitoring to investigate
the performance of storage trend analysis. Expansions first occur approximately four hours into the caches' lifecycles,
with caches A and B expanding first. Tliis is due to the fact that they receive a inorc skewed range of content requests
than cache C; the trend analysis algorithms therefore predict a greater utility in expansion for these two caches. Further,
cache A can be Seen to consistently expand before the others. Both cache A and B expand to 6 peers but cache A coinmits
these resource sooner to iake advantage of the imniediately higher hit rates possible. Cache C can be Seen to expand the
least (4) due to its more uniform distribution.

Figure 3. Hit Rate during Expansion Figure 4. Client Redirection during Expansion

4 5 %

40

35

3 0

z25. n

a a . . : -
I

I

10

5

Adaptation is also performed to increase bandwidth resources; this occurs afier complete bandwidth saturation is
observed over three contiguous requests. This prevents expensive expansion procedures being undertaken during very
short spikes in demand. To evaluate this process bandwidth monitoring is enabled and expansions studied. Figure 4
shows the number of redirections during the simulatioii caused by bandwidth saturation; this is the process of Corelli
redirecting client requests to other clients in the community possessing a replica. Vertical lines represent points at which
the cache expands; it can be Seen that these coincide with increased levels of redirection. Subsequently, the number of
redirections rapidly decreases after expansion, indicating that the expansion has adequately handled the demand. For
example, the cache can be Seen to receive an extended spike in demand at the 5'" hour; this, however, is handled by two
expansions shown by the downwards slope in redirections. Larger peaks occur further into the cache's lifecycle because,
as time increases, larger amounts of content are replicated, leading to higher utilisation levels. By the 11"' hour, however,
sufficient resources exist in the cache (I 6 peers) to handle demand resulting in few subsequent redirects. The increased
level of expansion based on bandwidth monitoring clearly shows that bandwidth is a more valuable commodity than
storage. The demand, however, is easily handled through Corelli's adaptive algorithms.

.

- a

* , ...
o-n (Al

*.,.. . - .lr

.. .' ,.< .

,-J
;J \

X X u=0.1R91m

: -
-, -C-------

; ,,? +-'- u.0.340 (C)
.<. ..,Y'.'

. .f'-'

r'

4.2 Cache Resilience

O ; ' Z I S ' M ' I O I ~ I ~ ~ I ~ I ' H k ' z z ' & i
Time (hours)

Cache adaptation effectively addresses the dynamism observed in demand. However, a problem endemic to peer-to-peer
networks is churn. The effect of churn is considerably reduced through the burn-in requirements of becoming a cacliing
Peer but it is obvious that churn still occurs in the System. It is therefore important to take this into account to ensure the
resilience of deploying Corelli. To evaluate Corelli's ability to handle churn a standard configuration simulation is
performed with the introduction of varying levels of churn in the caching peers. Churn is also modelled in the clients
using a Weibull distribution [33]. This allows the resilience of Corelli's storage and replication policies to be
investigated in the context of real-world deployment.

The effect that churn has in the System is largely dictated by two factors. The first is the replication level; a community
with a high degree of passive replication is able to handle caching Peer churn elegantly as requests can be easily
redirected to clients. The second factor is the request rate; if chiirn occurs during periods of high dernand the effect will
be far more noticeable. This is because the clients may not be capable of handling the subsequent redirections. Figure 5
(a) shows the number of chunk request rejections attributable to the failure of a single cache at the IS' and 12"' hour. It
can be Seen that churn early on in the cache's lifecycle has a limited effect with only a very small increase in rejections.
Churn at the 121h hour, however, has a far more significant impact. This is because by this point tlie cache has stored a
much larger number of popular objects. Therefore, the cache is sewing a greater number of requests during the failure. It
is also identifiable that rejections occur in two peaks; the first peak occurs due to the failure of the caching peer. This,
however, is subsided through tlie use of redirection; the second peak occurs once the clients' resources have been
saturated. This peak is dealt with by two mechanisms: firstly, the chunks from the failed caching Peer are replicated onto
a new caching Peer and secondly, the level of passive replication is increased by the peers already downloading chunks.

