A Framework for Developing
Component-based Co-operative
Applications

Dem Fachbereich Informatik
der Technischen Universitat Darmstadt
zur Erlangung des akademischen Grades eines
Doktor-Ingenieurs (Dr.-Ing.)
vorgelegte

Dissertation

von
Diplom-Informatiker

Daniel A. Tietze

aus Tiibingen

Referent: Prof. Dr. Ralf Steinmetz
Koreferent: Prof. Atul Prakash, Ph.D.

Tag der Einreichung: 18. Dezember 2000
Tag der miindlichen Priifung: 09. Februar 2001

Darmstadt
D17

i

Contents

Introduction

1.1 Goal
1.2 Approach
1.3 Organization of the thesis

System Requirements

2.1 Layers of Requirements

2.2 Scenario: Usage of Groupware Components
2.2.1 End-User Requirements
2.2.2 Developer Requirements,

2.3 Overview over Requirements.

State of the Art

3.1 Situations of Collaborative Work

3.2 Developing Co-operative Applications
3.2.1 Collaboration-Unaware: Application Sharing
3.2.2 Collaboration-Unaware: GUI Event Multiplexing
3.2.3 Collaboration-Aware Distributed Systems
3.2.4 Summary

3.3 Component-Based Architectures
3.3.1 COM/DCOM and CORBA
332 JavaBeans oo

3.4 Component-Based Groupware systems
3.4.1 DACIA
3.4.2 Visual Component Suite
3.4.3 Disciple and similar approaches
344 Sleveo
3.4.5 TeamComponents
3.4.6 The EVOLVE platform
34.7 GROOVE o

3.5 Summary and identification of deficits

Groupware Components

4.1 Groupware Components - Overview
4.1.1 Schematic system architecture
4.1.2 Characteristics of Groupware Components

4.2 Shared Objects
4.2.1 Separation of application and data model

iii

UL O = =

—
Tt W © 00 N

—_

17
18
18
19
20
22
23
26
27
28
28
29
29
31
31
32
34
34

iv

CONTENTS

4.2.2 Class and Object definitions 44
4.2.3 Modeling shared data objects 44
4.2.4 Object Representation 45
4.2.5 Specification of Object Representation 46
4.2.6 Problems with base types 50
4.2.7 Slot and RObject observers 51
4.2.8 The Domain Data Model o1
4.2.9 UML Extension to model shared objects 95
4.2.10 Object Structure - Summary 57
4.3 Object replication oo 58
4.3.1 Partial Replication 59
4.3.2 Discarding of replicas L. 62
4.3.3 Distributed Garbage Collection 63
4.3.4 Object Replication in DyCE 64
4.3.5 Object Consistency: Transaction Management 66
4.4 Components in the DyCE Framework 71
4.5 Event-based coupling L. 74
4.5.1 Extensible event class hierarchy 74
4.5.2 Object-related event channels 75
4.5.3 Synchronizing events and object modifications 75
4.5.4 Using Event Communication 76
4.6 Task-based programming model 77
4.6.1 Definition of Tasks 78
4.6.2 Task Terminology 79
4.6.3 Tasks as bindings between Components 80
4.6.4 Tasks and Reflexive Programming 80
4.6.5 Mapping tasks, appliances and users 81
4.6.6 UML diagram extensions for modeling tasks 82
4.6.7 Task Model - Summary 82
4.7 Session Management Lo 84
4.7.1 Session Support 84
4.7.2 Sessions and Group Awareness 86
4.7.3 UML diagrams for dynamic session models 87
4.8 Server-Based Components 88
4.9 Help to the end-user when tailoring 90
4.10 System Architecture 91
4.10.1 Server Architecture. 91
4.10.2 Client Architecture 93
4.11 Groupware Components - Summary 93
System Implementation 97
5.1 DyCE System Architecture 97
5.2 Communication in DyCE 99
52.1 Java RMI 100
5.2.2 Asynchronous network communication layer 103
5.2.3 Hypertext Transfer Protocol - HTTP 110
5.3 Integration with the Java standard APT 110
5.3.1 The Swing library and Groupware 111
5.3.2 Implementing Transactions in Java 112

5.3.3 Type wrappers for Java types 116

CONTENTS

5.4 The Groupware Desktop . .
5.5 End-User tailoring

5.5.1 Use of the end-user tailoring tool
5.5.2 Configuration based on tasks
5.6 Shared Workspaces onthe Web
5.6.1 Downloading DyCE itself
5.6.2 Transferring Components
5.7 Experiences from DyCE development

6 Usage Experiences
6.1 Shared HTML Presentations
6.2 Collaborative Hypermedia .

6.2.1 Design of the Shared Hypermedia Workspace
6.2.2 Hypermedia Usage Scenario
6.3 Extended Enterprise Engineering
6.4 Lessons learned from use of DyCE

7 Discussion
7.1 Summary
7.2 Comparison to requirements

7.2.1 End-User Requirements
7.2.2 Developer Requirements

7.3 Comparison to related work

7.4 Contributions to the state of theart

7.5 Future Research

7.5.1 Support for mobile disconnected work
7.5.2 Extension of Task framework
7.5.3 Support for time-dependent media
7.5.4 Improved network structure

A A Sample Groupware Component

A.1 The sample component . . .
A.2 The data model class

A.3 The component implementation

B UML Overview
B.1 Standard UML notation . .
B.2 Groupware UML Extensions

C List of publications

Bibliography

119
121
122
123
123
124
124
125

127
127
129
129
131
132
133

137
137
138
138
140
141
142
143
143
143
143
144

145
145
146
147

151
151
153

155

157

vi

CONTENTS

List of Figures

2.1
2.2

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

5.1
5.2
5.3
5.4
9.5
5.6
5.7
5.8

6.1
6.2
6.3
6.4
6.5

Levels of requirements, 8
Collaboration Desktop Application 9
Access to applications of the Netscape Communicator suite . . . 25
Integrating an OLE2 object in a word processor 26
Schema of application system 39
Object model class diagram 48
Framework base support for the Domain Data Model 52
UML diagram stereotypes for shared objects. 56
Object Representation Model 58
ObjectManager class diagram 65
Transaction object model 69
Components in the DyCE Framework 73
Sample Task and Component Inheritance 79
UML diagram stereotypes for elements of the static task model . 83
Task Model 83
DyCE Session information model 84
Suggestion for a session-based group awareness view 86
UML diagram stereotypes for running sessions 87
UML diagram stereotypes for running components on specific nodes 88
Server-Side component example 90
System Architecture L. 92
System Architecture L Lo 98
RMI Service object hierarchy 102
Groupware Desktop client application 119
Groupware Desktop and a running session 121
Using the Configuration Editor to compose Groupware Components122
Collaborative use of combined Groupware Components 123
The DyCE server ready foruse 124
HTML form for Component upload 125
Shared browsing in an HTML-based presentation 128
Design of HTML Presentation Environment 129
Tools of the Shared Hypermedia Workspace 130
Hypermedia Object Structure - Overview 131
The XCHIPS component 133

vii

viii

Al

B.1
B.2
B.3
B.4
B.5
B.6

LIST OF FIGURES

GUI of sample component 145
Basic class representation L. 151
Inheritance Relationships between classes 152
Other Relationships between classes 152
UML extensions for modeling Groupware Components 153
UML extensions for modeling running sessions 154

UML extensions for modeling running sessions on a specific node 154

List of Tables

2.1

3.1

4.1
4.2

Overview over System Requirements 15
Johansen’s Same/Different Time/Place matrix 18
Table of Conflict Rules (adapted from [OV91], p. 285) 50
DyCE transaction types 68

ix

LIST OF TABLES

Chapter 1

Introduction

An increasing portion of people’s tasks within today’s modern work and office
environments is no longer performed individually, by a single employee work-
ing alone on his or her task until completion, but performed collaboratively: A
group of people needs to co-operate closely in order to successfully complete the
task at hand. This trend is driven partly by the increased complexity of the
individual tasks and partly by recent trends towards new management struc-
tures and paradigms of work (work in distributed teams, more team-oriented
work practices e.g. in software development and other creative activities). An-
other influencing factor for this need to co-operate is the advent of ”virtual
organizations” or ”"extended enterprises” (c.f. [Gor99]): task-driven structures
spanning several organizational units within a company or even between compa-
nies, which are potentially distributed on a global scale, formed with the specific
goal of producing a certain product or performing a specific project.

CSCW (Computer-Supported Co-operative Work) applications enable such
groups of users (usually distributed over time and/or space) to co-operatively
solve a common task by co-operating on a set of shared artifacts, such as a
common document, a graphical draft, construction model, etc., on which the
co-operation takes place. The research area of CSCW is concerned with the
use of computers in group settings. The computer-based tools used to support
such collaborative work are often referred to as groupware. Coleman’s definition
of the use of groupware is that ”groupware supports the efforts of teams and
other paradigms that require people to work together, even though they may
not actually be together, either in time or space.” ([Col97], p.1). Greenberg, in
[Gre91], defines the term ”groupware” as follows:

Groupware is software that supports and augments group work. It is
a technically-oriented label meant to differentiate ”group-oriented”
products, explicitly designed to assist groups of people working to-
gether, from ”single-user” products that help people pursue only
their isolated tasks.

The aim of CSCW systems is to aid not only the co-operative tackling of the
task at hand but also the communication between the group members as well
as the co-ordination of the tasks performed individually or in a group. It does
this by providing the users with collaborative applications. [DCS94] broadly
defines a collaborative application in this way: ”A collaborative application is

2 CHAPTER 1. INTRODUCTION

a software application that (a) interacts with multiple users, that is, receives
input from multiple users and displays output to multiple users, and (b) couples
these users, that is, allows one user’s input to influence the output displayed to
another user.” This general definition also holds for the collaborative systems
presented in this thesis.

It is widely accepted that successful groupware applications need to provide
support for what has been termed the ”three Cs of workgroup computing”
([The01]):

e communication: enable exchange of e.g. ideas and notes in the course of
the work;

e coordination: allow structured flow of artifacts between tasks, as well as
a means to schedule and control complex cooperative activities;

e co-operation: provide tools for joint work on a common artifact.

Before proceeding, it is necessary to define a number of terms used in the
course of this thesis.

The setting of collaborative work (or collaborative setting) is
understood to be comprised of a group of users at one or more loca-
tions using a set of tools, jointly manipulating shared objects at the
same time or at different times, to work together towards a common
goal. The users’ work environments and the tools used to perform
the work need not necessarily be the same for all users. Variation
between different settings of collaborative work can be along any of
the aforementioned dimensions, i.e. the number of users involved,
the time bounds placed on interaction, the locations of the partici-
pants, the set of tools used by the users and the set of shared objects
on which collaboration is taking place.

The set of all tools used in a collaborative setting, plus the archi-
tectural elements such as client and server applications will often be
referred to as the groupware system.

The shared objects on which the collaboration is based are said to
form the artifact of work of the group.

Increasingly, the users’ work processes are becoming more flexible but also
more complex. As the content of their work evolves over time, the users require
new and different tools to be used in the changing work settings. Also, users
are becoming increasingly mobile, performing their collaborative activities in
changing environments, with changing groups and on various platforms, ranging
from stationary office PCs over computer-supported meeting rooms to hand-held
and mobile devices. In order to support such changing settings, groupware needs
to be able to evolve along with the work processes and be adaptable (or be able
to adapt) to new collaborative settings.

In the light of this growing demand for supporting flexible and evolving work
processes, Henri ter Hofte (in [tH98]) cites two main requirements for modern
groupware environments: extensibility and composability. These, he defines as
follows ([tH98], p.54):

Extensibility is the property of a system that denotes how easy new func-
tions can be added to the system, without interference with existing functions.

Composability is the property of a system that denotes how easy the func-
tion of a system can be composed by selecting and combining more basic com-
ponent functions.

Regardless of the co-operative application’s semantics (e.g. supporting a
document-based metaphor which gives the users the idea of co-operating on
a common document or providing a shared communication medium such as a
bulletin board or discussion database), general provisions within the collabo-
rative tools have to be made to enable sharing of data items and management
of the concurrent access which takes place when several users modify a certain
shared object concurrently. This is especially important in synchronous group-
ware tools, which enable a group of users to simultaneously work on a common
document, where each user is able to perceive the modifications performed by
the other users as they occur in what is perceived to be real-time. This is in
contrast to asynchronous groupware, where one user’s actions do not directly
affect another user’s actions taking place at the same time!.

The development of groupware is supported by groupware development tools
and frameworks, such as the COAST toolkit [SKSH96], Disciple [Mar99], Group-
Kit ([RG96)), DistView ([PS94]), etc., which relieve the groupware developer of a
number of such technical issues. Using such construction frameworks, groupware
is built like most applications: The framework is reused in multiple groupware
applications, but these applications remain static and closed and thus not eas-
ily extensible or adaptable. Typically, a dedicated (application-specific) server
is installed somewhere and specific applications are installed on the users’ ma-
chines. When the needs of the group change, because they need to work in a
different collaborative setting or the format of the artifacts of work change, new
applications need to be developed and installed on the users’ machines (some-
times even necessitating a change of the server). Such groupware applications
are not well suited to address the challenges of flexible and evolving collabora-
tive settings, as will be shown in this thesis in the overview over the state of the
art in groupware development support.

In current software engineering literature and practice, there is a trend to-
wards software (development) environments based on the notion of reusable,
composable building blocks: Components [MN98]. In [Szy97], a component
is defined as follows: ”A software component is a unit of composition with
contractually specified interfaces and explicit context dependencies only. A
software component can be deployed independently and is subject to compo-
sition by third parties.” Component architectures allow the flexible assembly
(either by developers or by end-users) of components into suitable applications.
Component-based development holds the promise of easier construction of com-
plex applications and of improving software quality by fostering wider reuse of
existing components. This trend has not yet fully carried over into the devel-
opment of distributed groupware applications, though. These are still mostly
custom-built using CSCW toolkits or frameworks which support such basic tech-
nologies as data sharing, object replication, etc. Only recently have approaches
been made to support groupware development by providing reusable compo-

LA more detailed overview over the dimensions of different groupware situations can be
found in section 3.1.

4 CHAPTER 1. INTRODUCTION

nents (see, e.g., [HKM98],[HM98], [Ise98]). As will be shown in the chapter on
the state-of-the-art, such systems allow the component-based construction of
collaborative applications but only partly carry the component-based approach
through from the development time into the runtime. A small number of sys-
tems (see e.g. [Sti00]) allow end-users to tailor and extend their collaboration
environment by accessing and composing different components for their collab-
oration. Current approaches do not fulfill a number of end-user requirements
related to flexibility and extensibility of collaboration environments.
Developing components for use in reusable component-based environments
is often done using component frameworks, or component development frame-
works. A framework can be defined (as in [Joh97]) as follows: ”A framework
is a reusable design of all or part of a system that is represented by a set of
abstract classes and the way their instances interact. Another common defini-
tion is ’a framework is the skeleton of an application that can be customized
by an application developer.” 7 Typically, a framework provides a prototypical
implementation of a solution for a set of problems, which can be adapted to a
specific problem by extending the framework at specific extension points, also
called "hot-spots”. Using development frameworks, new problem solutions can
be quickly constructed, since a large part of the framework itself can be re-used.

1.1 Goal

The goal of the work presented in this thesis is to aid the use and development of
flexible component-based groupware systems. To this end, a framework needs
to be developed, which supports development and deployment of Groupware
Components - a term which will be defined in the thesis to describe visually in-
teractive application elements which can be fetched over the network on demand
and which allow users to collaborate on shared objects. Groupware Components
form the basis of groupware environments which fulfill the two guiding require-
ments of extensibility and composability (see above).

The development of the framework relies on the tackling of a number of
sub-goals. A reusable architecture and implementation needs to be developed,
on which the Groupware Components can be developed. Additionally, a de-
velopment methodology is required, which will guide the development of new
Groupware Components.

Synchronous and asynchronous collaboration relies on a means for commu-
nicating data and changes between the users’ systems. As will be shown in
chapter 3, the requirements of both synchronous as well as asynchronous col-
laboration can be fulfilled by providing support for object sharing. For this, a
shared object model and supporting architectural modules need to be developed
and made available to the component developers. A major requirement for the
object sharing support is the performance, which will be defined in terms of
response time to user interaction.

As a means for supporting composition, extensibility and reuse of Groupware
Components, a common shared programming abstraction for component-based
environments needs to be developed, which facilitates the flexible combination
and reuse of components and thus the development of extensible collaboration
environments. The thesis will present this programming model and demonstrate
how it eases the construction of reusable Groupware Components.

1.2. APPROACH 5)

In order to support end-users in interactively adapting the system to their
needs by deploying new components and by combining existing components in
different ways according to their current work situation, application support is
required. The Groupware Components and the models underlying them need
to be made accessible and manageable by end-users.

Means for integrating the resulting groupware environment into modern in-
formation and application architectures such as Intranets but also complex ar-
chitectures composed of external tools will be presented.

1.2 Approach

A flexible collaboration environment can be modeled as a set of Groupware
Components which can be composed, which can invoke each other and can be
added to the groupware system at runtime, in order to extend it. These com-
ponents support collaborative use in distributed collaborative settings and they
can be fetched over the network when required. Constructing the collaboration
environment from such components can increase extensibility and composabil-
ity of the resulting system. Also, decomposing the application into distinct
exchangeable modules aids the use of varying component configurations, tai-
lored for various settings: Users can access different components in the course
of their work and can use these components to co-operate within different team
settings.

In a world of ”collaboration components” - groupware components giving
the users collaborative access to shared objects - dynamic distribution of tools
(components) and the shared artifacts becomes of even greater importance.

The approach taken in the development of the target system is characterized
by the combination of three basic building blocks, which will be presented in
this thesis:

e an object-oriented framework for the development of Groupware Com-
ponents which can be dynamically invoked over the network,

e an underlying architecture with supporting tools and services such as
a component invocation and execution environment, a component and
object repository, etc.,

e acentral programming abstraction underlying the components, which
aids combination and interaction of components and supports the flexibil-
ity of the collaboration support environment.

These three building blocks, in combination with current state-of-the-art
technologies in collaboration support, help to fulfill the requirements of today’s
dynamic and changing collaborative work processes. A groupware development
framework called DyCE (Dynamic Collaboration Environment) has been imple-
mented and will be presented in the thesis. The potential of this approach will
be demonstrated with a number of sample applications for different purposes
built using DyCE.

1.3 Organization of the thesis

The remainder of this thesis is structured as follows.

6 CHAPTER 1. INTRODUCTION

A usage scenario, presented in chapter 2, will lay the foundations for the
requirements which are to be fulfilled by the system to be developed. From this
scenario, a list of requirements will be derived.

An analysis of the state of the art will be presented in chapter 3, in which a
number of approaches and systems for the development of collaborative systems
as well as component-based environments will be described in more detail. For
each system, a comparison to the system requirements will be performed.

The central concept of the thesis, Groupware Components, will be presented
in detail in chapter 4. In order to support the composition and reuse of these
components, a central programming model will be presented. This chapter
will also introduce the system architecture developed for supporting the use of
Groupware Components.

Specific implementation details of the DyCE system will then be presented
in chapter 5, together with a discussion of a number of implementation-specific
features of the system.

The chapter on usage experiences (chapter 6) will present a number of col-
laborative systems realized using the DyCE system, e.g. for support of Collabo-
rative Hypermedia as well as for support for Computer-Supported Collaborative
Learning (CSCL).

In chapter 7, a discussion of the system presented in this thesis will provide
a summary comparison of the system to the requirements presented in chapter 2
and with the state-of-the-art presented in chapter 3. The thesis concludes with
an overview of future research work which can be based on the DyCE system.

Chapter 2

System Requirements

This chapter will present a set of requirements which are to be met by the
resulting system. The rationale for the requirements will be presented based on
a scenario which is presented in section 2.2.

Requirements for a system - be it a development framework, class library
or a graphical development tool - which supports the development and use
of interactive groupware applications can be categorized according to the two
distinct target audiences: The developers of a groupware application and the
end-users of the application. In order to aid comprehension, the requirements
will therefore be subdivided into these two categories (Developer Requirements
and End-User Requirements) and labeled accordingly.

2.1 Layers of Requirements

In order to present the requirements which need to be addressed by the system
presented in this thesis, we will make use of a usage scenario consisting of a set
of situations of collaborative work, i.e. scenario snippets illustrating a certain
requirement.

When discussing the requirements to be fulfilled by the resulting system, we
are faced with varying levels of requirements. A usage scenario can, obviously,
present only the users’ view of the system. When discussing Groupware, this
is arguably the most important driving force behind the requirements. The
remainder of this thesis will mainly focus on presenting a development support
environment (development framework), though. Therefore, we are faced with
the issue of deriving and later addressing requirements for the development
system from requirements stated rather more indirectly, through the use of a
system developed on top of this system. If we assume that use of a system leads
to a set of requirements for that system (as is most certainly the case), we are
faced with a more complex requirements view (see figure 2.1).

The two main constituents of the requirements definition for a development
support system are (1) the developer, who uses the system to develop an appli-
cation, and (2) the end-user, who uses this application. The developer’s require-
ments towards the development support system (labeled [a] in the figure) stem,
quite logically, from his use of the system to develop the application system.
Several of the end-user’s requirements (labeled [b]) towards the application sys-

7

8 CHAPTER 2. SYSTEM REQUIREMENTS

‘____..--requirements _[h]

o ——13E

reguirements [c]7 4
User [) o .
© develop Application Environment

requiremer{fs [d]
i use

Development Operating
/' A Support System System
use _g \

reqﬁirements [a']- *

Developer
use

Figure 2.1: Levels of requirements

tem are to be addressed by the developer, so they result in requirements to the
application developer (labeled [c]). In addition, several of these requirements
result in requirements towards the development support system (labeled [d]).
These are requirements which the developer can do little or nothing to address
(apart from using a different development support system, perhaps).

The following usage scenario will present a number of usage situations of
collaborative applications. These collaborative applications are developed on
top of the development support system presented in this thesis. We are there-
fore mostly interested in those user requirements which can be mapped onto
requirements towards the development support system.

Following the scenario situations which illustrate end-user requirements, sit-
uations which focus on the developers will be presented in order to motivate the
developer requirements.

2.2 Scenario: Usage of Groupware Components

A company with branches in several distributed locations uses the corporate
network to deploy a collaboration environment providing the users with the
ability to form distributed teams. Using the environment, the employees can
conduct their activities, closely collaborating on common document bases !
with their team partners (including synchronous and asynchronous collaboration
as well as multi-party multimedia conferencing), exchanging documents and
document drafts and leaving notes and annotations for others. The collaboration
environment accesses common databases which are used to persistently store
the data objects on which the users are working. We will observe a number
of different collaboration situations encountered by a distributed team of office
workers, named Andrew, Barbara, Charles and David for easier reference.

1While in the major part of this thesis, the term ”document” is not used to refer only to
typical linear documents such as the text of this thesis, the document bases in the repositories
presented in the scenario are indeed taken to contain such documents.

2.2. SCENARIO: USAGE OF GROUPWARE COMPONENTS

2.2.1 End-User Requirements

RU1: Access to shared artifacts and collaborative tools

After coming into the office in the morning, Andrew logs into the system at
his workstation and is presented with his desktop environment (see Figure 2.2),

including:

e a set of icons depicting shared document folders (1) to which he has access
and which he uses to collaborate with his various project partners,

e a calendar tool depicting his appointments (2),

e a mail in/out-box (3) used for sending and receiving email messages,

e a set of tools (4) which he can use to perform his tasks,

e a user list: a list of collaboration partners (5) who are currently available.

Groupware Desktop - Andrew

Tool List

0

Calendar - Andresws

- O
o=

Proft Pt

[Foeera=- 1= (NER |
1 > 1 4 3 Report 1
R R T R
12 0e 1= 5 1F E 1 D Report 1
R |i|{:| Eackground
7 xowm EH:l Chepters

a Chapter 1
(_Hew 3 {Group } [#-(_] Chapter 2

&

l& Elisabeth

l:l Introduchion
"7 Summary
= Refzrences

'@chapteﬂ Barbara]doc

Figure 2.2: Collaboration Desktop Application

Andrew now begins working on his tasks. From the set of icons depicting
shared document folders, he selects the folder for ”"Report 1”7 opens it. He is
presented with a ”Folder Browser” ((6) in figure 2.2) component showing the

10 CHAPTER 2. SYSTEM REQUIREMENTS

contents of this repository: A hierarchy of folders and sub-folders containing
documents, annotations, etc. Using the component palette (or menu), he ac-
cesses a group calendar component and checks which appointments are entered
for the groups of which he is a member.

RU2: Computer guidance in selecting appropriate tools

The goal of the work group of which Andrew is a part is to collaboratively
write a complex technical report. Each member of the group is responsible for
one chapter of the report and also contributes his specific expertise in certain
technical areas to other group members when required. Andrew continues work-
ing on his chapter of the document. He has already written an initial version
of the chapter which is available as an icon on his desktop. To do so, he uses
a function of the desktop to indicate his desire to open the document. The
system knows which is the correct application for this kind of document and
opens the document with the correct tool. Andrew now proceeds to work on
the document.

RU3: Provision of Group Awareness

Barbara is not in her office, but instead uses her laptop computer and wireless
network connection (through cellular phone) to access the system. She logs into
the system and is also presented with a view of her collaboration desktop, similar
to the one Andrew got after logging in. An icon representing Barbara now
automatically appears on the user list on Andrew’s desktop, indicating to him
that Barbara is now available for collaboration. Likewise, an icon representing
Andrew is displayed in the user list on Barbara’s desktop.

On her desktop, Barbara has a folder representing the group’s technical
report, containing icons for each chapter. Upon opening this folder, she sees a
small name tag next to the chapter currently being edited by Andrew, indicating
to her that Andrew is in fact currently working on his chapter.

RU4: Support for synchronous and asynchronous collaboration

Looking at the contents of one of the shared folders on his desktop, Andrew
discovers that a chapter of the shared report has recently been edited. This
chapter has been added to by Barbara while he was out of the office. Since it is
relevant to the chapter he is writing, Andrew accesses the new chapter version
and looks up a certain technical definition. Again, the system provides support
by invoking the appropriate tool. Andrew is not satisfied with the explanation
given in the chapter and can now do a number of things:

e He can attach a note to the chapter and leave it for Barbara to see,
e he can directly contact Barbara to discuss the chapter’s contents,

e he can directly rewrite the definition (potentially leaving a note about the
changes he made), or

e he can contact Barbara using e-mail or the telephone to discuss more
directly with her.

Since the user list on his desktop shows the availability of Barbara, Andrew
chooses to contact her in order to make the changes together. In addition to
opening the appropriate communication channel(s), e.g. using a voice confer-
ence or simply making a telephone call, Andrew invites Barbara into the editing

2.2. SCENARIO: USAGE OF GROUPWARE COMPONENTS 11

session in which he is currently viewing her chapter. Upon accepting the invi-
tation, Barbara receives an editor tool which is shared with Andrew, the two
can now co-operatively work on the document, making changes, discussing the
contents, etc. Andrew also invites Barbara into the editing session on his own
chapter in order to explain to her where the need for referring to her chapter
arises. The group awareness information attached to the two chapters is updated
to reflect that both Andrew and Barbara are now working on this chapter.

RU5: Ubiquitous access to collaboration environment

After working with Barbara on the common problem for some time, Andrew
needs more in-depth information which is not accessible in his office, but for
which he needs to go to the lab, which is also equipped with PCs. He therefore
logs off from the office system, goes to the lab and logs in to the lab PC. After
starting the general collaboration desktop application and identifying himself to
the system, he is presented with his desktop contents as he left them in his office
environment and can directly resume the collaboration sessions with Barbara.
The two can now continue discussing and collaborating on the technical reports.

RUG6: Multiple simultaneous collaboration modes and transitions
between them

While working together with Andrew, Barbara uses an editing tool in a
separate session, currently visible only to herself, to take additional notes. She
intends to incorporate these notes into her chapter at a later point in time, but
does not yet wish to share the notes taken with Andrew.

She opens an editing tool in a separate session and begins individual work in
this tool, allowing her to concentrate on the technical details of a certain para-
graph. Having completed the paragraph, she invites Andrew into her editing
session in order to show him the result. Together, they now integrate the new
paragraph into their common document.

RU7: Dynamic extensions of the collaboration environment

In the course of collaboratively working on the shared technical report, An-
drew and Barbara need to incorporate more elaborate figures into the document.
There is currently no suitable diagram editing tool available in the collabora-
tion environment, but Andrew has recently downloaded one onto the lab PC.
In order to use this tool in the collaborative work, Andrew loads the external
tool into the collaboration environment. It automatically appears on all users’
tool palettes and is directly available for collaborative use. It is not necessary
for Andrew or Barbara to exit or restart the system in order for the new tool
to be available to them.

Barbara now creates a diagram as provided by the new diagram editing
toolkit and introduces it into the common document. Using the new shared
diagramming tool, the two can now jointly create the new figures in their report.

RUS8: Coupling of different tools

In order to get an overview over their current document structure, Barbara
opens a hierarchical outline viewing and editing tool on their report. She acti-
vates the tool in a separate, non-shared mode but uses it to access the report
she is writing together with Andrew. The outline viewer therefore displays to
her a graphical overview of the current structure of their report. While the two
continue their work on the report, the overview display is continuously updated
and synchronized.

12 CHAPTER 2. SYSTEM REQUIREMENTS

Using the hierarchy viewer, Barbara detects a problem with the chapter
sequence of the report. She uses the hierarchy editing capability to fix this
problem by rearranging the chapter sequence. Since she is working directly on
the structure of their shared report, these changes are also immediately reflected
in the tools she is sharing with Andrew. After discussing the changes she made,
their joint work can continue.

RU9: Support for mobile work

Charles, a project manager and the third member of the distributed team,
currently spends a lot of time on one of the companies campusses, walking
between meetings, labs and different users’ offices. In order to check on the
progress of the report, he uses his hand-held wireless PDA (Personal Digital
Assistant) to log into the collaborative system.

He is presented with a ”stripped-down” version of the collaboration desktop,
adapted to suit the restricted screen estate of the mobile device. Still, he has
access to the same shared objects as Andrew and Barbara and can also perceive
the group-awareness information about what is currently going on. He now uses
an outline viewing tool on the common report in order to get an overview over
the structure of the report and see what has changed since he last checked. He
receives an indented table-of-contents view showing the current structure of the
report. This structure display is a ”live” display of report’s table of contents. As
the work on the report progresses (e.g. as additional subsections are added by
Andrew and Barbara), Charles’s view of the structure is always kept up-to-date.

RU10: Combination of existing tools (End-User customizability)

At several points throughout her collaboration sessions, Barbara observes
the need for a number of users to combine textual and graphical data in their
discussions. They often use a shared drawing tool (shared whiteboard) and a
multi-user chat tool together in order to allow textual interaction (chat) to be
enhanced by quick scribbles, notes and rough illustrations. The collaboration
system provides individual tools for chatting and for drawing. The recurring
act of setting up these two individual tools for a group of users is perceived to
be arduous and repetitive.

Using facilities provided to all end-users, Barbara sets up a new tool, incor-
porating the Chat and Whiteboard tools and deploys this new combination of
components via the server. Now, whenever the need to do such communication
arises, she only needs to open the one new tool and invite her co-workers into
the collaboration session. All other users will automatically receive the new
component configuration, which appears to them to be a single tool providing
complex compound functionality.

RU11: High system performance

While Barbara and Andrew work together in the shared whiteboard and on
their shared document, they are discussing the changes they are making to the
document contents. Both expect the system to behave in a way reflecting the
interactive and direct nature of their collaboration. They expect changes to the
document to be reflected at their partner’s site instantaneously and they expect
the ability for their own work to proceed as naturally as possible throughout
the collaboration.

Technically speaking, the users expect low latency, fast turn-around and ex-
pect the performance loss due to synchronization of their shared work to be

2.2. SCENARIO: USAGE OF GROUPWARE COMPONENTS 13

as low as possible. ter Hofte (in [tH98]) defines the terms feedback (changes
observable due to my own actions) and feedthrough (observable changes due to
others’ actions). Different collaboration setting have different requirements in
terms of feedback and feedthrough. The highest demands are imposed in real
time distributed collaboration settings (see [Gre98]). Here, the direct nature of
the interaction between the participants requires fast system response. The bet-
ter the feedback and feedthrough performance of the CSCW system is, the more
direct and synchronous situations the tools built on the system can support.

2.2.2 Developer Requirements

David is a member of the in-house development staff of the company and is
responsible for developing new collaboration tools as well as maintaining those
tools already available. From David’s work situations we can derive a number
of general developer requirements for a development support system.

RD1: Reuse of existing programming knowledge and experience

In order to gain acceptance and wide-spread adoption, a system for the de-
velopment of collaborative applications should introduce as many new concepts
as required but as few as possible. Put differently, the developer’s experience in
developing single-user applications must also be applicable in the development
of collaborative systems.

RD2: Reusable shared data models

The shared data models created by the developer describe the structure of
the shared data items, which are viewed and edited using collaborative tools.
When developing new components (or extending existing ones), it has to be
possible to reuse and extend existing data models (and not be forced to develop
them from scratch). This is also important if new components need to interact
and coexist with existing components from a similar application domain. Sup-
port for creating and maintaining such data models needs to be provided. The
developers need a way to specify the shared data models used by their compo-
nents. This specification should be in a way as close to the target programming
language as possible (this ties in with the previous requirement).

RD3: Transparent sharing of data objects

Unless necessary or desirable for the development task at hand, the develop-
ers should not have to be concerned with the actual distribution of the shared
data objects throughout the system. The development system can be expected
to provide support for the sharing and distribution.

RD4: Support for shared as well as local data objects

Not all data items, even in a collaborative application, need to be shared.
Some might be local to the current machine, to the current user or just be
temporary data structures related to the local graphical user interface. Sim-
ply sharing all data elements of the application would potentially incur high
performance costs. The developer must be provided with the ability to make
the design decision whether a data item is to be shared or purely local. This
distinction needs to be supported within the shared data model, i.e. it must be
possible to implement a data object of which parts are shared between all users
while other parts are local to a machine and thus not shared.

RD5: Access to co-operation information when required

14 CHAPTER 2. SYSTEM REQUIREMENTS

Should it be necessary for a specific component (e.g. when wanting to display
a list of current users), information about the collaboration setting and the
collaborative interaction needs to be available to the developer. If David wants
to enhance the collaborative editing tool to provide additional mechanisms for
interacting with the users currently sharing a text, he needs to have access to
all the information about the current collaborative setting.

This cooperation information must also provide means to provide group
awareness information in the components. Group awareness relates to providing
users with an awareness of the activities and tasks of other users. Typically,
group awareness includes information about the past (who has done what with
which shared artifacts?), the present (who is currently logged in an what are
they doing with which artifacts?), as well as - if possible - future actions of the
other users.

RD6: Deployment of newly developed components

Once a new component has been developed, it has to be relatively easy to
distribute it to the target users. Also, it follows that all users need to have access
to newly developed components simultaneously, so that the collaboration can
make use of these components at all connected sites at the same time and that
the work environments of the users do not diverge. The same applies obviously
to new versions or releases of existing components?.

RD7: Technical scalability of the solution

The components developed using the toolkit have to scale in terms of the
number of users, i.e. there needs to be a graceful degradation of performance
as the number of users increases. This technical requirement does not apply,
though, to issues of scalability of group awareness displays, which remain within
the responsibility of the component developer. E.g., when developing a com-
ponent including a user list, the developer is faced with the issue of how many
users this list can actually display at the same time in order to still be usable.
Discussions of such problems are beyond the scope of this thesis.

RDS8: Support for integration into external architectures

Modern work environments often use complex distributed architectures in
order to integrate the groupware environment with various other tools, poten-
tially off-the-shelf products, or developed on other platforms. Developers require
a sufficiently open interface to the collaboration, which enables them to query
the current collaboration state, invoke collaborative tools, etc.

RD9: Support for server-side components
Some operations in a collaborative system are best done in a single central
location, either because they require access to a centralized resource, because

2This requirement ties in with the recent discussion about computing environments’ TCO
(Total Cost of Ownership). Making new tools easy to deploy and maintain throughout the
company reduces all systems’ T'CO. Inversely, collaboration systems not fulfilling this require-
ment (e.g. systems requiring new tools to be manually installed on each client system) can
dramatically increase maintenance cost, since similar work environments need to be main-
tained for all possible collaboration groups. One user’s use of a new (version of a) tool or
new document format can force all users to upgrade - while at the same time still maintaining
the previous versions of the tools since these could still be used in other teams or groups. A
dramatic illustration of exponentially increasing TCO is the large variety of (enormous) office
suites that are required on each PC in order to be compatible with all potential collaboration
partners inside and outside of the organization. While an interesting sidebar to bear in mind,
a solution to this problem in its entirety is obviously beyond the scope of this thesis.

2.3. OVERVIEW OVER REQUIREMENTS 15

they need to run continuously even without a user logged into the system or
because they would otherwise be very difficult to schedule and coordinate. Ex-
amples for such components would be data imports from external sources or a
workflow enactment engine which needs to keep track of time and tasks even
when no user is logged into the system.

For such components, the system needs to support server-side components,
i.e. components which, when invoked, run on the server machine, with direct
access to all services and shared data objects. Regardless of the fact that they
are executed on the server, the components need to be invoked in the same way
as all other components, providing a uniform access model for components (and
no specific treatment of server-side components by the users, e.g. through the
use of specific use-interface features).

2.3 Overview over Requirements

An overview over the requirements presented in the scenario segments above is
shown in table 2.1.

ID | Name

RU1 | Access to shared artifacts and collaborative tools

RU2 | Computer guidance in selecting appropriate tools

RU3 | Provision of Group Awareness

RU4 | Support for synchronous and asynchronous collaboration
RU5 | Ubiquitous access to collaboration environment

RU6 | Multiple simultaneous collaboration modes and transitions between them

RU7 | Dynamic extensions of the collaboration environment
RUS8 | Coupling of different tools
RU9 | Support for mobile work
RU10 | Combination of existing tools (End-User customizability)
RU11 | High system performance

RD1 | Reuse of existing programming knowledge and experience
RD2 | Reusable shared data models

RD3 | Transparent sharing of data objects

RD4 | Support for shared as well as local data objects

RD5 | Access to co-operation information when required

RD6 | Deployment of newly developed components

RD7 | Technical scalability of the solution

RDS8 | Support for integration into external architectures

RD9 | Support for server-side components

Table 2.1: Overview over System Requirements

16

CHAPTER 2. SYSTEM REQUIREMENTS

Chapter 3

State of the Art

After having presented the system requirements in the previous chapter, the
current state of the art is presented. The discussion of the state of the art will
focus on two key areas of relevance to this thesis:

e general issues for groupware development and groupware development en-
vironments, and

e approaches focusing on support for component-based groupware environ-
ments (component-based development environments as well as component-
based application environments).

The identification of deficits of existing approaches will be based on the set
of requirements presented in the previous chapter.

Some other, more specific issues regarding individual technologies will be
presented later on in the system design and implementation chapters.

3.1 Situations of Collaborative Work

The following sections will often refer to the specific collaboration situation(s) in
which certain systems can be used. Collaboration situations, and the capabilities
of systems built to support these situations, can be distinguished according to
the two dimensions of distribution in time and distribution in space, as proposed
by Johansen in [Joh91] (see table 3.1).

In this model, collaboration situations are distinguished regarding whether
the participants are co-located at the same place or are distributed over several
locations, as well as whether collaboration takes place at the same time (also
referred to as synchronous collaboration) or at different points in time (also
referred to as asynchronous collaboration). The examples for situations in the
quadrants of the matrix give an indication of the type of collaboration taking
place in this combination of parameters. A number of examples for support
technologies for these types of situations are given in square brackets.

17

18 CHAPTER 3. STATE OF THE ART

Same Time Different Time

Same Place face-to-face interaction: | asynchronous interaction:
co-located meeting-room | shift work, job sharing
or classroom situations | [note-passing, handover
[meeting support, group | protocols]

moderation, shared brain-

storming]

Different Place | synchronous distributed | asynchronous distributed
interaction: distributed | interaction: workflow,
shared editing [applica- | draft passing [shared
tion sharing, audio/video- | repositories, workflow

conferencing, synchronous | management systems]
groupware tools]

Table 3.1: Johansen’s Same/Different Time/Place matrix

3.2 Developing Co-operative Applications

A number of technologies are available for providing collaboration support
through the use of computer-based applications. These technologies can be
distinguished as keeping the applications collaboration-unaware (i.e. the ap-
plications do not explicitly support the collaboration and internally appear to
be single-user applications) or making the applications collaboration-aware (i.e.
the applications in some way explicitly model and support the collaboration of
several users).

A comprehensive overview over technologies and architectural alternatives
for developing synchronous groupware is available in [Phi99]. The following
sections are intended to give a brief overview in order to support the discussions
in the subsequent sections.

3.2.1 Collaboration-Unaware: Application Sharing

A technique for making applications co-operative that is commercially available
in a number of products is termed application sharing or window sharing. In
this technique, which is most often employed to make single-user applications
available to a number of users, a single instance of the application runs on one
user’s machine - the application server - under the control of the application-
sharing package. This package is responsible for broadcasting the application’s
output (in modern GUI environments, its windows’ contents) to all connected
users, gathering all users’ inputs, serializing these into one single input stream
which is then passed to the application which operates as if a single user was
controlling it. Examples of such a system are JVTOS [DGO™94] (available for
the X-Windows environment and a number of other platforms), or Microsoft
NetMeeting [Sum98] for the Microsoft Windows environments.

The advantage of this approach is that it allows available single-user appli-
cations to be used by more than one user at a time, even those applications
which were not designed to be used co-operatively. In order to support this, no
change to the applications is necessary. Also, only one user needs to have access

3.2. DEVELOPING CO-OPERATIVE APPLICATIONS 19

to the application software in order to run it as the application server. Apart
from some form of network connection to the application server, the other users
only require the application sharing client software.

One of the disadvantages of this approach is that it leads to a high network
load, since all application output is transmitted in bitmap form - no knowledge
of the application semantics is available which would allow the system to make
optimizations. The users’ input is transferred at a semantically low level, such
as low-level GUI events like mouse movement, mouse click, etc. It is left to the
application server to translate these events into semantically meaningful events
such as selecting an option from a pull-down menu or pressing a button in a
dialog window.

Also, since the application remains a single-user application, no concept of
concurrency control is available other than floor passing: blocking the input
from all but one of the users’ systems and allowing only one user to control the
application while the others are merely watching. This model of co-operative
activity can only implement strict WYSIWIS (What You See Is What I See)
functionality: All users are viewing the exact same window contents, all the way
down to the current cursor position. No notion of individual or decoupled work
is supported (RU4, RUG).

Additionally, no concept exists of a common shared artifact: The users are
viewing and editing a document which is local to the application server machine.
Since the application runs only on the application server and has no access to
resources local to the user, there is no means to save a local copy of the edited
document or to integrate other document parts resident on a client machine, e.g.
in the form of an import of a previously prepared document section. Modern
application-sharing packages try to overcome this deficit by accessing the local
system’s clipboard and utilizing it for data transfer into the application.

Additional issues and more detailed discussions regarding collaboration-
transparent sharing of tools in collaborative settings can be found in [LL90],
[LJLRI0] and [BRS99].

3.2.2 Collaboration-Unaware: GUI Event Multiplexing

A system which takes a similar approach to application sharing but operates on
a semantically higher level is GUI event multiplexing, as described in [AW96].
Here, all users are running an instance of the co-operative application and a
special interface layer between the graphical user interface and the application’s
event handling layer takes all GUI events and broadcasts them to all connected
sites which interpret the events as if they had been generated by the local
user. Collaboration and co-ordination is performed by executing the same set
of operations in the same order at all sites.

The communication bandwidth required for the systems’ communication is
nowhere near as high as that required by application sharing systems: The ap-
plication is available locally and no output bitmaps need to be broadcast. Also,
input multiplexing is performed on a semantic level close to the application’s
GUI semantics, such as ”button clicked”, ”command event”, etc.

Again, this method is only applicable for strict WYSIWIS situations, since
all communicating applications need to be in the exact same GUI state in order
for the incoming events to be interpreted correctly.

20 CHAPTER 3. STATE OF THE ART

Since this model also has no notion of a shared document - all applications are
modifying a local instance of the document according to the input events they
receive - and there is often no means of transferring a sensible ”event history”
there is no provision for late-comers. Users who join the co-operation session
after some editing tasks have already been performed have no way of ”catching
up” with the group by receiving the current state of the collaboratively edited
document. The seemingly obvious approach of capturing the event sequence
and replaying it in the late-comer’s application is insufficient, since this would
require the user to sequentially watch the entire groups’ past activities (including
those which might have been undone at a later point in time). Apart from the
fact that this could take an indeterminable amount of time (thus violating the
requirement for high system performance, RU11), it would also seem incredibly
tedious.

Additionally, the replication model of collaboration-unaware systems using
GUI event multiplexing requires that the identical applications are available at
all connected sites. Even having only a slightly different version of an applica-
tion at one or more of the connected sites could make collaboration impossible,
since potentially not all applications understand and generate the same set of
GUI events (they might even have different interaction elements). Therefore,
the requirement of being able to couple multiple different tools in a shared edit-
ing session (RUS8) cannot be fulfilled by these approaches. From the developers’
perspective, these approaches allow only an ”all-or-nothing” coupling of appli-
cations. It is not possible, e.g. to have certain areas of the application local to
the user and others coupled (c.f. req. RD4).

3.2.3 Collaboration-Aware Distributed Systems

Co-operative systems typically form a distributed system, where each user has
access to a locally executed application instance. All running applications are
connected to a server process or interconnected and exchange information over
designated communication channels.