Figiire 5. (a) Reject Rate for Single Cache Failure (b) Reject Rate for Treble Cache Failure

To investigate how well Corelli deals with higher levels of churn, the same experiment is repeated but removing three
caches through churn, shown in Figure 5 (b). This constitutes a significant degree of failure, representing a 38% (hour I)
and 21% (hour 12) churn level in the cache. Once again, failure early on in the cache's lifecycle has a limited effect on
the rejection rate. However, the effects are more noticeable at the 12lh hour. The failure of a single caching peer at this
point only results in two short peaks. However, the failure of three caching peers results in a more extended period of
failures (represented by the width of the bars). Despite this, in both scenarios failure is quickly dealt with, showing that
the effects of churn are effectively managed. Further, the overall effect of churn is minimal due to client redirection and
the ability to quickly replicate popular chunks onto replacement caching peers. In all scenarios, over 95% of chunk
requests can be serviced. This is achieved even with churn levels of almost 40%. This therefore shows that Corelli can
maintain a high level of seivice, even, during significant degrees of churn. This flexibility is achieved through the
process of client redirection and the ability to quickly replicate popular chunks onto replacement caching peers.

4.3 Overhead

Corelli has two forms of overhead: management and replication. Management overhead consists of control messages
passed between caching peers whilst replication overhead represents the necessity to actively replicate content onto the
cache. Tliis is in contrast to traditional caching [36] tliat Stores content passively as it passes through an ingress point.

To mcasure the management overhead of running a distributed cache, simulations have been performed and the
communications monitored between rote components. These have shown tlie management overhead to be minimal. with
all scenarios generating under a megabyte per hour. This is because the management overhead is restricted to a subset of
peers rather than fully decentralised solutions e.g. [17]. We therefore consider this overhead to be negligible.

t i more important concern is the replication overhead generated. Figure 6 shows the number of chunks transferred over a
24 hour period based on the caching poin! used. The caching point represents the number of requests a cache must
receive for an object before choosing to replicate it. It can be obsewed that a low caching point results in more chunks
being transferred into the cache than provided from it. This means that Corelli will increase ingress bandwidth utilisation.
Tliis occurs because a low caching point results in more objects being eligible for replication. importantly, however, as
the caching point increases (>I) , the number of chunks uploaded exceeds the number of chunks downloaded. This

indicates a high chunk reuse rate. meaning that any object replicated in the cache is likely to be subsequently accessed a
high number of times. For example, a caching point of three, results in 76% of content transactions being classified as
uploading content to clients rather than downloading into the cache. The overhead for caching peers during this process
is also controlled; in this experiment, on average, only 22MB are uploaded onto each caching Peer per hour. A further
average of 34MB is also uploaded onto each caching peers per hour to address the redistribution of chunks during
expansion and churn management. This, however, is necessary to ensure resilience and high bandwidth accessibility in
the community. Further, redistribution is an internal process that occurs between high-power peers without the utilisation
of egress points. Importantly, tliese experiments show that Corelli reduces the egress utilisation for popular chunks by
over three quarters. This results in extremely low latency access to content and significantly reduced congestion in the
egiess links.

Figure 6. Chunk Upload:Download Ratio in Cache Figure 7. The Chunk Redirection Rate

Client peers in the community are also utilised in Corelli to improve performance and resilience, allowing such things as
tlash crowds and churn to be elegantly handled without significant deterioration in the quality of service. This, however,
clearly creates an overhead for client peers; Figure 7 shows the redirection rate for a community with the failure of three
caching peers aRer the fiist hour. It can be Seen that significant levels of client redirection occur at various points in the
cache lifecycle. These, however, are relatively short lived as the process of cache expansion quickly alleviates tlie client
loads. For example, between the 10"' and I 1 I h hour, there are a number of flash crowds; during this period, the client
peers are heavily relied On. Despite this, overall, only 2.87% of chunk iequests are obtained through the clients, with the
maximum number of clients utilised at any given time being 11.87%. This means that, the overhead required by
operating as a client in Corelli is diminutive when compared to the utility gained through cooperation.