Data Sharing in a centralized architecture

In a centralized architecture, there is a central server holding all application
data. Client applications generate input events, access data values or perform
data modification operations and send these to the server which executes them
locally and sends the execution results back to the clients. An example of such
a system is an application based on CORBA (Common Object Request Bro-
ker Architecture) [omg00], where the server provides a number of object services
which are publicly accessible through an invocation interface. Instead of holding
local copies of the application data, the clients generate local proxies (so-called
stubs) which are responsible for invoking the server’s operations. The oper-
ations required for data passing - marshaling and unmarshaling of invocation
parameters and results - are performed by the underlying invocation infrastruc-
ture. In the case of CORBA, these operations are the responsibilities of the
CORBA runtime system and the ORB (Object Request Broker). Method in-
vocations, object references, method parameters and invocation results are all
passed through a standardized data protocol, the Internet Inter-ORB Protocol
(ITOP). All processing and serialization is performed by the server objects.

3.2. DEVELOPING CO-OPERATIVE APPLICATIONS 21

One drawback with such a strictly centralized approach is that all object
accesses, including read accesses, are marshaled, passed across the network, un-
marshaled and invoked on the target object by the server process. In large
object-oriented systems, this can lead to a high network load and slow down the
co-operating applications considerably. Especially in the case of synchronous
groupware providing seemingly real-time interaction based on direct manipula-
tion, this overhead can greatly influence the overall system performance (RU11).

A clear advantage of using a standardized distributed object system such as
CORBA is that it allows the developer to specify and implement the services
and data model of his application in an object-oriented manner. Different client
applications, written in different programming languages, can access these ser-
vices using the specified invocation interfaces and can potentially implement
different sets of functionality on a common object pool.

Replicated Data Sharing Architecture

In a replicating system based on shared data, each node receives and stores the
data objects which it accesses or modifies. Unlike the centralized approach,
there is no single instance of each object. Instead, copies (replicas) of the
required data items are made and distributed in the system. The benefit of
this replication is that read accesses to objects need not be propagated through
the network and invoked on only one object, thus creating a potential bottleneck
when several nodes simultaneously access the same object. Instead, they can
be performed on the local replicas, which is much faster because neither do the
requested and transmitted data elements have to be marshaled and unmarshaled
nor do the invocation parameters and results need to be passed over the network.
Replication is a well known and widely researched technique, especially in the
field of distributed databases, to improve performance as well as availability of
data.

The special application domain of this thesis, interactive groupware, involves
to a large extent displaying document contents on the users’ screens and allowing
the users to manipulate these data elements. The speed of displaying the data,
and thus the perceived performance of the co-operative application, can be
greatly improved if the data to be displayed is available locally and can be
accessed on the local node. This is especially true for complex document and
data structures, which typically require a large number of data accesses in order
to display them completely on the user’s screen.

An extra overhead incurred by replicating data objects throughout the dis-
tributed system is due to the fact that concurrent accesses to data objects need
to be co-ordinated in order to keep the document in a consistent state. This
is especially true for interactive collaborative applications, in which a number
of users can modify a common document co-operatively and simultaneously.
Not only do the users have to be prevented from making conflicting modifica-
tions to the document (thereby potentially destroying each others’ work), but
also changes and additions to the document need to be propagated to all sites
currently displaying the document. As a reaction to these changes, the users’
displays need to be updated to reflect the changed document content. In the
replicated case, ideally only the document modifications need to be broadcast
to all connected systems in an appropriate manner and the local replicas need
to be updated. Again, the resulting re-display required for a truly interactive

22 CHAPTER 3. STATE OF THE ART

co-operative application can benefit from the local availability of the data items.
Replication of data elements is also a promising approach to improving system
scalability (RD7), since a single-site shared data model can quickly become a
performance bottleneck.

An example of a groupware development framework using this approach
are the COAST system ([SKSH96], [SSS99]), DistView ([PS94]) or Habanero
([CGJIP98]). COAST separates the application behaviour implementation and
the shared data model. The collaborative application needs to be present at all
sites. The shared data is replicated between the systems. A central server is
used for persistence, object access, and thus for support for asynchronous col-
laboration. DistView, on the other hand, separates the collaborative application
into application and interface objects, using a replication approach (exporting
an application window at one site and importing it at another site) to add
participants to a collaboration session. The applications built using COAST
or DistView are not component-based in the sense that this thesis uses the
term. These are development framework and as such is extended into specific
applications by programmers using the hot-spots provided by the framework.
The resulting applications are not reusable or combinable, neither COAST nor
DistView provide any support for runtime extension of the collaboration system,
end-user customizability or tailorability. The approaches to data manipulation
and concurrency control in the replicated data sharing approaches differ. While
COAST uses a transaction-based model, in combination with optimistic con-
currency control allowing a user’s application to proceed even if not all changes
to data objects have yet been validated and broadcast, DistView employs locks
to prohibit concurrent and conflicting changes to shared objects. The Habanero
framework provides support for sharing Java objects between multiple applica-
tions. Shared objects are kept up-to-date through events, which are distributed
between the connected systems. Habanero users interact with Habanero tools,
which are made collaborative through data and event sharing. The Habanero
environment is component-based in the sense that new Habanero tools (called
”Hablets”, for ”Habanero Applets”) can be added to the system and can then
be used collaboratively. Since Habanero is a framework concerned only with
data and event sharing, it makes no provisions for coupling different tools, for
combining tools in a component-oriented way or for tool discovery by end-users.

3.2.4 Summary

Approaches using collaboration-unaware applications are very helpful when want-
ing to make existing applications usable in a co-operative setting. It is often

useful to take this approach, since one does not have to re-implement important

functionality which is already available in single-user applications. Also, users

are often very familiar with their everyday single-user tools and it seems desir-

able to carry this know-how over into the collaborative setting. Additionally,

more often than not we do not have the source code of the applications we want

to use, so we have to take an approach such as application sharing to use these

applications collaboratively.

Collaboration-unaware approaches have the drawback, though, of being not
very well applicable to asynchronous work or work consisting of shifts of asyn-
chronous and synchronous collaboration. This is due to the fact that, for ex-
ample, the documents used in the collaboration reside on the one machine from

3.3. COMPONENT-BASED ARCHITECTURES 23

which the application was shared. There is often no notion of a common shared
workspace from which editing and collaboration sessions can be launched. Ac-
cess to shared artifacts and collaborative tools (RU1) is difficult in such settings.

Additionally, the network overhead incurred by collaboration-unaware sys-
tems is often very high, since coupling is on a very low semantic level (such as
screen outputs and mouse inputs). The lack of collaboration-awareness in the
applications means that interaction conflicts need to be resolved by the sharing
system, often in the form of turn-taking floor control, leading to various modes
of collaboration, such as ”sharing” (the user’s local application is being shared
with other users who are allowed to take control of the application), ”not shar-
ing” (the other users are only able to observe the local changes in the application
but are not allowed to perform changes), ”in control” (the user currently has
control over the shared application), etc. These collaboration modes and the
transitions between them need to be managed by the users taking part in the
collaborative session; floor passing, sharing and unsharing of applications needs
to be coordinated by the users. Especially in collaboration sessions including
more than two or three users, this approach can be very hard to handle. Usage
experiences in the POLIWORK project ([STBT99]) have shown that especially
users who are not very experienced computer users have problems controlling
the collaboration, taking the floor, and generally figuring out in which collabo-
ration mode they currently are. This problem is most certainly also increased
by the fact that it appears to the users that they are working with their famil-
iar office application, but due to the fact that it is being used collaboratively
over application sharing, some concessions and changes to the familiar way of
interacting have to be made.

While collaboration-aware approaches do not have the benefit of allowing
any single-user application to be used collaboratively, they often have the ad-
vantage of addressing the demands of the collaborating group in a much better
way. Also, since sharing and coupling can be done on a different granularity
(especially in the data-sharing or replicating approaches), the network over-
head is significantly lower than with the other approaches. Collaboration-aware
approaches can better allow fulfilling the user requirements RU3 (group aware-
ness), RU4 (synchronous and asynchronous collaboration), RU6 (multiple simul-
taneous collaborative modes), RU11 (high system performance) as well as the
developer requirements RD4 (shared as well as local data items), RD5 (access
to co-operation information).

3.3 Component-Based Architectures

Even in today’s multi-window graphical environments, many collaborative appli-
cations are developed and presented to the users as monolithic, all-encompassing
applications providing a large amount of functionality. Such applications can
be hard to maintain and are largely inflexible, due to the fact that they contain
many hard-coded interrelations and interdependencies. Additionally, the tech-
nologies used for developing such applications are not sufficient for fulfilling the
requirements of flexibility and system extensibility. Component architectures
such as OLE2, DCOM, OpenDOC or, more recently, JavaBeans aim at com-
posing applications of interoperable, reusable components. Different component
approaches differ in the level to which they expose the users to the fact that the

24 CHAPTER 3. STATE OF THE ART

system they are using is built in a component-oriented fashion.

The collaboration environment developed and described in this thesis gives
the users access to various individual (but potentially interdependent) Group-
ware Components, each providing a distinct functionality for a certain task in
a certain way.

In order to understand the major difference between the variety of ap-
proaches to providing functionality spanning multiple applications and the sys-
tem proposed and described in this thesis, it is important to discuss the distinc-
tion between (and specific features of) applications, application suites, compo-
nent frameworks and the system of Groupware Components presented in this
thesis. The major dimensions of distinction are the different degrees of openness,
integration and extensibility provided by the various approaches.

Applications are perceived to be closed environments providing a certain
functionality (or set of features)to the user. In order to extend the functional-
ity, an application might provide the possibility of invoking (executing) another
application, such as the editor being used to write this text, which allows direct
invocation of the IXTEXcompiler. The unit of interaction, though, remains the
single application. Calling another application (and optionally passing informa-
tion in the form of files) does not constitute a tight integration. Also, this form
of integration is not really extensible. Granted, instead of the TEXcompiler,
the editor could also be configured to call, say, the Minesweeper game, but it
cannot be configured to do both (much less to exchange information between
the two applications). Additionally, this form of integration would not appear to
the user as a single application which provides a wide range of features. Instead,
the result always appears as a set of different applications (each with their own
look-and-feel, etc.).

Application suites consist of a number of applications (typically from a
single vendor), which are designed to be integratable in a way which makes sense
to the user and provides more functionality than a single application would.
One example for such an application suite is the Netscape Communicator suite,
comprising (depending on the configuration, e.g. private use vs. Enterprise
edition) the Navigator Web browser, the Composer HTML editor, the email tool
Messenger and (optionally) a Calendar tool. The Navigator suite is developed
in such a way that switching between the applications of the suite is done in
a standard manner (via the ”Communicator” menu, which is present in all the
suite’s tools, see figure 3.1).

Typically, application suites also enforce a standard look-and-feel over all
the suite’s tools and also define a standard means for exchanging information
between them. To the user, the suite appears more like a single large application.
Most application suites are not extensible, though. They might be restrictable,
i.e. the user can decide which of the suite’s tools he wishes to install, but
an integration of other applications into the suite’s tight-knit structure is not
possible in most cases.

Component Frameworks provide a dynamically extensible basis for the
integration of different tools (also from different vendors), according to the user’s
demands and feature requirements. One of the most widely used component
frameworks is currently without doubt OLE2 (see [Cha96]). This component
framework is used to integrate documents from one application into documents
from another application (e.g. in order to present advanced mathematical for-
mulas within a document produced with a word processing tool) - typically,

3.3. COMPONENT-BASED ARCHITECTURES 25

Havigator Chil+1 S i

Messenger Chil+2 d li @ & —N
Frint S ecurity Shop

LCompozer Chrl+4

Calendar Ctil+&

AL Instant Meszenger Service Chil+9

Fadio Chil+7

Bookmarks »

Mewsgroups

Addresz Book Ctrl+Shift+2

Tools 3

Server Toolz 3

Wwindow 3

Figure 3.1: Access to applications of the Netscape Communicator suite

component inclusion is in the form of an OLE2 container (e.g. the word proces-
sor) which incorporates the component (e.g. the mathematical formula editor).
Access to the available components and integration thereof is via a standard
mechanism, controlled by the user (see figure 3.2).

Provided that it is developed according to the development guidelines of the
OLE2 component framework, any application can serve as a container of as com-
ponent. Components can even be nested hierarchically. The user can extend
the system, simply by installing new applications which serve as OLE2 contain-
ers or components. These new applications can then also be used within the
other OLE2-compliant applications (which need to have no additional knowl-
edge about the new applications). The combination of OLE2 applications in a
document often appears to the user to be a single powerful application. The
document contents are directly bound to the application which is needed to edit
the specific document content, though. If the required application is not present
on the system, the included content can not be edited (in most cases, provisions
are made that it can at least be viewed and printed even without the application
being present on the system, e.g. by including a static preview bitmap). Also,
the mapping between the included document data and the application required
to edit it cannot be changed by the users. If, for example, user A receives a
document containing a mathematical formula created using formula layout tool
XYZ, but prefers to use the more intuitive application ABC, he is out of luck.
The drawbacks of this type of component framework become even more appar-
ent in collaborative settings, when one user’s choice of components influences
the work of other users in the same collaboration setting. Since there is no
central place from which components can be fetched and instantiated, one user
could introduce a component which the other users do not have available. This
would greatly disrupt the collaboration between the users.

26 CHAPTER 3. STATE OF THE ART

T 2

Create Mew | Create From File I

Chiject bype:

Microsoft Clip Gallery =]
Microsoft Equation 3.0
Microsoft Excel Chart

Microsoft Excel Worksheet

Microsoft Graph 97 Chart

Microsaft PowerPoink Presentation ¥ Floak over text
Microsoft PowerPoint Slide) -
Microsoft Waord Document =l I™ Display as icon
—Result

Inserts a new Microsoft Excel Worksheet

s
Em object into vour document,

(04 I Zancel

Figure 3.2: Integrating an OLE2 object in a word processor

3.3.1 COM/DCOM and CORBA

COM, the Component Object Model, is Microsoft Corporation’s platform for
component interconnection (see [Sai98]). COM defines the way in which client
and server components interact, either within a single application process or in
the form of inter-process communication. COM defines the client /service calling
interface, which allows components written in different programming languages
to call each other. COM is available as a standard part in all Microsoft Windows
operating system platforms.

DCOM, the Distributed Component Object Model (see [HK97]) is the exten-
sion of the COM model to a distributed setting. DCOM defines the methods by
which architecture components distributed over multiple machines can commu-
nicate. Interaction is done via object-oriented RPC (Remote Procedure Call).
The DCOM protocol layers hide the actual on-the-wire implementation from
the client components. Interaction between client and server is similar to the
COM model, but the DCOM implementation ensures that the calls to the server
component are adequately distributed. As [HK97] puts it, neither ”the client
nor the component is aware that the wire that connects them has just become
a little longer.” The DCOM model ensures that a component which can be
used as a COM server can be transformed into a DCOM server for use in a
distributed application setting.

With regard to their utilization within software architectures, COM,/DCOM
can be more adequately be compared to CORBA (Common Object Request
Broker Architecture, see [omg00]). CORBA defines a cross-platform standard
for communication between client objects and servers (services). CORBA uses
an Interface Definition Language (IDL) to describe the public interfaces of a
CORBA service. These public interfaces can be called through the CORBA

3.3. COMPONENT-BASED ARCHITECTURES 27

infrastructure from a CORBA-compliant client. By using standard CORBA
services such as a naming or brokering service, client objects can discover which
servers on the network offer specific services. Interface methods of these service
objects can then be called in order to use the services offered by the server.

By defining the CORBA IIOP (Internet Inter-ORB Protocol), CORBA
achieves true language-independence - applications whose on-the-wire commu-
nication conforms to CORBA IIOP can be developed in different languages.
There are CORBA language bindings (rules which define how elements of the
CORBA IDL are mapped to language-specific types and constructs) for many
(mainly object-oriented) programming languages.

Infrastructures such a DCOM or CORBA can serve as the basis for dis-
tributed component-based groupware systems. Both systems define object-
oriented inter-process communication in a distributed system which can be used
to implement the coordination and distribution mechanisms required in a dis-
tributed groupware system.

3.3.2 JavaBeans

The JavaBeans framework [Eng97] provides a component model for reusable
software components developed in the Java programming language. The Java-
Beans specification specifies how a JavaBeans component can give information
about itself, its properties and the events it understands (introspection). It also
specifies a way in which JavaBeans components can be used in visual builder en-
vironments for developing component-based applications in an interactive man-
ner. The JavaBeans framework is first and foremost a development framework.
Users of applications built using JavaBeans are not necessarily exposed to the
component-based nature of the application they are using.

The basic ability of a JavaBeans component is to expose a number of prop-
erties using syntactically specified ”setter” and ”getter” methods. By accessing
the information about the available properties and the related methods, a vi-
sual builder environment can be used to wire data or events to these properties,
e.g. upon clicking a button a certain input value can be transferred to a Java-
Beans property (e.g. width) by way of the associated set method (public void
setWidth();).

JavaBeans components interact with other components through a publish-
subscribe event model. JavaBeans components send event objects to event lis-
tener objects which have registered as event listener on the component. In-
versely, JavaBeans components can attach themselves as listeners to other Java
objects (such as GUI elements, etc.). A component which needs to send a cer-
tain event, SomethingHappened, to other components, defines an event subclass,
derived from a common event base class, named SomethingHappenedEvent. Ad-
ditionally, the component needs to provide two methods for other components to
attach or detach themselves (in order to signal their interest in receiving the re-
lated events). According to the JavaBeans naming scheme, any interested com-
ponents need to implement an interface SomethingHappenedListener, which
should contain a method called when the related event occured, e.g. public
void somethingHappened (SomethingHappenedEvent ev) ;. The original com-
ponent needs to provide the methods
public void addSomethingHappenedListener (SomethingHappenedListener
1); and

28 CHAPTER 3. STATE OF THE ART

public void removeSomethingHappenedListener (SomethingHappenedListener
1); . All of these interfaces can be ”discovered” by the JavaBeans framework

and by graphical application builders supporting JavaBeans, by a process called
introspection, since the naming conventions for JavaBeans event handling are
defined in the JavaBeans specification ([jav97]).

Additionally, the JavaBeans framework defines a number of methods which
can cause a Bean to create instances of itself, to display an icon or display
itself inside a display area as well as to accept and generate events. Using
specific property sheets, JavaBeans-conformant components can by interactively
manipulated.

By using these features, application developers can put together their ap-
plications from JavaBeans components. The strict JavaBeans API specification
makes sure that JavaBeans components developed according to this API can
coexist and interoperate within an application. JavaBeans components can be
composed visually in an interactive builder tool called BeanBox (c.f. [DeS97]).
In the BeanBox, JavaBeans components can be combined into applications us-
ing ”visual programming”: events and properties can be linked graphically in
the BeanBox, events can be generated and sent to beans and a bean’s properties
can be set. Additionally, component-specific customization dialogs can be used
to change appearance and other parameters of a JavaBeans component.

3.4 Component-Based Groupware systems

Recently, there has been some work (of which this thesis is a part) towards
making component-based architectures available for supporting collaborative
work.

3.4.1 DACIA

The DACIA framework for building adaptive distributed applications (see [LP00b],
[LP00a]) uses a component-based approach to constructing flexible and change-
able collaboration environments. By composing the distributed collaborative
system of combinable PROCs (Processing and ROuting Components), complex
application environments can be composed where data is gathered, manipulated
and displayed at various sites. By employing component mobility, based on code
mobility, the configuration of PROCs can be modified at runtime, making the
system highly adaptable to e.g. changing network topologies or changing col-
laboration group compositions (a management interface for interactively modi-
fying the component configurations is also provided). In this way, the resulting
collaboration support system is highly configurable and adaptable, as well as
extensible, at runtime.

DACIA provides a flexible development infrastructure for component-based
collaborative distributed systems. In the state presented in the literature, there
is no end-user support for identifying and accessing required components (RU2)
or end-user combination of existing interactive components (RU10). The cou-
pling of PROCS is based on sharing and distributing events (called messages in
the DACIA environment). Hence, there is no support for reusable data models
(RD2), or for synchronous and asynchronous collaboration (RU4).

3.4. COMPONENT-BASED GROUPWARE SYSTEMS 29

3.4.2 Visual Component Suite

The approach described by Banavar et al in [BDMM99]! provides a component-
based development environment for synchronous groupware. Developers can
use visually interactive development tools (Visual Builder Environments, such
as IBM’s VisualAge) to construct collaborative applications from reusable com-
ponents. Application logic can be graphically specified by ”wiring” the com-
ponent’s event sources and input methods. The available components conform
to the JavaBeans component standard and are based on an event-broadcasting
client/server synchronous collaboration infrastructure, Live, which handles group
communication, locking, serialization, etc.

The approach of allowing groupware developers to use a graphically inter-
active, component-based development environment and create their groupware
application in a ”point-and-click” fashion seems very helpful. With the system
as presented in the publication, though, it is to be anticipated that this form
of interactive development will most likely quickly become very complex, espe-
cially for groupware applications which are not forms-based (e.g. a graphical
editor).

In this approach, the components are only available and modifiable at de-
velopment time. The components are not exposed to the users, nor can the
users extend or modify the resulting seamless groupware applications (RUT).
Dynamic coupling of different tools at runtime (RU8) and combining existing
tools (RU10) are also not possible, since the resulting application, while built
in a component-based fashion, is at runtime ”closed”. The approach is limited
to synchronous (same-time) collaboration. Since the communication between
the coupled components is done using event sharing, there is no common shared
document or object model. Hence, there is no support for late-comers or for
asynchronous collaboration (RU4).

3.4.3 Disciple and similar approaches

The Disciple (DIstributed System for Collaborative Information Processing and
LEarning) groupware system ([Mar99], [LWM99], [WDM?99]) provides a compo-
nent-based collaboration system for Java, using the JavaBeans [Eng97] Frame-
work. The goal of the Disciple system is to enable easy sharing of single-user
applications. A collaboration-aware JavaBeans container allows management
of collaborative sessions and allows users to extend the collaboration setting
by importing additional components into the shared workspace. The Disciple
shared workspace allows the invocation and collaborative use of collaboration-
unaware JavaBeans components (CUAB - Collaboration-Unaware Beans). By
implementing a specific Disciple API, developers can also make their JavaBeans
collaboration-aware (CAB - Collaboration-Aware Beans) and provide additional
functionality. Disciple is therefore a hybrid between collaboration-aware and
collaboration-unaware systems.

In order to make collaboration-unaware Beans usable within collaborative
sessions, Disciple employs a variant of the GUI-Event-Multiplexing approach:
When fetching the Bean implementation from the server, the implementation

1Unfortunately, the article BDMM99] does not give a name for the presented system. The
descriptive term ”Visual Component Suite” is used in this thesis merely to have a handle to
reference the cited work.

30 CHAPTER 3. STATE OF THE ART

bytecode is modified in order to allow intercepting of GUI events. These in-
tercepted GUI events are later broadcast through the Disciple communication
infrastructure to all users’ systems in the current collaboration session, where
the events are delivered to the appropriate JavaBeans. Coupling of components
is strictly on the level of GUI events, conflicts are detected and resolved by a
Conflict Resolver component in the system. Accesses to resources such as files
are also intercepted and modified to access resource servers which are available
to all users (similar to shared network drives). These resource servers also serve
the components which are introduced into the shared workspace.

Specific collaboration components provide features such as concurrency con-
trol, group awareness, control of the degree of coupling, as well as telepointers
and radar views. These collaboration components are always available and
can be used in combination with any other Bean components being used co-
operatively.

The Disciple system restricts itself to use in the Same Time / Different Place
situation. The concept of persistent spaces allows suspending collaboration
sessions and resuming them at a later point in time. The use of resource servers
local to a specific collaborating user, as well as the lack of a common data
repository inhibits the possibilities of use in asynchronous settings (RU4).

The Disciple system demonstrates a significant improvement over pure Ap-
plication Sharing or GUI-Event-Multiplexing approaches: It allows flexible ac-
cess to JavaBeans components within the collaborative session and allows simul-
taneous use of collaborating as well as single-user JavaBeans within the desktop.
Still, the approach suffers from the drawbacks similar to those of other GUI-
Event-Multicasting approaches, e.g. in Jasmine (see [SKFS99], [ESSGSO00]), or
JAMM (see [BSSS97]):

e There is no common document model which could be exchanged between
the different components (RD2). Hence, all components provide collabo-
ration on their own proprietary data structures.

e Also, as has been previously discussed, GUI-Event-Multiplexing is an ap-
proach which is only applicable to tightly-coupled, synchronous collabo-
rations utilizing the identical components at all sites (c.f. req. RU8). All
users’ components necessarily need to be in exactly the same state in order
for the collaboration to work correctly. The applications cannot provide,
e.g., some windows which work on shared data objects and others which
work on private portions of a document (RUG).

While Disciple does allow users to extend the collaboration system at run-
time (fulfilling req. RU7) by importing JavaBeans components into the shared
workspace, it makes no provisions for supporting the users in actually finding
these components (RU2). The components to be used collaboratively can be
fetched from any URL (Uniform Resource Locator) and it remains up to the
user to find and import the components which he or she intends to use.

The work by Hummes et al ([HKM98], [HM98]) also aims at providing an
extensible groupware environment by using collaborative components based on
JavaBeans and focuses on the insertion of new components into running syn-
chronous CSCW applications. Similar to Disciple, the approach to coupling is
that of event sharing: GUI components at the user interface share certain events,

3.4. COMPONENT-BASED GROUPWARE SYSTEMS 31

which can be wired in a graphical application builder in order to tailor the sys-
tem or develop new components. The broadcast events are at a semantically
higher level than the Disciple events, though, hence also different components
can be coupled (illustrated by a teacher’s and students’ environment). This ap-
proach has mainly been applied to simple forms-based interaction elements. In
the system described, there is no notion of a common shared persistent object
space, hence the collaborative components only work in strictly synchronous
settings and have limited provision for late-comers. Also, the work does not
address how the components are identified and accessed at run-time.

3.4.4 Sieve

The Sieve system ([Ise98], [IBHS97]) is a collaborative workspace in which
users can collaboratively create scientific visualizations, using a number of data
source, processing and visualization components.

Components used collaboratively need to be developed according to the Java-
Beans component standard. Similar to the Disciple system, Sieve offers a collab-
orative extension to the JavaBeans framework, making collaboration-unaware
JavaBeans components usable collaboratively. In order to be usable collabo-
ratively within Sieve, the JavaBeans components need to be developed using
a JavaBeans feature called ”"bound properties”. Bound properties are proper-
ties of a component which notify the component whenever they are changed.
Additionally, changes to a bound property can be constrained and validated,
e.g. in order to detect conflicting changes, etc. These bound properties do not
fulfill the requirement of having reusable shared data models (RD2), since the
properties are embedded in the components used within the Sieve visualization
framework.

The Sieve component model offers a specific linking model which governs the
way in which components are wired in order to produce information ”flows”,
e.g. from a data source (signal generator), through a data processor, to a table
collecting the results. The network of wired components can be dynamically
extended, also at runtime. The visualizations are created any manipulated
co-operatively. Sieve was initially aimed at the use in education, allowing the
collaborative construction of electronic diagrams, physical simulations, etc. The
Sieve workspace, which is similar to the JavaBeans BeanBox, provides a few
features such as workspace awareness information (radar views) in order to
support the users’ coordination.

The coupling model of the collaboratively used components, based on bound
properties and the propagation of change events, does not allow coupling dif-
ferent components (c.f. req. RUS8), neither in synchronous nor in asynchronous
mode. Also, there is no notion of how users can find the components which
they need for their work (RU 2). It is assumed that the users are familiar
with the available tool set, elements of which can be used in the collaborative
visualization.

3.4.5 TeamComponents

The TeamComponents approach ([RU00]) provides collaborative components
(the TeamComponents), which are based on the DreamTeam groupware de-
velopment toolkit ([RU98]). The TeamComponents are specifically developed

32 CHAPTER 3. STATE OF THE ART

components which can be used either as a static part of an application or dynam-
ically inside a compound collaboratively edited document. TeamComponents
support different levels of isolation (private, shared public and exclusive public)
and integration (seamless and anchored). These isolation levels control in which
ways a component can be used collaboratively and how it behaves while being
edited. In this way, a component can be defined to be editable by a single person
at a time (private), but be edited in-place, updating the other users’ displays
while being edited (seamless).

The DreamTeam system architecture is a replicated architecture without
a central architectural component. Communication between the components
occurs peer-to-peer using multicast method invocation, where method calls can
be distributed to all connected components. Concurrency control is achieved by
using different kinds of locks for the multicast method invocations.

Data is encapsulated in the components, with each component being re-
sponsible for handling its own data. Late-comers are supported by serializing a
component’s data at one site and sending it to the new site, so that collaboration
can proceed.

The goal of the TeamComponents system is not to allow the sharing of
collaboration-unaware third-party components. TeamComponents are specially
developed components which are collaboration-aware to the extent that the
developer even needs to care about broadcasting the correct method invocations
in order to create collaborative behaviour. TeamComponents can make full use
of their knowledge about the collaboration situations (RD5).

With the TeamComponents concept, users cannot collaborate using differ-
ent components (RU8). The approach of multicasting methods and encapsu-
lating the component’s data in the component allows only coupling identical
components. The lack of a central server and document persistence makes the
TeamComponents not usable in an asynchronous setting (RU4).

3.4.6 The EVOLVE platform

Tailorability is a system property which allows end-users to adapt (tailor) their
working environment so that it better suits their individual or group needs. The
EVOLVE project (see [SC00]) aims at supporting end-user tailoring of running
groupware systems. An empirical experiment (described in [Sti99]) showed the
users’ requirements for tailoring (or customizing) the tools they use in their
everyday work, including those used in collaborative settings. Tailorability was
shown to be an inherently co-operative activity. Skilled end-users can help
less skilled end-users to perform the tailoring they require, groups of users can
collaboratively tailor the system they are using together to met their group
needs (preferences or special group processes).

The EVOLVE platform provides the basis for the development of component-
based groupware systems which can be modified by users at runtime, making
newly tailored components directly available to other users and even allowing
several users to tailor their application environment collaboratively. The system
maintains component compositions in CAT files (CAT stands for Component
Architecture for Tailorability). These files contain textual representations of
complex component hierarchies, which are interpreted at system startup and
whenever users tailor the component compositions. The CAT files are stored on
a server and are thus available to all users of the EVOLVE platform, allowing

3.4. COMPONENT-BASED GROUPWARE SYSTEMS 33

them to share and exchange their customized components. An extension to the
JavaBeans model is proposed, termed the FlexiBeans Component Model. Com-
ponents developed according to the FlexiBeans Component Model are special-
ized JavaBeans components (and can be used as such), which provide extensions
for groupware-specific functionality. In order to support their use in collabora-
tive settings, FlexiBeans components communicate through shared variables as
well as event passing. Both mechanisms work within the same machine as well
as over the network, to support distributed use. [Sti00] gives a full overview
over the design of the EVOLVE platform. Components provide ”ports” which
accept or send specific events; e.g. a GUI button might send an ActionEvent
whenever it has been pressed and a component listening for such events would
accept ActionEvents on a specific port. The ports of components can be linked
in order to let events "flow” from one component to the next. Shared objects
are provided by the components based on the Java RMI (Remote Method In-
vocation) distribution architecture: A component publishes a shared object as
an RMI service. A shared object is seen to "belong” to that component which
instantiated it. The object remains on the instantiating machine and all clients
access the shared object through RMI access to the public interface of the ob-
ject. The problem of concurrency on object access is addressed through the use
of the synchronized construct in Java, which only allows one active thread at
a time to pass a critical section.

End-users are provided with a graphically interactive tailoring tool, similar to
the BeanBox used in the JavaBeans environment. Here, the ports of components
can be connected in order to construct the application wiring logic. Changes
made to the component composition are immediately reflected at all clients
where an instance of the changed composition is currently used. In this way,
tailoring of the collaborative system components can be done ”live”, while the
components are actually being used.

The EVOLVE platform’s support for online tailoring of a collaborative sys-
tem composed of hierarchically structured components provides a very flexible
groupware environment which the users can quickly adapt to their needs (RU10).
The combination of shared objects and shared events as communication primi-
tives for components of a CSCW system (an approach also taken in this thesis)
supports a very logical design of a collaborative component’s implementation.
The choice of implementation of shared object access (publication of the ob-
ject as an RMI service on one machine and access from the clients through the
RPC-like RMI infrastructure) can quickly become a performance bottleneck, es-
pecially in highly interactive collaborative applications. Use of the synchronized
Java construct to synchronize concurrent object access makes the client’s thread
of activity block in the remote invocation until all other accesses to the shared
object have completed. To the users of data-intensive interactive applications
such as shared whiteboards or other collaborative graphical applications, this
synchronization will appear as very long response times, which will be perceived
to be very low system performance, leading to potentially high turnaround times
and slow system response in interactive settings (RU11).

The design choice of encapsulating the shared data objects in a certain com-
ponent restricts the possibility of coupling different components on the same ar-
tifact (RUS8) and of using shared artifacts with a variety of tools in synchronous
and asynchronous settings (RU4).

34 CHAPTER 3. STATE OF THE ART

3.4.7 GROOVE

A very recent development is the Groove system ([Gro00]). Groove is a peer-
to-peer collaboration platform, where users can create workspaces, containing
collaborative tools, into which they can invite other users with whom they wish
to collaborate. Groove’s extensibility and flexibility can be compared to the
DISCIPLE system: Users can add collaborative tools to a shared workspace.
These tools can be fetched from a central repository of tools (run, typically, by
the inventors of Groove, Groove Networks, at http://www.groove.net). Users
joining a shared workspace which contains tools that their system currently does
not have, automatically receive copies of the tools in order to take part in the
collaboration in the shared workspace.

What sets Groove apart from other collaboration systems is the approach
to interconnecting the systems. The Groove approach is that of peer-to-peer
computing, which has become very popular recently, with a number of peer-to-
peer systems becoming widely used on the Internet. When multiple users share
a workspace, the changes made to the workspace’s contents are exchanged be-
tween their systems without the use of e central server. Each user’s system holds
a replica of the workspace contents and these workspace contents are kept con-
sistent through command objects which are propagated between the connected
peers. Queuing and caching strategies allow workspace synchronization to be
performed even if the users’ systems are only connected sporadically, e.g. in the
case of offline use or asynchronous collaboration.

The tools which are to be used in Groove workspaces need to be specifically
built using the Groove Software Development Kit (SDK). Groove provides no
common shared data model for the various tools used in the shared workspaces.
The medium for communication and the means for synchronization are com-
mand objects, which encapsulate changes to the data state of the tools. These
command objects are created by the tools, intercepted by the Groove platform
and distributed to the other replicas of the tools at the other sites where the
shared workspace is being accessed. In effect, this places the restriction on the
setup of the shared workspace that all users must have (the exact same ver-
sions of) all workspace tools at all times. The approach supports neither the
coupling of different tools on common shared data (RUS8), nor does it allow
”mixed” collaborations, where different users may or may not use some or all
of the same tools (e.g. depending on their roles or tasks, or which would be
required in mobile situations (RU9). Also, the data model as presented in the
Groove user interface appears to preclude using elements from one workspace
in another workspace. Since no common shared data model is available for the
tools, there is also no support for reusable shared data models (RD2). Also,
the peer-to-peer approach automatically leads to lack of support for server-side
components (RD9).

3.5 Summary and identification of deficits

With regard to the requirements identified in the previous section, it can be
seen from the presentation that the approaches for component-based groupware
systems do not fulfill the requirements as presented.

While most of the systems presented in this section (excluding the Visual

3.5. SUMMARY AND IDENTIFICATION OF DEFICITS 35

Component Suite approach by Banavar et al.) do allow users to extend the
collaboration sessions with additional tools (RU7), the systems do not provide
support for selecting which tools actually to use in which situations or for which
documents (RU2).

Most approaches do not fulfill requirement RU4, for supporting synchronous
as well as asynchronous work - most approaches do not adequately support
asynchronous collaboration. A notable exception is GROOVE with its repli-
cation and replica synchronization concepts. The resumable collaboration ses-
sions in Disciple appear to be an approach towards supporting this requirement.
Most specifically the lack of a common server makes asynchronous collabora-
tion difficult to coordinate between the participants. The same applies to the
TeamComponents approach.

Due to the lack of a common shared data model, none of the approaches pre-
sented above support the coupling of different components (RU8). Especially in
a heterogeneous collaboration infrastructure and different group compositions,
fulfilling this requirement becomes very important if flexible collaboration is to
be performed.

The combination of different tools (RU10) can be said to be supported by
the TeamComponents system, in the form of the compound documents into
which the user can embed components. These compound documents cannot
be deployed and reused or standardized, though, and a new one needs to be
put together each time it is needed. The easy deployment of such component
configurations is perceived to be an important element of end-user tailorability
of the collaboration system, though.

The developers requirements are fulfilled to varying degrees in the systems
described above. Since collaboration-unaware systems such as Disciple, Sieve,
etc. make collaborative use of tools not initially developed for collaboration, no
developer access to collaboration information (RD5) can be supported. Non-
extensible groupware development environments, such as the Visual Component
Suite approach, COAST, etc. make no provisions for deployment of newly
developed collaboration tools (RD6).

None of examined systems support the use of server-side components, which
can be invoked in conjunction with client-side collaborative components in order
to provide singular functionality (RD9).

36

CHAPTER 3. STATE OF THE ART

Chapter 4

Groupware Components

The central concept introduced in this thesis is that of Groupware Components.
Based on a schematic description of the system architecture, this chapter will
present the Groupware Components and their realization in the groupware de-
velopment framework DyCE (Dynamic Collaboration Environment). In order
to develop component-based groupware which fulfills the requirements presented
earlier, the Groupware Components need to be based on supporting technolo-
gies, including a consistent shared data model, object replication and means
for providing view consistency. These technologies will be introduced after the
Groupware Components.

Interconnection and combination of Groupware Components necessitates a
common programming model, according to which the components need to be
developed. This thesis presents a task-based programming model for the Group-
ware Components, providing a loose binding between related components as well
as support for system extensibility. The presentation of this programming model
will follow the presentation of the Groupware Components and the supporting
technologies.

One of the major requirements presented in a previous chapter is that for
an extensible and adaptable collaboration support system (RU7). The two
phases in which changes and extensions to the collaboration support system are
made is at development time(when qualified developers create new Groupware
Components based on the development framework) and at runtime, when the
end-users adapt the system to their needs. This chapter will therefore present
the development and tailoring support provided by DyCE.

The chapter concludes with a detailed presentation of the system architec-
ture, which refines the initial schematic view and lays the foundation for the
presentation of implementation-related aspects in the next chapter.

37

38 CHAPTER 4. GROUPWARE COMPONENTS

A note about typography: In the following discussions, fre-
quent reference will be made to elements of the DyCE framework,
the development class library as well as more general concepts.
Wherever necessary, concepts will by highlighted using empha-
sized font. In contrast, programming elements, classes from the
DyCE framework and other programming language items which
come directly from the implementation side will be presented in
typewriter font. This typographical convention is necessary in
order to distinguish between general concepts and their actual
implementation.

4.1 Groupware Components - Overview

Section 3.3 has presented an overview over component-based systems which
make the components accessible to the end-users in order to allow them to use
their work environments in a more flexible way. The Groupware Component
system presented in this thesis aims at providing the extensibility of component
Frameworks, but with added flexibility and functionality: Leaving aside the
major difference that Groupware Components are per se collaborative (which
OLE2 and other component frameworks aren’t), one major goal of the design
and development of the framework was to make the resulting system extensible
and to make components exchangeable (even to the point of using different
components on the same document contents). This inherent extensibility is the
response to the end-user requirements RU2 (computer guidance for selecting
appropriate tools), RU7 (dynamic extension of the collaboration environment)
and RU8 (coupling of different tools).

In such an environment, the distinctions between the components and the
level to which a user can identify an application become more and more blurred.
A user is no longer working within a single application, but rather he is applying
his choice of tools to the documents or other artifacts on which he is currently
working (together with others). To put it another way, instead of presenting the
user with the ”put-nail-in-wall-application”, he is handed a tool box containing,
among other things, a hammer, pliers, screwdrivers, etc. and from which he
can pick the tool most appropriate for the task at hand. Additionally, existing
tools can be combined to form new, more complex tools for specialized problem
areas.

4.1.1 Schematic system architecture

An overview over a collaboration system based on Groupware Components is
shown in figure 4.1. This schema will serve to guide the in-depth presentation of
the Groupware Components in the following sections, which will systematically
refine different areas of the schematic overview.

In the application schema shown in Figure 4.1, each user is provided with a

client application within which Groupware Components are used to access and
modify elements of a common domain data model.

4.1. GROUPWARE COMPONENTS - OVERVIEW 39

Architectural Levels

Devdloper
Userz
User 1
r-—-——"">">"~"~>">"~>"~>">"“>"=7"7"—/"77 1 r—-——~-—~— - - = 1

Acoess ! Modify Mooess i Modify

! ! Crestes } Cliert App. |
| Client App. } | |
1 Groupware | | Groupware |
| Cornponent | | Component |
| | Instantiati 1
| Sroupware | | |
| Campanant Display | [Pisplay ! Application Logic
| | | |
I C | . I
\ Display Application } Corponent | Application |
| Legic Implernentati | Lagic H
: Application ; nstantisti 1 :
| Logis | I |
: 1 Instantiation } :
| | | |
| | | |

Dornain Data Madel Store /Lead

Shared Damain Data Model

Cbjects

Shared
Objects

Cormpaonent Broksr

Feteh/ Update Object Managemeant

Object | Concurreng
Repository| Contral

I
| I
| I
| |

|
| |
| 1
} Fetoh [Update : Shared Data Objects
| |

I
| 1
| 1
I |
|

Server

Figure 4.1: Schema of application system

Groupware Components

A Component is a complex element of the application system, providing access
to objects through a user interface. Conceptually, a component combines a dis-
play (which presents elements of the shared domain model in a meaningful way
and allows interaction) with an implementation of application logic, which is
responsible for controlling the access to the shared domain data model. Com-
ponents can be nested: Components can be contained in other components and
can in turn contain components (this nesting relationship is not shown in figure
4.1 for clarity reasons). Additionally, several components can be coupled on one
shared data item.

Components are implemented by developers, who create (program) compo-
nent implementations and deploy these by storing them in a Component Broker
subsystem accessible to all users. Upon access by the end-users, the implemen-
tations of components are fetched from the Component Broker located on the
server. They are instantiated and set into relation to the data objects which
they can display and modify.

Userl, on the left-hand system in the diagram, is using two components to
access elements of the shared domain model, whereas User2, on the right-hand
system, is using only a single component. In this way, several components are
sharing objects, thus providing the users with the ability to co-operatively view

40 CHAPTER 4. GROUPWARE COMPONENTS

and edit shared documents.

Other component architecture approaches, such as DACIA ([LP00b]), treat
all elements of the system architecture as components (i.e. the object man-
agement system, the database back-end, data processing units, etc. would all
be treated as components with component-specific interfaces). While this view
provides a homogeneous view of component architectures, it is not important
for the work presented in this thesis. While elements of the architecture and
framework presented in this thesis could be seen as components, the subsequent
discussions of the interfaces and programming models for components apply only
to the Groupware Components as visually interactive and dynamically linkable
elements of the groupware support environment.

Groupware Components are accessed through a Client Application, which
provides users with a means to access the collaborative environment and invoke
the desired Groupware Components.

Shared Objects

The basis for collaborative use of Groupware Components is realized using the
data sharing approach (see section 3.2.3 for a discussion of the advantages of
this approach). As shown in the diagram, components access shared objects,
which form the basis of the collaboration, the shared artifacts. Components
visualize the contents of these objects, allow the users to manipulate the shared
objects and keep the display consistent with the state of the shared artifacts.

The shared objects represent the shared application state common to all
users accessing these objects. Additional (non-shared) objects can be used by
components, e.g. to represent data elements of services which are only available
locally or only used by a single user (c.f. RD4).

Component Broker

Component implementations are loaded from a Component Broker, which man-
ages a repository of component implementations where they are persistently
stored and available to all connected users. The component implementations
are requested from the Component Broker and loaded from the repository. In-
stances are then created at the clients’ sites, ready for use. New components
can be added to the Component Broker and thereby become available to all
users (RD6, RUT).

The Component Broker can be local to the clients (e.g. as in the case of
a locally installed application) or - as shown in the diagram - can be remote
and accessed via the network. In the DyCE system presented in this thesis,
the Component Broker is centrally available to all users. This decision eases
the deployment of new components (RD6) as well as maintenance of the same
versions of components in all client systems. Additionally, providing a cen-
tral Component Broker supports ubiquitous access to the collaboration support
environment (RU5).

Object Management

In order to support synchronous as well as asynchronous collaboration (RU4),
shared objects are persistently stored in an Object Repository, which is accessed

4.1. GROUPWARE COMPONENTS - OVERVIEW 41

through an Object Management subsystem. The application environment en-
sures that the objects are loaded from persistent storage and instantiated locally
to be available to the related components when required. Between uses, the ob-
ject instances - and not just the classes they are instantiated from - are stored
in the Object Repository.

While objects are being used by Groupware Components, the users are po-
tentially changing the objects. In order to enable collaboration, it is important
that all shared objects remain in a globally consistent state, i.e. that changes
made to a shared object at one site are reflected at all other sites sharing this
object. It is the responsibility of the Object Management system to maintain
this consistency. It is able to do this because all clients propagate changes per-
formed on the shared objects to the central Object Management system. This
can then employ concurrency control mechanisms in order to resolve concurrent
conflicting object accesses. Changes to the shared objects which are relevant for
other clients are propagated by the object management system to the affected
clients. These can then update the user interface displays accordingly. More
details about these mechanisms will be presented in section 4.3.

4.1.2 Characteristics of Groupware Components

The Groupware Components used as parts of the collaboration environment can
be characterised as:

e Collaborative - by accessing a shared data model, which is maintained in a
consistent state throughout the system, the different components provide
synchronous as well as asynchronous collaborative functionality;

e Interactive - the components give the user immediate and co-operative
access to elements of a shared object space and give instant feedback
about the results of these operations;

e Loaded on demand - instead of being directly included in the applica-
tions accessed by the users, the components are fetched on-demand from
a component repository;

e Interdependent - different components (instances of different classes) po-
tentially access common data objects; there is potentially an intersection
between the data objects accessed and manipulated by the various com-
ponents;

e Dynamic - the exact point in time at which a user invokes a certain compo-
nent cannot be predetermined; the same holds for the inverse: discarding
of the component;

e Composable - it is possible for component developers and end-users to
create new Groupware Components by composing them of other (sub-)
components.