5. PERFORMANCE EVALUATION
The previous section has shown Corelli to be adaptive, resilient and capable of handling variations in demand. However,
a further requirement of Corelli is that it provides sufficient performance to Warrant the overhead previously detailed. To
measure the performance of Corelli, simulations have been performed and various factors measured.

5.1 Hit Rate Analysis

To measuie performance the hit rate is used; this represents the percentage of content requests that can be seiviced by the
Corelli cache. These measurements exclude the use of redirection so to solely measure the hit rates achieved by the
cache. Figure 8 shows the hit rate when configured with various caching points. A low caching point increases the hit
rate but also increases content turnover, whilst higher caching points reduce hit rates but also reduce content oscillation.
Content oscillation is the removal then reintroduction of content in the cache. An optimal removal rate is Zero, which
indicates the caching algorithm executed over the period without the need to remove content. As can be Seen, a low
caching point (I) achieves an effective hit rate (-40%) whilst higher caching points inhibit caching and therefore lower
the hit rate (e.g. 34% at point two). To ensure optimality, a cache adaptively defines its own caching point; if a caclie's
resource requirements cannot be satisfied through expansion, it increases its caching points incrementally until i'esource
utilisation is manageable. If, however, tliere are unused resources the caching point is lowered to improve hit rates.

Alongside the hit rates achieved directly through the cache, Corelli also utilises replicas possessed by the client peers.
Therefore, if an item of content is replicated in the community that does not reside on the cache, then requests are

redirected there. With a caching point of three, the hit rate is raised to 48% by utilising redirection. Similarly, -50% is
achieved using any caching point; this is because the Same items of content exist in the community regardless of Corelli.
Therefore, even if no items existed in the cache, the community hi t rate would still be -50%. Corelli, however,
significantly aids in the distribution of the content. Without Corelli operating, only 24% of chunk requests can be
handled, however, when a Corelli cache is enabled in the community this rises to 95%. Therefore, to successfully access
content a non Corelli enabled community would require over 70% more external requests for popular chunks.

; - -
I 2 3 4 5

Caching Point

Figure 8. Cache Performance based on Caching Points Figure 9. Cumulative Request Rates for Popular Conlent

5.2 Utility Hit Rate Analysis

There are a number of differences between Corelli and conventional caching; these mainly centre on its use of active
replication and the resource limited nature of the peers. This means that the traditional hit rate does not offer an adequate
evaluative metric for system performance. This is because the hit rate is increased by replicating an unpopular object that
is requested only once; this creates an overhead that does not benefit the community. To model this, a new measurement
is proposed: the ufiliiy hii rnie. This shows the percentage of serviceabie requests when only considering requests for
content that is accessed more than twice. A high utility hit rate therefore indicates that the cache is making well informed
decisions that result in the objects that it replicates being accessed many subsequent times. Figure 8 shows the utility hit
rate for a variety of caching points. It can be Seen that highly effective utility hit rates are achieved in the system. The
default caching point, based on performance and overhead experiments, is three; this achieves a -60% utility hit rate.
Even higher rates are also possible with -70% being achieved with a caching point of two; this, however, results in
higher resource requirements placed on the caching peers. The utility hit rate therefore shows that Corelli can service a
significant percentage of requests whilst effectively ignoring requests for low popularity items.