Groupware Components can be used in various ways, depending on the users’
requirements. They could, among others, be used as

42 CHAPTER 4. GROUPWARE COMPONENTS

e components of a "groupware desktop” (as in the scenario), providing ac-
cess to different features, based on the different elements of the desktop
(e.g. time planner, documents, project planner, etc.)

e collaborative elements embedded in Web pages (e.g. small awareness
markers indicating who is currently viewing the page, including the ability
to initiate communication, interactive collaborative workspaces delivered
via Web pages, etc.)

e collaborative tools on mobile and hand-held devices, providing mobile col-
laboration support.

4.2 Shared Objects

As has been pointed out, a Groupware Component allows a group of users
to interact with (i.e. view and modify) a set of - potentially - shared objects.
Groupware Components need to provide shared access to the objects which form
the basis of the collaboration. In order to support collaboration, the components
need to reflect the current state of the shared object.

4.2.1 Separation of application and data model

When designing a development framework for distributed co-operative systems,
we are faced with varying levels of development which need to be distinguished
and for which development support and framework support need to be provided:
General support for shared data objects, support for putting together domain
data models and support for developing the application logic. The separation of
concerns into these levels was guided by the end-user and developer requirements
presented earlier. The actual design of the different aspects outlined in this
section as well as the means by which they are supported in the development
framework will be presented in detail in the subsequent sections.

The levels (which can also be found in the schema in figure 4.1) relate to
the varying levels of abstraction in a specific application built on a general
framework; the levels also relate to the development support for Groupware
Components:

Shared data objects

Characteristics: Since the framework is to be applicable to all Groupware
Components and needs to provide basic support for collaborative components,
we require a general model for shared objects. This general model governs
how all shared data objects in the distributed system are set up and behave.
Instances of the shared data object model are used in all domain-specific data
model implementations (see below).

Framework support: The development framework provides the implemen-
tations of the elements of the shared data model. The set of shared data objects
with which the framework deals (both at development time and at runtime) is
a homogeneous set of objects conforming to this general shared object model.
No application or domain-specific logic to verify external data consistency is
available at this level. This level is concerned with internal data consistency:

4.2. SHARED OBJECTS 43

The framework ensures that if one replica of an object is modified at one site,
these modifications are propagated to all replicas.

Developer Access: Developers of Groupware Components do not extend
shared objects at this level. The implementations of the general shared object
model are used when putting together implementations of the next higher level.

Domain data model

Characteristics: At the domain data model level, domain-specific function-
ality related to the shared data objects is provided. The objects at this level
contain all domain-specific functionality required to maintain externally (seman-
tically) consistent data items. An instance of the domain-specific data model
can be used in a variety of different components (e.g. instances of a domain-
specific Bank-Account object could be used in a collaborative accounting system
as well as a shared personal checkbook application and a collaborative Monopoly
game). The consistency logic included in the domain data objects is the same
across all instances of such a model class (e.g. a Bank Account class has the
same consistency constraints for withdrawals and deposits across all components
using instances thereof).

Framework support: The framework provides a number of base classes
for classes of the domain data model. These classes need to be subclassed by
the groupware developer. The framework ensures that instances of the domain-
specific classes are created when shared data objects are replicated.

Developer Access: The developer subclasses the framework’s base classes
for the domain-specific model. In these domain-specific subclasses, elements
of the general shared data model are used to put together the classes of the
domain-specific data model (e.g. a domain-specific Person class could use a
number of objects from the shared data model to model the person’s name,
his address and his phone number). The developer-created subclasses form the
semantically meaningful interface to the shared data model. The developers also
need to implement the domain-specific consistency checks in order to prevent
inconsistent data states.

Application logic

Characteristics: The application logic is the actual implementation of a Group-
ware Component’s functionality. Using the domain-specific interface provided
by the domain data model classes, the Groupware Components access and mod-
ify elements of the shared data model and are notified about any changes to the
shared data occurring at other sites.

Framework support: The framework provides common superclasses for
the Groupware Components which provide the general logic common to all
Groupware Components: tying components to objects of the domain data model
(how this is done exactly will be presented in section 4.6) and notifying the
components about changes in the underlying data objects.

Developer Access: The developer of a Groupware Component subclasses
the framework’s component base class and adds the specific functionality. By
creating instances of the domain-specific data model (or having such instances
assigned by the runtime system), the component becomes a collaborative Group-
ware Component.

44 CHAPTER 4. GROUPWARE COMPONENTS

4.2.2 Class and Object definitions

For the remainder of this chapter, the following definitions are relevant (the
definitions are general enough to apply in all object-oriented languages).

e Class: A Class is a static programming abstraction. A class provides
behaviour shared by all its instances.

e Subclass: A subclass extends a class by providing additional behaviour or
overriding existing behaviour.

e Object: An object is the instantiation of a class on a specific system. If
an object Ol is an instance of a single class C1, it provides the behaviour
implemented in Class C1. In [Mey89], B.Meyer puts it this way: ”A class
is a type, an object is an instance of a type” (p.94). An object and a type
are elements of the programming language.

e Shared Object: A shared object is a conceptual element of the collabora-
tion support system. It denotes a group of objects on different systems (on
different host machines or used in different application processes), which
all share the same state. The state of a shared object on different systems
is allowed to diverge due to operations performed on the shared object.
It is aa task of the runtime system to ensure that the state of the shared
objects converges again (see also [Dou95b]).

e Polymorphism: If an operation is defined to be valid on (instances of)
Class C1, then it is assumed to be valid for all (instances of) subclasses of
Cl.

4.2.3 Modeling shared data objects

The lowest layer in the above decomposition of shared object models is that of
shared objects. These data elements form the basic data model of any Group-
ware Component. The instances of this data model - the data objects - are
co-operatively created, modified and deleted. Each participating system needs
access to the data model specification, therefore the implementation of the basic
shared object model is provided in the DyCE framework.

The aim of a generic data modeling component is to allow the developer to
implement any data model required for the solution of the problem at hand, be
it a single shared document, a set of documents or document fragments or any
other compound object-oriented data model. For this, a set of predefined data
types can be used to construct complex data structures and object relations.

In object-oriented programming languages such as Smalltalk and Java, a
number of basic (or core) data types are provided by the programming lan-
guage itself or the programming language’s supporting class hierarchy !. These

IStrictly speaking, Java is not an object-oriented programming language but rather an
object-based hybrid programming language, since the language defines a number of primitive
data types such as int, char, boolean which are not provided as classes which can be instanti-
ated, subclassed and extended. In contrast, Smalltalk is a pure object-oriented language since
all data types are provided by classes in the language’s standardized class hierarchy. These
classes can be subclassed and extended to provide additional, application-specific character-
istics.

4.2. SHARED OBJECTS 45

basic data types can be refined using the mechanisms provided by the object-
oriented programming paradigm and complex data structures can be created by
combining a number of class instances.

Similar support is to be provided by the development framework: prede-
fined data types can be combined and extended to form new elements of the
data model. These new elements can then be used to construct complex data
models, which can be instantiated and manipulated at run-time. Since the data
objects form the basis of the collaboration activity, the data modeling facilities
need to be accompanied by the appropriate support mechanisms as described in
the following sections: collaboration needs to be supported by providing object
replication through the distributed collaborative system; simultaneous and con-
flicting changes to data objects need to be detected and corrected by appropriate
concurrency control mechanisms.

4.2.4 Object Representation

Developer requirement RD2, presented in chapter 2 discussed developer support
for reusable data models. An important part in defining and setting up such
common data models are played by the syntax and semantics expressed by an
object representation. Generally speaking, the object representation mechanism
describes a means to use the expressive powers offered by the system to create
and manipulate new data types and to combine instances of these data types into
more complex data structures. When referring to programming languages, there
are two levels of object representation to consider: language representation,
governed by the syntax and semantics of the programming language used, and
runtime representation, created by the compiler or interpreter and maintained
by the language’s runtime system.

The language representation governs the way in which the programming
language elements are used to create new classes, instantiate classes as new
objects and so forth. For the Java programming language, a valid language
representation of a class containing a number of attributes as well as methods
accessing and manipulating these attributes would be:

public class BankAccount extends Object {
protected float balance;
public float giveBalance()

{
return balance;
}
public void deposit (float amount)
{
balance = balance + amount;
}

The runtime representation is specified by the way in which the Java lan-
guage compiler transforms this class definition into bytecode and allocates heap
space for newly created instances of bank accounts.

In order to allow the application developers to benefit from the system pre-
sented in this thesis, it is important to provide an object representation facility
that

46 CHAPTER 4. GROUPWARE COMPONENTS

e matches the general paradigm of the target programming language (in the
case of this thesis this is the object-oriented paradigm),

e is sufficiently flexible and powerful to express and utilize the required
concepts,

e and which maps into a runtime representation which the system can use
to provide adequate replication and concurrency control mechanisms.

It is the third requirement which introduces the need to extend existing
object representation schemes, since the general object representation schemes
have no provision for expressing and maintaining the information required for
the flexible object replication mechanisms introduced in this thesis.

Several systems created in order to aid development of distributed applica-
tions have taken the approach of extending an existing language (e.g. C++)
by a number of additional syntactical elements which enable the programmer
to express concepts not previously present in the programming language; oth-
ers even define an entirely new programming language, e.g. in the GUIDE
system [BBDT91]. Clearly, this approach has its drawbacks: The application
developers need to become familiar with the new programming language con-
cepts and applications which would previously have been portable between a
number of standardized development environments suddenly, through the use
of non-standard language enhancements, lose this important characteristic.

Alternately, the runtime system (and possibly the compiler) could be modi-
fied to interpret the runtime representation differently and to gather the neces-
sary information from the representation. Again, this would break portability
and generality.

Instead, a representation scheme is presented which makes use of the con-
cepts present in the object-oriented programming language - inheritance, poly-
morphism, etc. - to introduce a layer of system components which can be used
within the application development to express and control the additionally re-
quired functionality.

4.2.5 Specification of Object Representation

Def.: Slot

A slot is a data container consisting of its name, its type and its value 2. A
slot’s data type can be a programming language type (e.g. a String) - referred
to as a base type in the following sections - or a reference to an RObject type
(see below), thus creating complex structures consisting of RObject instances.
Slots are added at runtime, through the use of slot creation operations in the
class constructors. A Slot provides a simple accessing interface for retrieving
and changing the Slot’s value. The framework’s Slot implementation is never
subclassed by a component developer.

The Slot class provides the following interface methods:

2The term ”Slot” is borrowed, by way of COAST and its underlying frame kit, from
Marvin Minsky’s framework for representing knowledge (see [Min75]). The term is maintained
to aid the distinction between the regular attributes of an object and the replicated data
elements contained in a replicated object, which can have their own behaviour and consistency
maintenance provisions.

4.2. SHARED OBJECTS 47

void setValue (Object value)
Sets the slot value to the object passed as parameter.

Object getValue()
Retrieve the object currently stored in the Slot as its value.

boolean isEmpty()
Returns TRUE if the Slot currently does not hold a value.

String getContentClass()
Return the class name of the object currently stored as Slot value.
Returns null if the Slot is empty.

boolean holdsRObject()

Returns TRUE if the Slot currently holds an instance of RObject
class.

ObjectID getContentID()

If holdsRObject() is TRUE, returns the ID of the RObject instance
held in the Slot. Returns null otherwise.

addSlotChangelListener (SlotChanglListener listener)
Adds the given SlotChangeListener to the set of change listeners
bound to this Slot (1isteners).

removeSlotChangelListener (SlotChanglistener listener)
Removes the given SlotChangeListener from the set of change lis-
teners bound to this Slot (1isteners).

void changed()
Constructs a new SlotChangeEvent and passes it to the slotChanged
method of all SlotChangeListeners currently registered to this Slot.

Def.: RObject
A replicatable object (RObject) consists of a base object, which is the actual
instance of RObject, and a number of slots, which contain the replicatable
data part of the RObject. Each RODbject is uniquely identifiable within the
distributed system by its ObjectID, which is defined to be unique across all
nodes of the distributed system. The RObject class provides accessing interfaces
for adding Slots as well as querying the list of Slots and retrieving and changing
a Slot’s content. For accessing slots within the RObject, slots are identified
with names. The framework’s RObject implementation is never subclassed by
a component developer.

The basic representation of replicated objects can be seen in Figure 4.2.
The notation used in this and the subsequent object diagrams is UML (Unified
Modeling Language, see [Fow(00] for information about the notation; a brief
overview can be found in appendix B).

The replicatable object class RObject provides the following interface meth-
ods:

addSlot (Object value, String name)

Adds a new Slot with the given name and the given initial value to
this replicatable object. Creates a new Slot instance and adds it to
the RObject’s internal data structure holding the associated slots.

addSlot (String name, Slot s)
add a previously created slot to the replicated object’s set of slots

48

CHAPTER 4. GROUPWARE COMPONENTS

interface SlotChangeEvent
SlotChangel istener

—————————— 3 SlotChangeEvent
slotChanged getsiot

M A
i
|
|
|

ROhject
RObject Slot
getlsDeleted Slot
setlzDeleted getContentClass
gethodelOhject haldsRObject
getlD getContentlD
gethodelOhjectClassMame 1 slots ¥ isEmpty
setodelObjectClassMame o getvalue
addOhjectChangelistener setvalue
remaveObjectChangelistenar addSlotChangelistener
getSlot removeSiotChangelistenar
setSlotvalue changed
getSlots
addsiat
listSlothames
addsiat
notifylisteners
slotzhanged
equals

Figure 4.2: Object model class diagram

using the given name for reference. Adds the RObject instance to
the new slot as SlotChangeListener.

ModelObject getModelObject()
Returns the domain model object to which this replicatable object
is bound as a shared data object.

void setModelObjectClassName(String name)

Sets the class name of the domain data model instance to which this
RObject instance is bound. Called when the RObject instance is
bound to a newly create ModelObject subclass instance. This infor-
mation is needed to reconstruct the correct ModelObject instance
when replicating the RObject.

String getModelObjectClassName ()

Returns the class name of the domain data model instance bound to
this replicatable object. This information is needed to reconstruct
the correct ModelObject instance when replicating the RObject.

ObjectID getID()
Retrieves the globally unique identifier of this replicatable object.
All replicas of a replicatable object have the same ID.

4.2. SHARED OBJECTS 49

void setIsDeleted()

Marks the replicatable object instance as deleted. The object is not
directly removed, but the deletion is taken into account in subse-
quent replication operations and the object can be removed by the
server’s ObjectManager when it decides to do so.

boolean getIsDeleted()
Returns TRUE if the object has been previously marked as deleted.

void addObjectChangeListener (ObjectChangelListener listener)
Adds the given ObjectChangeListener to the set of change listeners
bound to this RObject (listeners).

void removeObjectChangelListener (ObjectChangelListener listener)
Removes the given ObjectChangeListener from the set of change lis-
teners bound to this RObject (1isteners).

Slot getSlot (String name) throws NoSuchFieldError
Returns the Slot bound to this shared data object under the given
name (previously added using addSlot). If no Slot of the given name
is present, throws NoSuchFieldError exception.

Object setSlotValue (String name, Object o) throws NoSuchFieldError
Sets the value of the Slot of the given name to the given object. If

no Slot of the given name is present, throws NoSuchFieldError ex-

ception

Enumeration getSlots()
Returns an enumeration containing all Slots bound to this shared
data object.

Enumeration listSlotNames()
Returns an enumeration containing the names of all Slots currently
bound to this shared data object.

void slotChanged (SlotChangeEvent event)

Change notification method implemented from the SlotChangeListener
interface. Called by Slots to which this shared data object is bound

as a listener, whenever the slot’s value has changed. Stores the infor-
mation about Slot changes locally for later use in notifyListeners().

void notifyListeners()

Constructs a new ObjectChangeEvent, containing information about
all slot change notifications received via the slotChanged method

and sends this event to all registered ObjectChangeListeners. Clears
information about Slot changes. Used by transaction management

framework (see section 4.3.5) to notify dependent objects about

changes when committing a transaction. Ensures that each listener

is only called once per changed RObject, even if multiple Slots are

changed within a transaction.

boolean equals(Object o)
Method to determine if two objects are the same. Returns TRUE if o
is an instance of RObject and for the current object getID() .equals(o.getID()).

Since slot creation and maintenance is performed at runtime, the type check-
ing involved in maintaining the slot consistency is also performed at runtime as

50 CHAPTER 4. GROUPWARE COMPONENTS

X.Read X.Write
X.Read | No Conflict | Conflict
X.Write | Conflict Conflict

Table 4.1: Table of Conflict Rules (adapted from [OV91], p. 285)

a task of the Object Manager. Since these type constraints cannot be checked
at compile time, violation of type constraints has to be indicated to the appli-
cation through the use of appropriate programming language mechanisms such
as exceptions.

4.2.6 Problems with base types

Using the programming language’s base data types as slot types can cause a con-
siderable problem for the concurrency control component. If the base data type
is used "as is”, and instances of this type are stored and returned by reference by
the slots, then an application can access the slot’s value and subsequently ma-
nipulate this value using the regular programming language constructs. These
modifications are then not subject to concurrency control and cannot be cor-
rectly propagated and co-ordinated.

A simple approach to overcome this problem is to restrict slot operations to
simple set and get methods, where the get method returns, for base types, a copy
of the slot’s value. After having thus retrieved the slot value, the application
can manipulate the data and at a later stage reinsert the changed value into the
slot using the set method. These set and get accesses would then be subject to
the concurrency control of the runtime replication system. A problem with this
approach is that no optimizations could be performed by the system, e.g. by
using commutativity information about the manipulating operations in order
to detect non-conflicting slot accesses and, thus, non-conflicting transactions on
the same set of slots. A worst-case approach would have to be taken to detect
conflicts between transactions, using the simple set of conflict rules that two
Reads on the same slot are not in conflict, while a Write on a slot conflicts with
any other concurrent operation on the same slot (see table 4.1).

A solution to this problem is to provide "type wrappers” for the base data
types, implementing a specialized invocation interface which has knowledge
about the need for concurrency control and supervised access to the slot’s data
value. Ideally, this type wrapper interface provides the same interface as the pro-
gramming language types do, thereby completely encapsulating the data object
in a transparent way. One important task of these type wrappers is supervising
slot accesses and propagating information about the slot value changes, along
with semantic information about the slot access operation. This information
can later be used by the system, together with the type wrappers, to determine
whether two operations are actually in conflict and whether the entire operation
(transaction) needs to be aborted due to conflicting operations.

In this approach, the type wrappers have to be specifically developed for
each base data type that is to be made available as a potential slot value type.
These type wrappers can be provided as part of the supporting toolkit, ready
to be used by the application programmers.

4.2. SHARED OBJECTS o1

As aresult of a data value access, the type wrapper forwards the access to the
actual data value and also provides a description of the slot access to the runtime
transaction management system, which is closely related to the concurrency
control mechanism. This information about data accesses is gathered and forms
the informational part of a transaction (see section 4.3.5 for more details about
transactions). All type wrappers provide one common interface method, which
is used to determine whether two operations are commutative or not. Later,
when the runtime system needs to determine whether to allow a transaction to
commit, the interface methods of the type wrappers are used, by passing the
previously generated information, in order to determine an order between the
transactions and in order to detect conflicting operations.

4.2.7 Slot and RObject observers

Each slot and RObject can be bound with any number of observer, which are
notified when a slot’s value is changed. These observer relationships can be
used to implement any reaction to slot value changes, such as the recalculation
and refreshing of the displays, recalculation of non-shared instance variables
or more elaborate actions. In order to be able to react to slot changes by
means of an observer, an object needs to implement the SlotChangeListener
or the ObjectChangelListener interface and implement the notification method
defined in this interface. This method is automatically called by the runtime
system on all currently registered observers when the slot’s value is changed. Slot
triggers can be used when a component wants to register interest in certain slots
and react differently to changes of different slot values. Consider an RObject
modeling a paragraph of text with slots representing the start and the end of a
text selection as well as the current cursor position within the text. Whenever
the cursor position value changes, it may be sufficient to reposition the cursor
on the screen without redisplaying the entire section of text.

Additionally, observers can be attached to instances of RObject. By attach-
ing an observer to an RObject instance, an application can register interest in
the fact that the object’s data set is changed, regardless of the actual slot that
has changed. This can be useful for objects where any change in a slot value has
to always lead to the redisplay of the entire object, when partial redisplays of an
object are not feasible. Consider an object representing a complex geometrical
shape consisting of a sequence of connected dots, a colour value and a position
on the screen. No matter which of these aspects changes, the entire shape needs
to be redisplayed on the screen in order to present the correct shape to the user.

4.2.8 The Domain Data Model

Using RObject and Slot instances, domain-specific data structures can be cre-
ated. These data structures do not yet carry any domain-specific logic, though.
The development framework superclass for all domain-specific data models,
which needs to be subclassed by component developers is the abstract base class
ModelObject (see figure 4.3). Each ModelObject subclass instance is directly
related to an RObject instance at runtime. When creating a domain-specific
subclass of ModelObject, a developer needs to write the method which initial-
izes the associated RObject’s Slots, initializeSlots(), creating those slots
which he needs for the domain data model and providing initial values for each.

52 CHAPTER 4. GROUPWARE COMPONENTS

In this method, the actual domain model structure is defined. The runtime sys-
tem ensures that this method is called when a ModelObject subclass instance
is created. ModelObject subclasses can be arranged in inheritance structures,
just like in any object-oriented data model (making the use of data modeling
via ModelObject very similar to the normal object-oriented data modeling).

OhjectChangebEuvent interface
OhjectChangel istener
+ QbjectChangeEvent e
+OhjectiD getlD +void objectChanged
+v0id addSlotChange ,ﬂ\ ™
+void addSIotChangelist I |
+hoolean containsChangeTo | |
+Enumeration enumerateChanged | |
|
T L
L a0
| | |
| | l
| | ROhject
IModelOhject |
| + RObject
+ ModelObject ———- +hoolean getlsDeleted
+ModelObject +yoid setisDeleted
+void delete +ModelOhject getvodelObject
+void addDyCEEwentListener modelobject +0hjectiD getiD
+void removeDyCEEventListener +5tring getModelObjectClassMame
+boolean getlsDeleted +yoid setMadelObjectClassMame
+R0Object getDataObject +void addObjectChangelListener
+void setDataCbject +yoid removeQbjectChangeListene
+void addOhjectChangelistener +5lot getSlot
+void removeOhjectChangelistene dataohject +void setSlotvalue
+void set +Enumeration getSlots
+0bject get +hoolean addSlot
+void initializes fots +Enumeration listSlothames
+void objectChanged +SIot addSlot
+boolean equals +yoid notifyListeners
+yoid slotChanged
+hoolean equals

Figure 4.3: Framework base support for the Domain Data Model

In addition to creation of the required Slots in the associated RObject, the
ModelObject implementation must provide access interfaces for querying and
modifying the data items stored in these Slots. These access methods can then
be used to implement domain-specific consistency checks, which cannot be per-
formed by the RObjects or Slots.

The following code fragments are taken from a simple diagram data model
used in a shared diagram editing tool. A general base class for all shapes used
in a diagram is derived as a ModelObject subclass, and from there a specific
shape, in this case a rectangle, is derived.

public class DiagramShape extends
GroupComponents.0ObjectModel.ModelObject
{

4.2. SHARED OBJECTS 53

public void initializeSlots()

{
super.initializeSlots();
newSlot ("xpos", new Integer (15));
newSlot ("ypos", new Integer (20));
newSlot ("color", Color.black);

public class DiagramRectangle extends DiagramShape
{
public Integer getWidth()
{
return (Integer) (get("width"));
b

public void setWidth (Integer w) throws IllegalArgumentException
{
if (w < 0)
throw new IllegalArgumentException ("width too small");
set ("width", w);
}
/...

public void initializeSlots()

{
super.initializeSlots();
newSlot ("width", new Integer (0));
newSlot ("height", new Integer (0));

Upon runtime creation of all instances of DiagramRectangle, the framework
will call the method initializeSlots(), which sets up the object’s data slots
xXpos, ypos, color, width and height accordingly.

Also shown in the code fragments are two accessing methods for manipu-
lating Slot contents, getWidth and setWidth. As can be seen the setWidth()
method adds consistency checking to ensure validity of the parameters, in this
case that a rectangle’s width can never be negative. Violation of this constraint
is signaled in the way in which this is usually done in Java, by throwing a
runtime exception, which includes additional helpful information.

The ModelObject framework class provides the following interface methods:

abstract void initializeSlots()

Framework ”hot-spot” method for developer extensions of ModelObject.
This method needs to be overridden in all ModelObject subclasses

in order to initialize the concrete domain data model’s Slots (in the
associated shared data object. Can use the ModelObject internal
method void newSlot (String slotName, Object slotValue) to
add a Slot of the given name holding the given initial value.

CHAPTER 4. GROUPWARE COMPONENTS

void setDataObject (RObject object)
Set the ModelObject’s related shared data object (RObject instance).

RObject getDatalbject()

Retrieve the ModelObject’s shared data object (RObject instance).
If the replicatable object is not yet present on the local machine it is
retrieved from the server, added to the ModelObject and returned
as method result.

void delete()

Delete the model object and the associated RObject.

Calls getDataObject().setIsDeleted(). This does not directly
delete the objects, but merely marks them as deleted. This mark will
be taken into account in subsequent replication operations. Objects
marked as deleted can be removed by the server’s ObjectManager
at a later point in time.

boolean getIsDeleted()
Query whether the object has been marked as deleted with the
delete() method.

void addObjectChangelistener (ObjectChangelistener listener)
Adds the given ObjectChangeListener to the set of change listeners
bound to this ModelObject (1isteners).

void removeObjectChangeListener (ObjectChangelistener listener)
Removes the given ObjectChangeListener from the set of change lis-
teners bound to this ModelObject (1isteners).

void objectChanged (ObjectChangeEvent event)

Method from the ObjectChangeListener interface implemented by
the ModelObject class. Called by the associated RObject instance
when a Slot’s value changes (see RObject specification). Propagates
changes from associated RObject to all listeners bound to the Mod-
elObject instance (listeners).

void set (String name, Object value) throws NoSuchFieldError

Sets the value of the Slot of the given name to the given value (using
the Slot’s setValue method). Throws a java.lang.NoSuchFieldError
exception if no slot of the given name exists.

Object get(String name) throws NoSuchFieldError

Retrieves the value stored in the Slot of the given name. Throws
a java.lang.NoSuchFieldError exception if no slot of the given
name exists.

boolean equals (Object o)

Method to determine if the ModelObject instance passed as a pa-

rameter is equal to the current one. Returns true if o is an instance of

MOdelObject, or a subclass thereof, and either the ModelObject in-

stances themselves are equal (are actually the same objects) or both

model object instances refer to the same shared data object (deter-

mined using getDataObject () .getID() .equals(o.getDatalbject () .getID())).

4.2. SHARED OBJECTS 55

Discussion of alternatives

The reason for this seemingly complicated way of defining a shared data model,
decoupling the data-holding elements (RObject and Slot) from the actual do-
main logic (ModelObject and subclasses thereof) lies in the benefit of server
back-end simplicity and stability gained. The design alternative would have
been to allow the developers direct subclassing of RObject and extension of this
class hierarchy with domain-specific functionality.

The server of the distributed system needs to deal with the data objects: It
needs to store them persistently and needs to subject the modifications of the
data objects to concurrency control. For this, the server needs to operate with
the data object instances (in the case of the design presented above, instances
of RObject and Slot). It is not, however, concerned with application-level
semantics, since the replication and concurrency control can be done at the ho-
mogeneous shared data model layer (using information about Slot modifications
for validation and distribution - the mechanisms for this will be presented in
more detail in section 4.3). Therefore, the server does not require the actual
domain model implementations.

Would the component developer directly subclass e.g. Person from RObject,
the server would have to deal with Person instances (and many more distinctly
domain-specific implementations). Any such developer-written subclass can po-
tentially introduce instability, which would affect the entire server. Additionally,
dealing with all these ModelObject subclasses (holding the implementations in
memory, comparing types and instances, etc.) would be a performance problem.

For these reasons, the design decision was made to keep the server object
space - and in this way also the interface between client and server - homoge-
neous.

4.2.9 UML Extension to model shared objects

In the course of designing and developing software systems, it is often the case
that designs and specifications need to be written down, as part of the spec-
ification documentation or even just to communicate about them with other
members of the development team. For this, a common notation is required
which is known to all members of the team and which reduces the chance of
misunderstandings (which could lead to expensive changes in the design and
implementation at later points in time). One such design notation, which has
become an accepted standard and is being widely used throughout the indus-
try, is the Unified Modeling Language, UML. The UML is an extensible nota-
tion model including definitions of diagrams for most ”phases” of the project
development life-cycle, from early use-case sketches through to very detailed
collaboration and class diagrams.

Since component-based groupware systems, like most software systems, are
often developed in a team, it is useful to be able to to model the groupware-
specific aspects along with the rest of the design. Especially in development
projects where the work is split split up among multiple developers (or teams)
working more or less independently, consistent and comprehensive documenta-
tion of the design decisions becomes important.

This thesis proposes a number of UML extensions for incorporating the con-
cepts presented in this thesis into the standard UML diagrams. For extension

56 CHAPTER 4. GROUPWARE COMPONENTS

purposes, UML provides the use of ”stereotypes”, extension points of the dia-
gram notation which can be used to model domain-specific aspects of the soft-
ware system (in this case, the domain is the development of component-based
groupware). Stereotypes can be easily noted in any UML diagram element, by
placing the stereotype name into two angular brackets and adding this to the
symbol, e.g. by adding < Customer > to a class symbol denoting a customer
in the system. These stereotypes are used to extend the notation to include
support for the concepts described so far, shared objects consisting of Slots.
In later sections of the thesis, the notation will be extended more, introducing
stereotypes for the additional concepts not presented yet.

The shared object model is a static design model describing the structure
of the shared data items used in the groupware system. As discussed, the
shared object model consists of replicatable objects (subclasses of the RObject
framework class), which hold the shared data elements as Slots. Conceptually,
a Slot of a shared object is similar to an object’s attribute. These attributes are
modeled in the UML’s class diagrams (for an overview over all diagrams available
in the UML, see [Fow00]). Therefore, Slots of shared objects are modeled as
stereotypes of attributes. In the class diagram, two extensions are made to
provide support for modeling shared data objects.

SimpleDiagram ==5hared==
-pagesContents Vector SharedDiagram
-penHaolderlser ==5lot==
+SimpleDiagram -pageContents Vector

==5laot==

-penHolder.User
+SharedDiagram
+getPageContents Vectar
+zetPageContentsvaid
+getPenHolderUser
+zetPenHaldervaid
+initializeSlotsvoid

Figure 4.4: UML diagram stereotypes for shared objects

Figure 4.4 shows, on the left, the regular class symbol used in a class dia-
gram. The rectangle representing the class contains three partitions, the top one
showing the class name, the middle one showing the attributes of the class and
the lowest one showing the operations. In the diagram symbols shown in the
figure, there is additional information, about return types and item visibility.
These information items can be omitted, e.g. in the early phases of the design
when such detail would not be useful. In the class model item extension, shown
on the left, stereotypes are added to certain elements. These stereotypes are:

e < Shared>> added as class stereotype to denote the fact that the class is
part of the shared data model. Extending a class symbol with the stereo-
type <Shared>> automatically denotes that the class is derived from the
DyCE framework base class ModelObject. This information can therefore
be omitted from the diagrams for clarity reasons.

4.2. SHARED OBJECTS o7

o <Slot>> added as stereotype to those attributes which need to be real-
ized as Slots of the shared object model. These Slots need to be initial-
ized in the shared object classes initializeSlots() methods. There-
fore, this methods is also shown in the diagram element. Extending an
attribute with the <Slot>> stereotype implies the appropriate get... ()
and set...() methods used for accessing and changing the Slot’s con-
tents. These methods can be included in the diagram but can also be
omitted for reasons of clarity. For an attribute denoted as a Slot, these
methods must be present in the implementation, though.

The shared object diagram element can also hold attribute definitions which
are not prefixed with the <Slot>> stereotype. This attributes can be realized
as regular attributes of the implementation class. They are, by definition, not
shared between replicated instances of the model object class.

A number of currently available CASE (Computer-Aided Software Engi-
neering) tools provide the functionality of generating source code from design
documents. Using the information about stereotypes added to the diagram, the
code generation feature of extensible CASE tools can be enhanced to gener-
ate the appropriate source code for the shared model class, i.e. deriving the
class from ModelObject and automatically generating the entire body of the
initializeSlots() method, defining all Slots from the model with the appro-
priate types. For all attributes with the <Slot>> stereotype, the appropriate
get...() and set. .. () methods, including the method body, can be automat-
ically generated following the pattern that an attribute with the specification
<Slot>> myAttribute:aType results in the generation of two methods (shown
for Java as implementation language):

public void setMyAttribute (aType aValue)

{
// ... method body;
}
public aType getMyAttribute ()
{
// ... method body;
}

for setting and retrieving the Slot’s contents.

4.2.10 Object Structure - Summary

The OO model used in the data representation component is shown in Figure
4.5.

Slots are accessed through slot access methods in RObject, similar to the
Access Objects in [BCM95]. The framework class RObject provides the basic
mechanisms for creating new slots, accessing and modifying slot contents. The
slot accesses are forwarded to the appropriate slot instance, which performs the
actual access and returns the required return values.

RObject and Slot instances form the passive data model of the application,
i.e. they contain no processing logic other than what is required to perform the
specified operations and maintain consistency of the replicated object set. The

58 CHAPTER 4. GROUPWARE COMPONENTS

ObjectChangeEvent
+ ObjectChangeEvent
+OhjectiD getiD interface SlotChangeEvent interface
+void addSlotChange - _ _|ObjectChangel istener | + SlotChangeEvent ESR— StotChangel istener
+void addSlotChangelist +vold obfectChangedd +Slot getSlot +void slotChanged
+hoolean containsChangeTo
+Enumeration enumerateChanged Z}k | | [P‘ r’T\
| |

0 I ! I

| | | | | |

| | | | | |

| T 1 . | 1 |

| | RObject |

| | +RObject |

| | +boolean getlsDeleted Slot

| | +vid setlsDelsted

n + Blot

] ‘ +hodelObject Object +Blring getContentClass

Modefotject +ObjectiD gatiD oA haldsROBImt
+ ModelObject +5tring getModelObjectClassMame +ObjectiD getContertD
+ ModelObject +void setModelObjectClassMame 1 siois *| +poolean isEm

: Pty

+yoid delete +void addObjectChangeListener +Object getvalue
+hoaolean getisDeleted +void removaObjectChangelistene void setvalue
+RObject gelDataOhject +Slot gatSlot +void addSlotChangeListener
+void setDataOhject +uoid satSlotvalue +yoid removeSlotChangeLlistener
+void addObjectChangeListener +Enumeration getSlots +void changed
+void removeObjectChangelistens +hoolean addSlot
+void set +Enumeration listSlothames
+Ohject get +Slot addSot
+void initializeSlots +void natityListeners
+void ohjectChanged +void slotChanged
+hoolean equals +hoolean eguals

Figure 4.5: Object Representation Model

actual application functionality is built as an object-oriented class hierarchy
based on the ModelObject class and the framework’s support for data storage
and object replication purposes. In this way, a single complex data model can
be consistently shared between several different applications, each implementing
specific functionality on top of the data model. The next section will present
how the data models created in this fashion are replicated between the server
and the clients.

4.3 Object replication

In order to provide multiple people with access to shared objects, the compo-
nents need support by the runtime system. The objects need to be kept in
a consistent state - changes to a shared object at one site need to be notified
and propagated to all components currently accessing this object. Additionally,
the components need to perform updates of the display whenever component
state changes in order to present all users with a common view of the shared
objects. The process of distributing copies of data objects over multiple sites
and keeping these in a consistent state is known, e.g. in database work, as object
replication. This section will first give an overview over different approaches to
data replication as well as issues related to replication and will then present
the data replication realized in the DyCE framework. More information about
replication strategies, along with definitions of the terms used in this section,
can be found in [WPST00]

Replication of data objects or services at all connected sites and allowing
concurrent access to the data elements can be used as a means of increasing
data availability 3. In a replicated object setting, there is ideally no single cen-

3In [HHB96], availability is defined as ”the accessibility of system services to the users”

4.3. OBJECT REPLICATION 59

tral instance of each object upon which all operations (modifications as well as
queries of current object state) are performed. Instead, each object is replicated
among a number of connected nodes of the distributed system. This replication
can greatly reduce the network traffic and thus increase performance, since -
given that all objects are somehow kept in a consistent state - query operations
(operations accessing the object’s state but not modifying it) can be performed
by a node on the local object replica and need not be transmitted over the
network.

In order to provide optimal support for highly interactive and responsive
co-operative applications, the development framework needs to provide mecha-
nisms for object replication between all nodes of the distributed system. These
objects must be submitted to a mechanism maintaining global consistency of
the co-operatively manipulated shared object space.

4.3.1 Partial Replication

In a highly interactive setting such as a CSCW application allowing users to
tailor their collaboration environment by selectively accessing components and
data objects (shared artifacts), not all nodes require replicas of all objects at
all times. Instead, the nodes only require those objects which make up that
part of the object space which the user is currently viewing or editing in the
currently used components. Other objects, which are in no way affected by the
user’s current actions and are not currently being displayed to the user, are of
no relevance in the current interaction situation. They can be ignored by the
system without any adverse effect on the user interface or the user’s actions.

This restriction of replicated data is referred to as partial replication, since
at a given point in time only a subset of all objects making up the entire shared
object space may be replicated to each site. A related concept found in literature
is that of adaptive replication (see [Wol98] for a more complete definition of the
term), where the replication scheme of an object (the set of all nodes holding
replicas of the object) is constantly adapted to the current requirements of the
system. This is contrasted to static replication, where the replication scheme is
fixed and precomputed, based on an assumption or prediction of the system’s
behaviour.

Providing support for partial or dynamic replication in a distributed appli-
cation can improve the overall system’s performance, since:

e only those objects need to be replicated to a node (i.e. transmitted over the
network) which are actually currently required; this leads to a reduction
in the time required to replicate the objects to a newly connecting or
reconnecting node

and it is further stated that ”a system is highly available if denial of service request is rare”.
Replication as a means of improving availability in a co-operative system therefore refers to
the goal of reducing the amount of time each user’s system is unresponsive to user actions
because it is interacting with the other users’ systems, e.g. to transfer operation requests or
fetch update messages for changed data values. In a centralized system utilizing only single
object instances, in which all requests - including read requests - have to be transmitted
to a central server or manager process, which schedules and processes the requests and then
replies accordingly, a large amount of time is potentially spent on these communications tasks,
making the system appear unresponsive or - according to the above definition - unavailable.

60 CHAPTER 4. GROUPWARE COMPONENTS

e a certain administrative and communications overhead is incurred by repli-
cating objects over multiple nodes: the objects need to be kept in a consis-
tent state in order to allow correct operation of the distributed application;
by replicating only those objects which are actually required, this over-
head can be reduced, resulting in lower usage of bandwidth and physical
memory

In the past years, the computing devices on our desktops have continually
become more ”network-centric devices”, which are more than just the ”dumb”
terminals known from the mainframe era of computer applications, since they
have local processing power equivalent to top-range personal computers while
at the same time drawing their data and programs from the network. With the
availability of such systems, it seems reasonable to enhance communication and
productivity by providing additional co-operative applications to the users. The
same holds for the trend to install Intranets, internal network and computing
infrastructure based on widely available and accepted technologies such as Web
servers and Web browsers. The applications benefiting from this infrastructure
can be designed in the form of an object-oriented distributed system using ob-
ject replication to provide high responsiveness to the user while at the same
time maintaining consistency of the common shared artifact, the base of the
collaboration. Even within a corporate Intranet the scarcest resource is band-
width, thus business applications should be designed and developed to, on the
one hand, support co-operative problem solving activities between co-workers
by profiting from the locally available computing power, while at the same time
not waste available bandwidth. Especially when large information structures
are maintained and modified co-operatively, it seems undesirable to replicate
all available data to all connected systems, leading to the need for partial repli-
cation mechanisms which detect which data elements are currently required by
which nodes and transparently replicate them to the consumer nodes.

Dynamic Replication

An algorithm for dynamic data replication in a distributed system is presented in
[WJHO7]. In this article, Wolfson et al describe the Adaptive Data Replication
algorithm (ADR). This algorithm maintains a connected replication scheme
within a distributed system exhibiting a tree-based topology (in the course of
the work by Wolfson et al, this topology is later extended to a graph-based
network topology). The replication scheme (the set of all processors in the
system currently holding a replica of a data item) is maintained and adapted by
periodically performing a set of three tests: the expansion test, the contraction
test and the switch test. In each test, information about the past number of
read and write requests as well as the total number of requests processed by
each node is used to determine whether to

e expand the replication scheme by replicating a data object to a node of
the system not previously part of the replication scheme but at the border
of the replication scheme (i.e. a node not currently holding a replica of
the data item but directly connected to a node that is part of the data
item’s replication scheme),

e reduce the replication scheme by releasing a data item’s replica at one of
the nodes at the fringe of the replication scheme (i.e. a node currently

4.3. OBJECT REPLICATION 61

holding a data item’s replica which is connected to a node which is not
currently part of the replication scheme),

e switch a data item’s replica from a node currently holding a replica (where
it is subsequently removed) to a node not currently holding a data item
replica.

Using these three tests, an ”amoeba”-like replication scheme migrates through
the network, expanding towards those nodes which require local replicas of the
data item, since they frequently access the item and can thus greatly benefit
from the local copies, while at the same time, the contraction test and the
resulting reduction of the replica set leads to "moving away” from processors
not currently accessing the data item and thus a reduction of control and update
messages which have to be propagated to all replica items, even those which
would currently be dispensable.

Performance evaluations of this algorithm show the benefits of the dynamic
replication in terms of the cost incurred by propagating read and write accesses
through the network. It is shown that over a period of time intervals the repli-
cation scheme converges towards the optimal replication scheme for the current
read/write activity in the system. When the read/write characteristics of the
system (expressed as schedules consisting of read and write requests over time)
change, the replication scheme is adapted accordingly, to once more converge to
the optimal.

A comparison of the adaptive replication scheme with a static precomputed
replication scheme and with a theoretical lowest bound on the cost of the replica-
tion shows that the ADR algorithm is superior to static replication schemes since
it constantly changes the replication scheme to match the current read/write
situation of the system.

Lazy Replication

The lazy replication (also called ”lazy loading”) (see [LLSG92]) approach to
partial data replication is much simpler that the ADR approach. Lazy loading
typically does not rely on an active distributed algorithm. Instead, it relies on
a system’s ability to detect if it needs to fetch an object before it can proceed.

Assuming a system of interconnected objects which can potentially be repli-
cated, a lazy replication approach will only fetch a replica of an object when
that object is actually accessed by the system. As long as an object reference
is not resolved (and the referenced object accessed), the object is not available
on the system. The opposite approach, in which all references between objects
are followed upon replication of an object and the entire network of objects is
sent immediately, is called ”eager replication”.

The lazy replication approach is simpler to realize than ADR and other
dynamic replication approaches, since it does not require the ability to access
non-replicated objects over the network (e.g. using remote proxies). The object
access mechanism can rely on the fact that an object replica will be locally
available as soon as it is accessed (but not before it is accessed the first time).
Assuming that not all object references are resolved automatically when access-
ing an object, then lazy replication replicates less objects than eager replication.
The lazy replication approach needs support from the runtime system or devel-
opment framework in order to detect when an object reference is followed and an

62 CHAPTER 4. GROUPWARE COMPONENTS

object is accessed. Accessing the object needs to be deferred until the required
object has been replicated.

4.3.2 Discarding of replicas

A requirement that stems from the previous discussion is the need to be able
to discard replicas when they are no longer needed at the current system. Such
a situation can arise, for instance, when a user stops working on one section
of a common document (composed of object from the common shared object
space) and focuses his attention on another section of that document. Once all
operations performed on the previous section have committed and the section
is no longer displayed on the user’s screen, the replicas can be discarded. If this
discarding of replicas is not provided, the set of replicated objects at each node
continually grows and while the user navigates through the document data, large
portions of the shared object space are gradually loaded into the local system,
subjecting them to all the control mechanisms responsible for replica manage-
ment and overall consistency of the shared objects. This behaviour is especially
undesirable when one takes into account that a large-scale co-operative system
could potentially include more data objects than can possibly be stored in the
local system’s physical memory - consider a co-operative Web browser which
gradually builds a local copy of the entire Web content. Instead, mechanisms
are required which allow the system to detect which replicas are no longer needed
in the current interaction situation so that these replicas can be safely discarded
without adverse effect on the user interface and overall data consistency.

These detection mechanisms need to be sufficiently intelligent to allow in-
teractive navigation of the shared object space, especially backtracking (going
back to previously viewed sections of the object space). Taking the Web browser
example, it seems reasonable that a page’s contents are not discarded as soon as
a hyperlink to another page is followed. Were this the case, the previous page
would have to be reloaded (replicated again) when the user, upon discovering
that his navigation did not bring him where he actually wanted to go, imme-
diately upon seeing the new page pressed the ”back” button of his browser.
Instead, the system needs to maintain an intelligent caching strategy (as many
browsers do) which retains replicas for a certain period of time before discarding
them. Current Web browsers feature a page cache, which is not strictly speak-
ing a means of replication as addressed by this thesis, but rather a ”dead” copy.
The elements in the browser cache are not subjected to consistency control and
update mechanisms. Changes in the original Web page are not detected until
the page is revisited and, even then, insufficient change detection mechanisms
sometimes result in an outdated cached version of the page being displayed
even though the actual Web page has since been modified. No corrective action
is taken to remedy this situation and it remains left to the user’s discretion
whether he wants to initiate a reload of the page in order to be sure the browser
is displaying current data.

An additional performance improvement can be achieved by not only caching
a number of replicas to allow the user to backtrack through his actions, but also
prefetching a certain area € around the user’s current ”position”. Since not all
distributed applications have a straightforward document structure such as the
hypermedia structure in the Web, the partial replication mechanism needs to be
tailorable to suit the application developer’s needs. For instance, the algorithms

4.3. OBJECT REPLICATION 63

for detecting the optimal caching duration and e-prefetch boundaries need to
be provided in a way which is configurable or which can be exchanged by new
mechanisms.