5.3 Demand Responsiveness Analysis

One important observation is the achievement of an optimal removal rate (0%) when the caching point exceeds twvo. This
occurs because the cache's storage resources are not exceeded due to the frugal caching policy i.e. only replicating
extremely popular content. Therefore, due to bandwidth expansion, more storage capacity than required is provisioned.
This, however, does not take into account new content introduction; this can occur at regular intervals such as in [I] or in
periodic clusters [38] . To evaluate how Corelli deals with new object introduction. a 24 hour simulation is performed
with 30 new objects being introduced after 6 hours; these objects are placed with a 0-29 popularity ranking (i.e. Top 30) .
This is based on measurements taken from the China Telecom VoD system. Figure 9 shows the cumulative request rates
for two objects; the first (object A) is originally at popularity position 0 . However, after the new objects are introduced,
object A is reduced to popularity position 30. Figure 9 also shows tlie cumulative request rate for a new object (object B)
at popularity position 0. The vertical lines represent the period of time in which Corelli maintains object A as replicated
and ineligible for removal; it can be Seen that Corelli responds rapidly to the new content. Both ob,jects A and B are
replicated very early in their lifecycles (afier three requests) allowing Corelli to serve the community from the beginning
of the popularity. After the introduction of object B, the number of requests for object A severely drops; one and a half
hours after the insertion of objet B, object A is given priority for removal.

To investigate the effect on performance, the hit rates during object introduction are also monitored; this period Sees
relatively little change in tlie hit rate (under 1%). This shows that Corelli's responsive algorithms can effectively monitor
changes in request trends. To model an extreme case, simulation is also performed with the introduction of 100 highly

popular objects atler 6 hours; even with this Iiigh level of content churn the hit rate is only lowered by 1.14%
highlighting Corelli's responsiveness to change in popularity.

6. CONCLUSION AND FUTURE WORK
This paper has proposed and evaluated a peer-to-peer replication architecture for high bandwidth, low latency content
access in community networks. It exploits the heterogeneity of Peer capabilities to construct independent and self
managing distributed caches from clusters of high capacity nodes therefore shielding lower power nodes from the
burden. These caches monitor request trends in their community, intelligently replicating popular content early in its
lifecycle. This allows community nodes to gain low latency access to popular content. Importantly, this is done
transparently to any given content distribution solution. This offers significant benefits for communities that do not
possess the resources to deploy dedicated caches or Systems that require extremely dynamic management of their cache
deploynient.

Corelli has been evaluated, focussing on a number of aspects, notably, system issues (adaptability, resilience), cost issues
(overhead) and performance levels. Through extensive simulation, the system has been shown to offer an adaptable and
resilient alternative to static replication or more traditional caching approaches. A performance evaluation has shown that
effective hit rates are achieved (30-40%) whilst community hit rates are even higher (-50%). Importantly, it has also
been shown tliat Corelli increases the accessibility of popular chunks in the community by over 70% showing that
communities without Corelli would have higher egress utilisation alongside greater latency for popular content.

Furtlier work has also been carried out, including incentive management and quality of experience (QoE) experiments,
however, this has not been included due to space constraints. There are also a number of promising extensions that can
be carried out; most notably, the deployment of a prototype. Further investigation is to be performed into applying the
Corelli philosophy to other aspects of multimedia distribution. Also, the issue of security must be addressed; this will
involve investigating how Corelli can be protected from non-cooperative and malicious Peers.

7. ACKNOWLEDGEMENTS
The authors would like to thank Yehia EI-khatib and Zoe Foster for their valuable contributions during the preparation of
this research. This work is supported by the European Network of Excellence CONTENT (FP6-IST- 038423).

REFERENCES

[I 1 40D - Channel4's TV and Film on Demand Service. h1tp://ww~u.channel4.com/4od~index. h/ml
[*I Annapureddy, S., Freednian, M.J., and Mazires, D. Shark: Scaling File Servers via Cooperative Caching. In Proc.