The problem that arises when discussing partial replication strategies is how
to detect when objects are required at the current node. Taking into account
a large set of objects interconnected by object references, it is not sufficient
to follow the references from any replicated object and to also replicate those
objects referenced by them, since this would automatically lead to a complete
replication of the entire object space. Instead, partition boundaries within the
document model have to be identifiable and objects need only be replicated
up to these partition boundaries. An easier approach is to replicate on access:
when an object is first accessed by a client, it is replicated to that client and
the client is added to the replication management system since changes to the
object need to be forwarded to that client as well.

4.3.3 Distributed Garbage Collection

An interactive object-oriented system allowing users to create, manipulate and
delete objects and object relations produces what is referred to as garbage: ob-
jects which are no longer referenced by any other objects and are thus unreach-
able and no longer needed by the system. Several object-oriented programming
languages feature what is called a garbage collector: a system component, often
part of the runtime system’s memory management system, which is able to de-
tect unreferenced objects and remove them from the application’s heap, freeing
space for newly created objects. Many garbage collection algorithms operate
on a mark-and-sweep algorithm or a variation thereof (see [JL96] for details
about garbage collection algorithms), resolving object references in the object
graph and marking those objects which are traversed. Once a mark-and-sweep
pass has completed, any objects not marked can be considered unreachable (i.e.
garbage) and can be removed from the application’s memory space without
adverse effects on the other objects.

In a distributed application, garbage collection becomes a more difficult task
since objects that are no longer referenced within one node’s object space may
well still be referenced by objects contained in another node (see [PS95] for more
details on Distributed Garbage Collection). Additionally, in a replicated setting
an object replica is a member of a replica group - a set of objects on various
hosts which are all replicas of a common data object. Objects in a replica
group need to be available and accessible in order to allow correct operation of
concurrency control algorithms. Two invariants hold which make distributed
garbage collection in a replicated setting a complex activity:

e if an object is garbage collected on one node it needs to be removed from
the replica group on each system in order to remove it from the concur-
rency control and replica management;

e since the objects in the replicated system are managed by some form of
replica management component which keeps track of all replicated objects,
a mere mark-and-sweep style of garbage collection would never detect any
garbage-collectable objects, since all objects are at least accessible via the
replica management system.

64 CHAPTER 4. GROUPWARE COMPONENTS

As previously discussed, in order to really benefit from the partial replication,
it seems desirable to be able to not only discard any unneeded replica objects
but to also remove them from the replica management and concurrency control
mechanisms.

For these reasons, the garbage collection mechanism needs to be tightly
integrated with the replication mechanism, turning it into a distributed garbage
collection mechanism. The system needs a means to detect those replicas that
are no longer needed and to subject them to the garbage collection mechanism.

4.3.4 Object Replication in DyCE

The object replication mechanism in the DyCE framework uses a variant of
the Lazy Replication mechanism. In the approach as realized in DyCE, all
objects initially reside on the server and they are replicated to the clients as
soon as they are accessed by them. Supporting object replication is part of the
functionality of the Object Manager. Object Management is a service provided
by the DyCE server’s ObjectManager and accessed by ObjectManager instances
on the clients. The server’s Object Manager holds all available RObjects and
manages their persistence using an object-oriented database.

As has been discussed in the section regarding Lazy Replication, this ap-
proach requires identifying the moment at which an object is accessed. There-
fore, all object accesses need to be performed using the client’s ObjectManager
instance. The client’s ObjectManager holds the object replicas available on the
client. The set of objects stored in the client’s Object Manager is a pure subset
of the objects held in the server’s Object Manager.

As has been discussed in sections 4.2.5 and following, data objects in DyCE
are divided into the domain model part, derived as a class hierarchy from
ModelObject, and the pure data part, consisting of RObject and Slot in-
stances. Since the ModelObject instances may not hold shared data elements,
only the RObject instances are relevant for replication and persistency pur-
poses. Using the ModelObjectClassName property of the RObject, the neces-
sary ModelObject instance can be recreated at any time by creating a local
instance of the correct class.

For retrieving the desired Objects, the Object Manager provides a number
of interface methods. Recall from the section about the data object represen-
tation that each object in the system is identified by a unique identifier of type
ObjectID. The class diagram of the client and server Object Managers as well
as the common object management interface is shown in figure 4.6.

When a Groupware Component needs to retrieve a data object, it uses the
client’s ObjectManager interface method public RObject getObject (ObjectID
objID, ObjectID clientid), giving the ID of the desired object. If the object
is available in the client Object Manager’s objectList, it is returned directly,
otherwise it is first fetched from the server’s Object Manager and added to the
local object space. In this way, there is a central point at which object access can
be intercepted and suspended until the object has been successfully replicated.

When an object is replicated from the server to the client, it is serialized
and sent over the network in binary form. In this process, the contents of
any Slot holding a reference to an RObject or a ModelObject are replaced
with SlotContentPlaceholder instances. Slots holding primitive or other data
values are serialized into the object and included in the transmitted data stream.

4.3. OBJECT REPLICATION

interface

Qiyectanagerinterface
+RObfect getDbject
+RObect getDbjectilocal
+bhoolean addObject
+bhagiaan addlbject acails
+bhoolean addTransientObjechocaile
+bhaaiaan removeObjectlocally
+lfector getDbiectClieni\apping For

65

ObjectManager

+int getl Clock

+ ObjectManager

+hoolean addTransientObjectlocally

+int getObjectlistSize
+0hjectManagerinterface getChjectanager

+hoolean remaoveOhjectLocally
+vid cleanllp

+int getLClock

+RObject getObjectiLocal
+RObject getObject

+Wector getOhjectClientappingFor
+hoolean addObjectlLocally
+hoolean addChbject

+yoid shutdown

+yectar listiDsForClass
+ector listClassNames

ServerObjectManager

+lfector lisiifsForzlass
+lector isiClassNames
|
|
|
|
| —
| |
' |
' |
' |
|
Y s
GroupComponents.OhjectModel.ObjectiD
+ OhjectlD
+ OhjectlD

+hoalean isMull

+int hashCode

+5tring toString
+hoolean equals
+hoalean equals
+0hjectiD newdhbjectlD

+ ServerOhjectManager

+void flushCbjectSpace

+hoolean addObjectLocally
+hoolean addTransientObjectlocally
+ROhject get0bject

+Vector listiDsForClass

+Vector listClassMames

Figure 4.6: ObjectManager class diagram

On the client, the SlotContentPlaceholders are resolved as soon as the Slot’s
contents are first accessed. The ObjectID wrapped in the placeholder is used
to fetch the required object (which is done just like described above). In this
way, the system avoids replicating entire sub-nets of linked data objects in cases
where only a few slots of a few of these objects would have actually been relevant.

For each replicated object, the server’s Object Manager maintains informa-
tion about the object’s replication scheme (the list of clients currently holding
replicas of the object) in its objectClientMapping data structure. Here the
server has access to the replica group of each object. When a client ObjectManager
requests an object from the server, it passes its unique client ID which the server
enters into the objectClientMapping structure. This information is needed for
change propagation, performed by the system’s Transaction Manager, which
will be described in the following section.

The ObjectManager service provides the following interface functions:

RObject getObject(ObjectID object, ObjectID clientid)

Retrieve the object of the given ID from the Object Manager. If
getObject is called on the client Object Manager and the object is
not available in the client’s object space, retrieve the object from the

66

CHAPTER 4. GROUPWARE COMPONENTS

server’s Object Manager, adding the client to that object’s replica-
tion scheme. If the method is called on the server and the object
is not available in the server’s object space, attempt a fetch from
persistent storage. Return null if object is not available.

RObject getObjectIfLocal(ObjectID object, ObjectID clientid)
Retrieve the object with the given ID from the Object Manager if

it is available locally. Do not attempt to fetch the object over the
network if it is not locally available.

boolean addObject (RObject object)

Add the given object to the Object Manager. If called on a client,
add the object to the server’s Object Manager as well. When adding
the object to the server’s Object Manager, the object is automati-
cally made persistent in persistent storage.

boolean addObjectLocally (RObject object)

Add the object to the Object Manager. If called on client, do not
attempt to send to server. If called on server, add object to persistent
storage.

boolean addTransientObjectLocally (RObject object)

Add the object to the Object Manager. If called on client, do not
attempt to send to server. If called on server, do not add object to
persistent storage.

boolean removeObjectLocally(ObjectID id)

Remove the object with the given ID from the Object Manager’s
object set. Even if called on server, do not remove object from
persistent storage.

Vector getObjectClientMappingFor(ObjectID id)
Return the replication scheme for the object of the given ID - returns
a list of IDs of all clients to which the object is currently replicated.

int getLClock(ObjectID id)
return the logical clock value for the object of the given ID. See
section 4.3.5 for use of logical clock values in transaction validation.

Vector listIDsForClass (String classname)
Return a set of all object IDs of RObject instances with a Mode-
10bejctClassName equal to the given class name. Used to retrieve
all instances of a certain class. When called on server, also returns
IDs of all matching objects in persistent storage.

Vector listClassNames()

Returns a set of all ModelObjectClassNames of all RObject instances
stored in the Object Manager’s object space. If called in the server,
also returns all ModelObjectClassNames for all objects in persistent
storage.

4.3.5 Object Consistency: Transaction Management

When replicating objects through the distributed system, there must be a mech-
anism which supports keeping all these objects in a consistent state, i.e. propa-
gating changes performed at one system to all other systems which hold replicas

4.3. OBJECT REPLICATION 67

of the object. Since we are concerned with a distributed co-operative system
supporting synchronous collaboration between multiple users, we are faced with
the issue of multiple users making simultaneous but conflicting changes to the
same object(s), which could potentially lead to inconsistent displays and a dis-
ruption of the collaboration. Approaches for maintaining such consistency can
be roughly categorized into one of the following two classes:

e Conflict Prevention: Using mechanisms such as distributed locks or
semaphores, the systems are prevented from making conflicting changes.
Before a system can perform changes to an object, it needs to acquire
the related lock(s). If a desired lock is not free, then another system is
currently holding the lock and therefore the changes cannot be performed.
After all required changes have been performed and the related locks have
been released, the changes are propagated to all systems holding replicas
of the affected objects, thus making all systems consistent again. An-
other example of such an approach is floor control, where the application
prevents users from performing operations when they do not ”"have the
floor”. Such floor control is often also linked to the user interface, in order
to indicate to the users that they cannot currently take an action.

e Conflict Resolution: In this class of approaches, a system is initially
allowed to perform changes to objects. If these changes are in conflict
with changes done on other machines (which can be detected using appro-
priate Concurrency Control mechanisms), then specific conflict resolution
mechanisms are needed to resolve these conflicts and create a consistent
state again. Conflicting operations can be undone (thereby undoing the
work of at least one of the users) or they can be reordered, transformed
and performed in different order.

A more detailed treatment of the technical aspects of concurrency control
mechanisms in groupware systems can be found in [EG89]. Greenberg and
Marwood ([GM94]) discuss in which ways concurrency control and choice of
concurrency control policies influences the user interface. After all, when de-
signing groupware systems we are faced with supporting groups of users in a
distributed setting and not just a set of connected systems.

Transaction Validation

DyCE uses Transactions to group object manipulations and accesses and uses a
centralized transaction-based concurrency control for maintaining data consis-
tency. Each DyCE client wraps operations which access the shared data model
into transactions. For validation and distribution reasons, a transaction consists
of three parts:

e Read-Set T.read : Ordered list of read operations performed on Objects’
Slots (ordered in the order in which the read operations were performed
during the transaction).

e Write-Set T.write : Ordered list of write operations performed on Ob-
jects’ Slots (also ordered chronologically).

68 CHAPTER 4. GROUPWARE COMPONENTS

e Logical Timestamp T.lclock: Vector of RObject lclock (logical clock)
values (tuples of ObjectIDs and numeric lclock values) at the point at
which the objects were modified.

For all data access operations performed on the shared data model, there has
to be a running transaction. Each access to a Slot, either through setValue
or through getValue methods (for respectively writing and reading the slot)
adds an operation object to the running transaction. For Slot s1 of RObject
r1, reading the Slot’s contents through getValue in Transaction t1 appends
a readOperation object to t1.read. Writing (modifying) the slot’s contents
through setValue in Transaction t1 adds a writeOperation object to t1l.write
and a tuple containing r1.id and the current RObject timestamp value 1clock
of rl to t1.1clock. When the transaction is committed, the timestamp val-
ues of all affected RObjects (an RObject is affected if a writeOperation has
been performed on it) are advanced. The transaction is sent to the server for
validation.

Transaction Types

Transactions can be distinguished according to which forms of operations (read,
write, create) on the shared data model they allow. For performance and ef-
ficiency reasons, the framework distinguishes between three different types of
transactions with different characteristics (see table 4.2).

Transaction Type | Permitted Opera- | Description

tions
Modify Transaction | read, write, create, | Basic transaction
change for all accesses to
shared data - sub-
ject to concurrency
control
Display Transaction | read Groups local dis-

play operations, al-
lows no modifica-
tion of data, not
subject to concur-
rency control
Validate Transaction | read, write, create, | used only on the
change server, in the phase
of wvalidating and
replaying a transac-
tion

Table 4.2: DyCE transaction types

The basic transaction, which allows all forms of data access and manipula-
tion is the modify transaction. This transaction is performed by a client and
gathers up all operations on data objects. When a modify transaction is com-
mitted, it is sent to the server for validation. For reasons of efficiency and
application response time, the clients perform transactions optimistically, that

4.3. OBJECT REPLICATION 69

is transactions are performed, the user’s display is updated and work is allowed
to proceed, even though the transaction has not yet been validated. If, during
validation, the transaction is found to be in conflict with other previously com-
mitted transactions, the local changes as well as any subsequent changes are
undone and the shared data model is returned to a consistent state. For this,
each client maintains a local undo buffer of unconfirmed transactions.

Since during the refreshing of a component’s display elements of the shared
data model need to be accessed, and all accesses to data objects need to be
wrapped in a transaction, DyCE knows a second transaction type, the DisplayTransaction.
Display Transactions only allow read access to shared data objects. Any mod-
ification of data objects will result in a runtime exception being raised by the
framework and operations being aborted.

Display Transactions can be used to detect additional object dependencies,
since, if an object is in the readSet of a component’s Display Transaction, then
that object (or rather a Slot thereof) appears to be relevant for the correct dis-
play of a component. This indicates that the component needs to be notified
when such an object or Slot is changed at a later point in time. This infor-
mation can be automatically gathered at runtime by the framework, without
the component developer having to explicitly add ObjectChangelListeners or
SlotChangeListeners to shared model objects.

ValidateTransactions are used only on the server in the phase of validating
and replaying a transaction received from a client. Since the server’s object
space also deals with RObject and Slot instances, any modifying accesses to
these need to be wrapped in transactions as well. For this, the server creates
ValidateTransactions, which allow all kinds of accesses (even though object
reads are not replayed and not distributed). ValidateTransactions are created
only in the process of validating transactions and are therefore not themselves
distributed when committed.

Transaction

+ Transaction

+5tring getiame

+OhjectiD getSourceClentiD
+hoolean isWite Transaction

+ Transaction

-+void addOperation
+Hashtahle getirite Timestamp
+Hashtable getReadTimestamp

+Transaction getCurrent
+void undo
+void gatherWrittenObjects

+Hashtable getAogrenatsdTimestamp
+hoolean isTransactionActive

txOperation

+String slothame
+OhbjsctiD theObjsct
-+ Ietock

+ teCperation
+void setObjectD

+vaid setSlothlame
+hoolean commutesiVith
+Qi perorm

s undo

changeQperation

readOperation

writeOperation

+ changeOpsration

‘ DisplayTransaction I

Validate Transaction

+ DisplayTransaction I

+void addOperation

+ readOperation
+haolean commutes\ith
+void perform

+vaid unda

+Object aldval

+Object newwwal

+void perfarm

+vaid unda

+ writeOperation
+haolesn commutes\ith

deleteOperation

createOperation

+ deleteOperation
+void perform
+voic urda

+ createOperation
+woid perform

+void undo

+haolean commutesiith

Figure 4.7: Transaction object model

70 CHAPTER 4. GROUPWARE COMPONENTS

The class hierarchy of transaction objects is shown in figure 4.7 along with
the hierarchy of operations that can be performed within transactions. The
set of transaction can easily be extended in this part of the framework in a
fashion similar to the way in which the DisplayTransaction has been derived.
In order to create additional special transaction types (e.g. ones which only
permit changes to specific parts of an object model, or which restrict permitted
transaction size), the addOperation, addWriteOp, addReadOp or addChangeOp
methods need to be overriden, checking the transaction operations to be added
before adding them.

Transaction Properties

The Modify Transactions in the system are required to fulfill the ACID prop-
erties known from database management systems: Atomicity, Consistency, Iso-
lation and Durability. In [Wei93] these terms are defined as follows (p.330 f):

o Atomicity [...] means that each transaction appears indivisible with re-
spect to crashes. In other words, each transaction appears to occur either
completely or not at all; partial effects cannot be seen.

o (onsistency means that each transaction, when executed alone and to
completion, preserves whatever invariants have been defined on the system
state.

e Isolation [...] means that transaction appear indivisible to each other: if
a group of transactions is executed concurrently, the effect is the same as
if they were executed sequentially in some order.

e Durability [...] means that the effects of committed transactions are very
likely to survive subsequent failures.

These transaction properties are ensured by the server’s Transaction Man-
ager in the following ways. Atomicity is ensured by storing the previous values
of the affected Slots in ”"shadow” slots while performing the transaction. When
the transaction is committed, the affected object is written to persistent stor-
age. In the case of a crash, the original, unchanged object can be retrieved from
persistent storage in the state in which it was previous to the transaction. In
the case of a transaction abort (or rollback) on the client, the shadow values are
written back to the Slots, restoring the state before the transaction. Perserva-
tion of consistency is the responsibility of the domain-specific access methods
in the ModelObject subclasses. The various methods for setting Slot values
need to check the domain-specific consistency constraints. The isolation prop-
erty (which is also often called serializability, in effect states that transactions
cannot influence each other) is ensured by the fact that a client’s Transaction
Manager does not process any transaction received over the network while a
local transaction is being performed. And, vice-versa, no local transaction is
allowed to begin while the Transaction Manager is processing transactions re-
ceived from the server. In this way, the only way that object state can change
during a transaction is by operations performed in that transaction. These op-
erations are gathered in the transaction object, sent over the network to the
server for validation and distribution. The transaction cannot depend on any
observable changes that occurred ”outside” of the transaction. The transaction

4.4. COMPONENTS IN THE DYCE FRAMEWORK 71

serialization mechanisms that take place in the server’s Transaction Manager
ensure that no two concurrent transactions are allowed to commit which affect
(modify) the same slots. One of these will be undone. Therefore, the result of
the serialization of committed transactions will be the same regardless of the
order in which the transactions are actually performed. The durability prop-
erty is ensured by storing the RObject instances in persistent storage. When
a transaction commits, the RObject instances stored in persistent are updated
accordingly. This way, crash recovery for many forms of system crashes can be
performed simply by reloading the RObject instances from persistent storage.
Since only consistent RObject states (the states of RObject instances at the end
of a transaction’s committing, which are by definition consistent) are placed into
persistent storage, a consistent point from which to resume can be loaded from
the storage.

4.4 Components in the DyCE Framework

The object diagram in figure 4.8 presents the core of the DyCE framework, the
classes which form the framework’s ”hotspots” for extension and the classes for
managing the framework extensions:

e MobileComponent - the base class for all Groupware Components,
e ModelObject - the base class for all domain model classes,

e RObject and Slot - the constituents of the generic data object model,
created and referenced through domain-specific ModelObject subclasses,

The relationships between RObject, Slot and ModelObject have already
been explained, therefore the details of the RObject and Slot classes have been
hidden from the diagram - please refer to figure 4.5 for details. MobileComponent
is the class to be subclassed when developing a new Groupware Component. In
order to make the new component usable in the framework, the following meth-
ods need to be implemented with component-specific behaviour:

void prepareGUI()

This method must contain all GUI initialization code required for
the component (creation and initialization of GUI elements such as
text elements, labels, etc.) The method is called by the framework
before opening a Groupware Component on a machine.

void giveTaskBindings (Vector tasks)

Add the set of tasks published by this component, as instances of
ObjectComponentTask to the list passed as collecting parameter to
the method. See section 4.6 for detailed information about the task
model.

When a Groupware Component is instantiated on a client, the framework
calls the ModelObject subclass constructor to create the object, then calls the
method setModel (ModelObject model) to set the Groupware Component’s
model object. Then a call to prepareGUI() is used to set up the Component’s
user interface.

72 CHAPTER 4. GROUPWARE COMPONENTS

When a component is actually opened on a client (after its GUI has been
prepared), it is notified of this fact through the componentOpened () method. In-
versely, when a component is closed, it is notified of this through the componentClosed ()
method.

The remaining methods of the MobileComponent class seen in figure 4.8
which have not yet been explained are either implementation-specific or are
related to the task model, which will be explained in detail in section 4.6. The
full Java source codes of an example component and the associated domain data
model are shown in the appendix. These illustrate, among other things, how
the framework hotspot extensions are used.

4.4. COMPONENTS IN THE DYCE FRAMEWORK

DyCEEvent

+0hjectiD getOhjectiD

M
|
|
|
interface

DyCEEventi istener
+uoldd DVCEEvemOeeurred

GroupC Obj ObjectChangeEvent

MobifeComponent

+ MaobileComponent
Ol prepareGUl

+yoid setSessioniD
+0hjectlD getSessionlD

73

ObjectComponhentTask

+Biring taskMame

+Efring ohjectClagsMName
+String componentClassMarme
+hoolean isinherited

+Session getSession
+yoid setModel
+hodelObject getodel
+yoid giveTaskBindings
+IMenuBar getMenuBar
+void objectChanged
+yoid componentClosed
+yoid componentOpened
+boolean isClosable

+ ObjectChangeEvent

+0ObjectlD getlD

+void addSlotChange

+void addSlotChangeList

+hoolean containsChangeTo
+Enumeration enumerateChangedSlots

I

interface

GroupComponents. Qbjectiiodel, ObjectUhangel istener

+voidl objeciChanged

madel

+ DhjectComponentTask

+ ObjectComponentTask
+hoolean isTypeCompatible
+hoolean isEqualOrSuperclassof
+hoolean equals

GroupGC

ModeiOtject

+ ModelObject

+ ModelOhject

+yoid delete

+void addDyCEEventListener
+yoid rernoveDyCEEventListener
+hoolean getisDeleted
+R0bject getDataObject

+void setDataOhject

+yoid addObjectChangelistener
+void removeObjectChangeListener
+yoid set

+Dhject get

+void inilializeSiols

+yoid ohjectChanged

+hoolean eguals

GroupComponents.OhjectModel. RObject I

14

slots

I

[GroupCompanents.onjectModel.siot_|

Figure 4.8: Components in the DyCE Framework

74 CHAPTER 4. GROUPWARE COMPONENTS

4.5 Coupling distributed components through
events

In addition to shared data objects, as provided by the RObject framework class,
a second coupling primitive for the combination of components is that of event
coupling. An event in this case can be defined as a special occurrence taking
place at a certain point in time but not directly reflected in a change of shared
state. These events do not only relate to user interface events, such as the
interaction with a specific widget, e.g. the pressing of a button, but also to
events within a component.