USENIX/ACM Symposium on Networked Systems Design and Implementation , Boston (2005)
['I BBC News. BBC and ISPs clash over iPlayer. h/1p://news.bbc.co.uk/l/hi/1echnology/7336940.sfm
14] BitTorrent Speci fication. h/ /p: /hww. biflorrenl. org/beps/bep-0003. html.

Bommaiah, E., Guo, K.. Hofmann, M., and Paul, S. Design and lmplementation of a Caching System for Streaming
Media over the Internet. In Proc. IEEE Real Time Technology and Applications Symposium (2000)
Brampton, A., MacQuire, A., Rai, I. A., Race, N. J. P., Mathy. L., and Fiy, M. Characterising User lnteractivity for
Sports Video-On-Demand. In Proc. ACM NOSSDAV, Urbana, lllinois (2007)

17] Bury, S. and Race. N.J.P. Towards Resilient Community Wireless Mesh Networks. In Proc. Intl. Conference on
Autonomous Infrastnicture, Management and Security, Bremen, Germany (2008)
Champaign-Urbana Community Wireless Network CUWiN. h~lp://cuwireless.ne//

19] Cherkasova. L. and Gupta, M. Characterizing locality, evolution, and life Span of accesses in enterprise media Server
woikloads. In Proc. ACM NOSSDAV, Miami, FL (2002)

[Io1 Darlagiannis, V. Overlay Network Mechanisms for Peer-to-Peer Systems. PhD Dissertation. Technical University of
Darmstadt (2005)

[''l Deshpande, M.. Amit, A.. Chang, M., Venkatasubramanian, N., and Mehrotra, S. Flashback: A Peer-to-Peer Web
Server for Flash Crowds. In Proc. Intl. Conference on Distributed Computing Systems, Toronto, Canada (2007)

[Iz1 Fan, L., Cao, P., Almeida, J., and Broder, A. Z. Summary Cache: A Scalable Wide-Area Web Cache Sharing
Protocol. IEEEIACM Transactions on Networking. 8 , 3 June (2000)

' I Freedman, M.J, Freudenthal, E., and Mazieres, D. Democratizing content publication with Coral. In Proc. USENIX
Network System Design and Implementation, San Francisco, CA (2004)

[I 4 ' Giace. P., Blair, G.S., and Samuel, S. ReMMoC: A Reflective Middleware to Support Mobile Client
Interoperability. Proc. Intl. Symposium of Distributed Objects and Applications, Catania, Italy (2003)

[I 5] Guo, L, Chen, S., Ren, S. Chen, X., and Jiang, S. PROP: A Scalable and Reliable P2P Assisted Proxy Strearning
System. In Proc. International Conference on Distributed Computing Systems (2004)

[I 6] Ip, A.T.S, Liu, J., and Lui, J.C.S. COPACC: A Cooperative Proxy-Client Caching System for On-Demand Media
Streaming. In Proc. Intl. IFIP Networking Conference. Waterloo. Canada (2005)

[I 7] Iyer, S., Rowstron, A., and Druschel, P. Squirrel: A Decentralized, P2P Web Cache. In Proc. Annual ACM
Symposium on Principles of Distributed Computing , Monterey, CA (2002)

["I Kangasharju, J.; Ross, K.W.; Turner, D.A., Optimizing File Availability in Peer-to-Peer Content Distribution. In
Proc. IEEE INFOCOM. Anchorage , Alaska.(2007)
Korupolu, M. R. and Dahlin, M. Coordinated Placement and Replacement for Large-Scale Distributed Caches. IEEE
Transactions on Knowledge. and Data Eng. 14,6 Nov (2002)

[''I Laoutaris, N., Telelis, O., and Zissirnopoulos, V. Distributed Selfish Replication. IEEE Transactions Parallel
Distributed Systems 17. 12 Dec (2006)

["I Leff, A., Wolf, J. L., and Yu, P. S. 1993. Replication Algorithms in a Remote Caching Architecture. IEEE Trans.
Parallel Distribution. Syst. 4, 11 Nov (1993)

[221 Padmanabhan, V.N., and Sripanidkulchai, K. The Case for Cooperative Networking. In Proc. Intl. Peer To Peer
Systems Workshop, Cambridge, MA (2002)
Patel, A., and Gupta, I. Overhaul: Extending HTTP to Combat Flash Crowds. In Proc. of Web Content Caching and
Distribution, Beijing, China (2004)

[241 Patterson, D. A., Gibson, G., and Katz, R. H. A Case for Redundant Arrays of lnexpensive Disks (RAID). SIGMOD
Rec. 17,3 p109-116 (1988)

[251 Preuss, S. JESA Service Discovery Protocol. In Proc. IFIP Networking, Pisa, Italy (2002)
Rowstron, A., and Druschel, P. Pastry: Scalable, Distributed Object Location and Routing for Large-scale Peer-to-
Peer Systems. In Proc. ACMAFIP Middleware, Heidelberg, Germany (2001)

lZ7l Rowstron, A., and Druschel, P. Storage Management and Caching in PAST: A Large-Scale, Persistent Peer-to-Peer
Storage Utility. In Proc. ACM Symposium on Operating Systems Principles (2001)

Izsl Saleli, O., and Hefeeda, M. Modelling and Caching of P2P Traffic. In Proc. of Intl. Conference on Network
Protocols, Santa Barbara, CA, (2006)

[291 Saroiu, S., Gummadi, P.K., and Gribble, S.D. A Measurement Study of Peer-to-Peer File Sharing Systems.
Technical Report # UW-CSE-01-06-02, University of Washington (2002)

[Io1 Sen, S., Rexford, J., and Towsley. D. Proxy Prefix Caching for Multimedia Streams. In Proc. IEEE INFOCOM,
New York, NY (1999)

[I 1 Skevik, K. The SPP Architecture: A System for Interactive Video Streaming. PhD Dissertation, Uni. of Oslo. (2007)
13" Stading, T., Maniatis, P., and Baker, M. P2P Caching Schemes to Address Flash Crowds. In Revised Papers from

the I" Intl. Workshop on P2P Systems (2002)
Stutzbach, D. and Rejaie, R. Understanding Churn in Peer-to-Peer Networks. In Proc. ACM SIGCOMM Conference
on lnternet Measurernent, Rio de Janeriro, Brazil (2006)
Tran, D., Hua, K. and Sheu, S. 2003. Zigzag: An Efftcient P2P Scheme for Media Streaming. In Proc. IEEE
INFOCOM, San Francisco, CA (2003)

13'] Uppalapati, S. and Tosun. A.S. Partial Video Replication for Peer-to-Peer Streaming. In Proc. Intl. Conference on
Management of Multimedia Networks and Services, Barcelona, Spain (2005)

[3G1 Wang. J. A Survey of Web Caching Schemes for the Internet. Technical Report. UM1 Order Number: TR99-1747.,
Cornell University (1999)
Wong, B., Slivkins, A., and Sirer, E. G. Meridian: a Lightweight Network Location Seivice without Virtual
Coordinates. SIGCOMM Computing. Communications. Rev. 35,4 (2005)

["I Yu, H., Zheng, D., Zhao. B. Y., and Zheng, W. Understanding User Behaviour in Large-Scale Video-on-Demand
Systems. In Proc. ACM Sigops/Eurosys European Conference on Computer Systems (2006)

[391 Zhang, X., Liu, J., Li, B., and Yum, T.S. CoolStreaming/DONet: A Data-Driven Overlay Network for Efficient Live
Media Streaming. In Proc. IEEE INFOCOM, Miama, FL (2005)

[401 Zhong, M., Shen, K., and Seiferas, J. Replication Degree Customization for High Availability. In SIGOPS Operating
Systems Review 42.4 April (2008)