For some component connections, event-based coupling can be more straight-
forward than coupling through shared state and can provide a meaningful al-
ternative communication primitive. Event-based communication can augment
coupling through shared data objects for those cases where a change in complex
data structures would be more difficult to detect and react to than the occur-
rence of a specific event. Take for instance a component where for each user
who enters all users in the session should play a certain sound, to alert others
of the fact that a new user has joined. When a user leaves, a different sound
file is to be played. With only shared data as a communication primitive, all
components would need to monitor a shared user list for changes and, when a
change occurs, compare the current state of the user list to the previous state,
in order to find out whether the change was caused by a user just leaving or by
a user joining.

The simpler alternative is to broadcast an event to all connected components,
Those components who can correctly interpret the event can then, in the above
example, play the appropriate sound file, depending on whether they received
a "user joined” event or a ”user left” event.

It is important to note that the event-based communication in DyCE is
seen merely as a supplement to the communication using shared data objects.
While there are some collaboration support frameworks which rely only on event
broadcasting (see the overview in the state-of-the-art), such architectures need
to make special provisions to support late-comers, asynchronous collaboration,
etc.

4.5.1 Extensible event class hierarchy

The event communication between Groupware Components is based on an ex-
tensible hierarchy of event classes. The root of this hierarchy, as can be seen in
figure 4.8, is the class DyCEEvent. This base class can be extended by compo-
nent developers to model specific events which occur in their components. Any
specific events that are to be broadcast can be derived as subclasses, e.g. the
event class DyCEEventUserJoined which can be used to notify other components
about the fact that a user has joined a session.

The MobileComponent base class for Groupware Components implements
the DyCEEventOccurred (DyCEEvent event) method. This method can be over-
ridden in MobileComponent subclasses when a component is required to react
to DyCEEvents in a specific way.

Each event has a source, indicating on which client the event originated.
Additional attributes can be specified for event object subclasses, depending on

4.5. EVENT-BASED COUPLING 75
the requirements of the event.

4.5.2 Object-related event channels

Event distribution in the DyCE framework is tied to the shared objects which
are manipulated by the Groupware Components. Event distribution is based
on the shared data replication in the distributed system. One could say that
each replicated object defines a specific virtual event channel over which event
are distrbitued and delivered to all components currently subscribing to this
event channel (because they hold replicas of the shared data object and have
indicated interest in the events broadcast over this channel.

Events are created by creating instances of a specific subclass of DyCEEvent.
The events are then broadcast by the component using a method inherited
from MobileComponent, namely void broadcastDyCEEvent (ObjectID oid,
DyCEEvent event) ;. The event object is serialized and sent to the server, which
distributes it to all connected clients who currently hold a replica of the RObject
with the given object ID.

A MobileComponent subclass can register its interest in a specific object-
based event channel by adding it to a shared data object as a DyCEEventListener,
similar to the regular event listener architecture in Java. This means that the
component will receive any events which are distributed ”on behalf of” this
shared object (over the object-based event channel).

Each event holds the lclock value (logical clock) of the object over which it
has been distributed. The value stored in the event’s Iclock is the logical clock
value of the object at the point in time when the event has been created. The
object’s logical clock value is not advanced when an event is broadcast over it.

4.5.3 Synchronizing events and object modifications

As has been pointed out, the main coupling medium for the Groupware Com-
ponents remains the shared data object (replicated between sites). This is sup-
plemented with the event-based communication. The event-based coupling of
components needs to be synchronized with the modifications of the shared ob-
ject state which also couples the components. This synchronization is especially
important, since the reaction to an event could depend on the current state of a
shared data object (e.g. the event to play a sound file as a reaction to a certain
event could rely on the fact that a shared data object contains the name of the
sound file to be played).

The distribution of object changes in DyCE is based on transactions. Trans-
action objects are created at the source of an object modification. These trans-
actions are sent to the server, are validated and - if they are allowed to commit -
are distributed to all affected clients. Therefore, the event broadcast mechanism
needs to be synchronized with the transaction delivery mechanism.

It is the responsibility of the transaction management system to ensure that
the following properties hold:

e If an event E has originated at client C1 on object E.obj, then it will be
distributed to all clients who currently hold a replica of object E.obj (this
set of clients is called ”event destination clients”). This includes the client
on which the event originated.

76 CHAPTER 4. GROUPWARE COMPONENTS

A transaction T is said to have happened before an event E if: Transaction
T originated on the same client as the event, T has the object E.obj over
which the event has been broadcast in its read-set T.read or in its write-
set T.write and the Iclock value stored in the transaction for that object
is smaller than or equal to the lclock value stored in E.

e An event E is said to have happened before a Transaction T if: Transaction
T originated on the same client as the event, T has the object E.obj over
which the event has been broadcast in its read-set T.read or in its write-
set T.write and the Iclock value stored in the transaction for that object
is greater than the lclock value stored in E.

e Any event will be distributed to all event destination clients after all trans-
actions which happened before the event have been distributed to the af-
fected clients.

e On each client, any pending transactions which happened before a received
event E will be processed (replayed locally) before the DyCEEventListen-
ers registered on the object E.obj are notified through their DyCEEventOccurred
method.

e On each client, any pending DyCEEvent E will be delivered to the regis-
tered listeners before a transaction T is processed for which E happened
before T.

Using these assertions, the runtime system needs to ensure that the shared
object state when a component reacts to an event is at least the shared object
state as it was on the client which originated the event when the event was
originated. Note that due to the distributed and non-realtime nature of the
Groupware Component framework, the happened before relation cannot safely
be defined for transactions and event originating on different systems. The
above assertions are sufficient, though, that any data states on which an event
relies have been created on each client before the event is actually delivered (the
event listeners are triggered using their DyCEEventOccurred method.

4.5.4 Using Event Communication in Groupware Compo-
nents

Using the object-based event mechanisms as described above, Groupware Com-
ponents can communicate by attaching themselves to specific objects as event
listeners and by broadcasting events over the virtual event channels supplied
by the objects. The motivating example, of playing a certain sound file when
a user enters a session and another sound file when a user exists a session, can be
achieved by deriving the event classes DyCEEventUserEnters and DyCEEventUserLeaves
from the DyCEEvent base class and broadcasting these events over the shared
object modeling the session’s user list (this object is accessible to all Mobile-
Component subclass instances in a session - see section 4.7 for more informa-
tion about sessions). Now, whenever a user enters a session, a component can
broadcast an instance of DyCEEventUserEnters over the user list’s virtual event
channel and all components which are already open in the session and which
subscribe to events broadcast over the user list will receive the event and react
accordingly.

4.6. TASK-BASED PROGRAMMING MODEL 7

Using this event framework, different components can also react to similar
events in different ways. While one component could react to the DyCEEventUserEnters
event by playing the sound file, another could send an email or perform some
change in a data model (e.g. checking workflow data for data relating to this
user).

4.6 Task-based programming model

When using a number of components to interact with data objects (or docu-
ments), a common mechanism is required to perform the matching between an
editable object and the component or application used to edit it. The users
have access to a potentially large number of document objects and the system
needs to provide the correct component(s) when the user indicates his wish to
edit a certain object.

In modern GUI environments, a number of different schemes are employed
to perform this matching between a document (often stored in a file in the file
system) and an application. For instance,

e in Windows environments, applications are used to create, present and
modify documents which reside in the file system. The selection of the
correct application for a document is done based on the document file name
extension, e.g. a file with the extension ”.ppt” is opened using Microsoft
PowerPoint, when the user indicates his wish to open the document (e.g.
by double-clicking on the document icon on the desktop).

e in the object-oriented desktop environment of OS/2, the Workplace Shell,
which is built on top of OS/2’s Presentation Manager, the mapping be-
tween a document and the application used to edit it is a property of the
document object. Regardless of the document’s file name, the application
noted in the document object is used to open the document. New docu-
ments of a certain class are created using templates which include, among
other things, information about the related application.

A direct mapping (or binding) between a shared object and a component
can prove to be insufficient for a number of reasons.

In typical collaboration scenarios to be supported by Groupware Compo-
nents, different users perform different roles within the collaboration process.
In order to perform their role, the users could potentially need to use different
interaction mechanisms(i.e. different components). For instance, in a collabo-
rative learning scenario, the user performing the role of the teacher might need
a more sophisticated tool for presenting and modifying slides than the students,
who merely use a slide viewer.

The use of Groupware Components in complex collaboration scenarios needs
to be controllable by a central control mechanism, similar to a workflow system.
Here, merely controlling the invocation of certain objects at certain times may
not be sufficient. Instead, the system needs a more differentiated notion of
what is going on at the moment. The mechanism developed in this thesis is a
Task-based mechanism.

78 CHAPTER 4. GROUPWARE COMPONENTS

4.6.1 Definition of Tasks

As a central abstraction for the development and usage of Groupware Compo-
nents, this thesis suggests the use of Tasks.

The relationship between Component, Object and Task is constrained using
the following definitions:

o A Groupware Component is used to perform a Task on an Object.

e A Groupware Component can publish several different tasks on different
Object classes.

e Fach Task has an identifiable name.

e For a given Object and Task, the required Groupware Component is
uniquely identifiable.

Tasks - a formal definition

Formally, a Task is defined as a triple T' = {TaskID, Class, ComponentClass}
where

e TuskID is an identifiable 1D,
e (lass identifies an Object class in the system,

o (ComponentClass identifies the class which implements the component
publishing this Task.

A Task signature is formed by the Task’s name and its argument class, in
the same way that a method signature is formed by the method identifier and
its parameter types. In order to denote that a Task is ”applied to” or performed
on an object of a given class, the Task signature is noted using arrow notation.
The signature of a Task ”edit” which can be performed upon an object of type
Document is noted as edit — Document.

Task polymorphism, inheritance and overriding

Tasks conform to the following polymorphism relation:

Task bindings are polymorph with regard to the inheritance relations in
the object-oriented system used to develop the components: If component C1
publishes a Task T1 on an Object Class A and B is a subclass, then Task T1
also applies to all instances of class B.

Tasks are inherited by components which are derived from other components.
If component C2 extends component C1 by inheritance, it inherits all Tasks
published by component C1. It can itself of course define additional Tasks.

Tasks can be overridden in subclasses. Tasks in derived components override
Tasks from their super-components if the Tasks have the same TasksIDs and
apply to the same (or polymorphic) classes.

The inheritance and overriding rules can best be explained using the inher-
itance graph shown in figure 4.9, which shows one inheritance graph for com-
ponents (derived from the component base class) and one for the corresponding
Model classes to which the Tasks published by the components can be applied.
Here, component B, which inherits from component A overrides the Task edit

4.6. TASK-BASED PROGRAMMING MODEL 79

Component Model
4 4
Cormponent A Component D Doci Doel
edit-= Daocl edit-» Doc3
['Y
Component B Component < DocZ
edit-» DocZ2 send-= DocZ

Figure 4.9: Sample Task and Component Inheritance

— Docl inherited from component B with the Task edit — Doc2. Since Doc2
is polymorph to Docl, this overriding does not actually change the applicability
of Tasks. Performing Task edit on an instance of Doc2 will be handled by com-
ponent B. component C extends the set of published Tasks with the Task send
— Doc2. This means that the Task send cannot be performed on instances of
any other class than Doc2. The Task definition edit — Doc3 by component D
is entirely independent of the other Task definitions, since neither component
D is related to component A by inheritance, nor is Doc3 related by inheritance
to Docl.

Uniqueness constraint

Tasks in the system are required to be unique in the same way that methods
defined in an object-oriented class implementation are required to be unique.
A component may publish multiple Tasks with the same TaskID, but it may
not publish multiple Tasks with the same Task signature. Tasks with the same
signature which are inherited from other components are considered to be overri-
den, according to the previous explanations, thereby maintaining the uniqueness
constraint.

4.6.2 Task Terminology

For the following discussions of Tasks and their use within the DyCE system,
it is necessary to establish some terminology.

Publishing Tasks: A task is said to be published by a component. Pub-
lishing a task means that a component provides the information that it can be
used to perform a specific task on a certain Object class. In a discovery process
(either at server startup or when a component is checked in), the Component
Broker queries each component about the tasks it publishes. For this, the com-
ponent must provide a method giveTaskBindings(Vector tasks), using the
parameter tasks as a collecting parameter for gathering up all tasks published
by the component.

80 CHAPTER 4. GROUPWARE COMPONENTS

Component Lookup: The process of Component Lookup retrieves the
component defined for a given Task on a given Object class; i.e. lookup(Task,
ObjectClass) returns the ComponentClass identifiers from those Task tuples Ti
where Ti.Class = ObjectClass and Ti.TasklD = Task.

Performing Tasks: Performing a task is similar to issuing a method call to
a runtime Object, using another Object as parameter. Performing a Task on an
Object yields the component which has published the Task, using Component
Lookup as defined above.

4.6.3 Tasks as bindings between Components

Tasks are the central (and only) binding mechanism between the Groupware
Components in the system. This means that one component instance does not
directly invoke another; instead, the component performs a Task on an Object
using the runtime system. This Task then yields a component which can be
instantiated on the Object.

In the course of this thesis and the related implementation work, it was
found that this abstraction of components interacting by performing Tasks on
Objects is a very powerful one. It allows complex applications to be assembled
using loosely coupled components. Section 5.5 will describe how the task-based
programming model is used as a basis for end-user support for combining exist-
ing components into new ”configurations”, which can be deployed through the
Component Broker and can be used collaboratively.

4.6.4 Tasks and Reflexive Programming

According to the previous set of definitions, the Tasks provided by a Groupware
Component can be likened to methods provided by an Object in an object-
oriented system (or the interface methods specified in a CORBA Interface Def-
inition). A task is an operation that can be performed by a class instance and
which takes a typed parameter (the shared data object on which the operation
can be performed).

The set of Tasks published by a component is determined at runtime, when
a new component is entered into the component Repository, or at start-up time,
when the server starts.

The publishing of tasks and the querying of task information by the runtime
support system can be seen as an example of Reflexive Programming: Reflex-
ive Programming mechanisms are mechanisms which allow an element of the
information system to provide information about itself (e.g. an instance could
provide the information which methods can be invoked on it) and to discover
information about other elements of the program system (e.g. query an object
passed as a method input parameter as to which operations are provided by it)
(see [Dou95a)).

Several object-oriented development systems provide some means of reflexive
programming. Java provides the Java Core Reflection API as part of the core
language definition (since Java 2, or JDK 1.2).

The goal of specifying the Task model as an additional reflexive development
mechanism is to provide a common programming abstraction for Groupware
Components which can be realized in a general support framework, without
resorting to the reflection mechanisms of a specific programing language.

4.6. TASK-BASED PROGRAMMING MODEL 81

In this way, Tasks become first class objects and can be used to control the
collaborative system. As will be seen later in the thesis, Tasks can be used to
define collaboration sessions or to define workflow-like processes.

4.6.5 Mapping tasks, appliances and users

As has been discussed, task information is provided by component implementa-
tions by publishing a set of tasks through the method giveTaskBindings (Vector
tasklist). The tasks that are published are instances of the framework class
ObjectComponentTask, which provides a mapping between a task identifier, a
component class name and a domain data model class name.

An important aspect of the DyCE component framework is the support for
flexibly selecting components based not only on data models and tasks but also
on user and infrastructure information. This selection mechanism is used, e.g.,
when deploying components for devices with specific characteristics, such as mo-
bile hand-held devices or pen-based devices. This flexible selection mechanism
has been introduced into the DyCE framework in order to address requiremenets
RU5 and RU9.

Each client logged into the server is uniquely identified on the server by a
userClientTuple instance (see figure 4.12) and an associated ClientObject
instance. The ClientObject instance is created by the client application and is
transferred to the server in the log-in process. The ClientObject instance can
be queried about client type identifier (an identifying value relating to the type
of device?).

In order to distinguish between different tasks for different users, different
devices, etc., the task object can make use of this information. When publish-
ing a specific task which only applies to a certain device or a certain user, the
component developer can implement a subclass of 0bjectComponentTask, over-
riding the framework method boolean appliesTo(userClientTuple user) to
provide distinguishing functionality (the framework base implementation sim-
ply always returns TRUE, i.e. by default tasks always apply) and return an
instance of that class when returning the task bindings. For example, in order
to publish a task which only applies to hand-held devices of the "PDA” type,
the ObjectComponentTask subclass can access the ClientObject instance and
check whether the endpoint type of that client is ”PDA”. If so, the appliesTo
method would return TRUE, otherwise it would return FALSE.

When the server’s Component Broker accesses the set of published tasks in
order to find a component to open for a specific task on behalf of a certain
user on a certain client, it checks the task rules as presented before, i.e. it
compares the domain data model class information (also taking into account
object-oriented inheritance rules), and compares the task identifier. Once a
potentially applicable task has been discovered, the task’s appliesTo method
is called to check whether the task is applicable in the current situation. If
this call returns FALSE, the task does not apply, otherwise it is added to the
set of matching tasks. If at the end of this process several matching tasks

4Currently defined are the identifiers STANDARD (a regular PC or other computer), PDA
(a hand-held device with limited display size and possibly fewer displayable colours) and
APPLET (denoting that the end-point is running the client application as a Web Applet,
regardless of specific machine type). Additional identifiers can be added as more devices with
specific distinguishing characteristics need to be supported

82 CHAPTER 4. GROUPWARE COMPONENTS

have been found, preference is given to those tasks which are published not
as instances of ObjectComponentTask but rather as instances of a subclass
thereof. The rationale behind this is that a component which publishes a task
which specifically applies to a certain end-point or user, is better suited for the
current situation than a component which publishes a task which simply applies
by default.

4.6.6 UML diagram extensions for modeling tasks

Section 4.2.9 presented extensions to UML class diagrams for noting shared
object diagram elements. It did so by using the stereotype mechanism available
in UML to specify stereotypes for a couple of design elements. In order to be
able to model component-based groupware built with the DyCE framework,
it is also necessary to provide the means for representing the elements of the
task model in the appropriate diagrams. In the case of the task model, we are
faced with two views of the system: The static view represents instances of the
model as presented above, with component implementations publishing tasks
on shared model classes. Additionally, there is a dynamic view which needs
to be modeled. This view corresponds to the use of components in a system
which is actually being used, where specific component instances are bound to
specific instances of the shared object model. This view is later relevant when
representing sessions in the running system.

The static view of the task model is presented as an extension of UML’s class
diagrams, just like the extension for the shared data model. Here, the diagram
is extended to model the tasks published on shared object classes.

Figure 4.10 shows a static model for components interacting on a shared
structured document. Two Groupware Components, a document editor and
a document structure viewer publish tasks on shared object class representing
a (very simple) structured document. As previously defined, the shared model
object is extended with the stereotypes <Shared>> and <Slot>> and the compo-
nent class is extended with the stereotype < Component>>. The tasks published
by a component class are represented as extensions of the class diagram element
”dependency” (the dashed arrow), extended with the stereotype < Task>>. The
task link can only be drawn from classes of the <Component>> to classes with
the «Shared>> stereotype. Since each component class implementation needs
to provide a method giveTaskBindings(Vector tasks) for querying the set of
tasks published by this component, these methods are modeled in the diagram
as well.

4.6.7 Task Model - Summary

The Task model used as the basis of the component-based groupware develop-
ment system described in this thesis is summarized in figure 4.11. This figure
shows the conceptual elements involved in the Task model, their relations and
the respective cardinalities.

4.6. TASK-BASED PROGRAMMING MODEL 83

MWMobileComponent

!

==Camponent== ==Zomponent==
DocumentEditor StructureViewer

+iveTaskBindings void +giveTaskBindings:void

[
|
:bruwse
|
L2
edit ==Taske== ==Shared==>
________ DocumentSection
==5|ot==
-subSections Vectar
==5lot==
-sectionContent: String

[

suUbSections

T
|
: ==Tagk==
|
|
|

Figure 4.10: UML diagram stereotypes for elements of the static task model

Component ! "
Cliss publish Task
1 n ‘
instance of applies to
n 1
Component Shared Object
Instance Class
n 1

instance of

n

hasmode——————o Shared Object

Figure 4.11: Task Model

84 CHAPTER 4. GROUPWARE COMPONENTS

4.7 Session Management

A session is the concept used to model a group of users working together. Since
session information needs to be replicated throughout the system, a session
object in the system is modeled as a DyCE replicated object. A session maps
a set of users onto a set of TaskObjectTuples, which in turn relate a task to
an element of the shared object space. The basic session model is shown in the
diagram in figure 4.12.

Task ROhject
==8hared==
Session +5tring getTaskiD +0bjectiD getObjectlD
+DhjectlD sessionlD
+5tring sessionMName) model
+OhjectlD sessiondodellD task object
+ 5ession JRohileComponernt
+0hjectlD getlDr TaskOhjectTuple

*

+5essionModel getSessionhodel
+void addUser

+yoid invitelUser

+void removel)ser

sessionTasks

+ hlobileComponent
+yiolid prapareGL

+yoid setsessionlD
+0hjectlD getSessionlD

+void remove Client

+Configuration getConfiguration
+Configurationinstance getConfigu
+void setConfiguration

+void setConfigurationinstance
+ector getUserList

+void addTask

+v0id removeTask *
+hoolean hasUser

+ector getSessionTasgkList

+3ession getSession
+y0id setModel
[e +ModelObject getModel
+y0id giveTaskBindings
+JMenuBar gethenuBar
+yolid objectzChanged
+y0id componentClosed
+yid componentOpened
+hoolean isClosahle

userClientTuple

+ChjectlD userid
+JhjectlD clientid
+ userClientTuple

#

SBEFI0NS users

Figure 4.12: DyCE Session information model

4.7.1 Session Support

As can be seen from the diagram, a session groups together tasks which are
performed on RObject instances (modeled as TaskObjectTuple instances) by
all users currently in the session. Since the same user can be logged in at multiple
clients (running multiple instances of the client on one or more machines), users
are represented as tuples containing not only the information about the user,
but also about the specific client to which this session item refers. This way, a
user can be in different sessions on different clients at the same time, e.g. when
using a mobile device in addition to his desktop machine.

The session management system (which is provided as part of the DyCE
framework and which is available on the server as well as on each client), provides
a number of operations to control session membership:

Joining a session (joinSession(userClientTuple user)): The
user is added to the session. The session’s user list is updated and
the session information is replicated to all currently active clients.
If the added user is currently logged in to the system, the session is
opened on his client machine.

Opening a session: When opening a session on a user’s client, the
initial set of RObjects, linked to the session through the TaskObjectTuples

4.7. SESSION MANAGEMENT 85

is replicated to the client machine. The tasks stored in the session
information are then performed on the shared objects, resulting in
loading and opening of the component which published the given
task. Omn the user’s client machine, a session window is opened,
which contains the resulting components. When a user logs into
the client, any sessions which he or she belongs to are retrieved and
automatically opened. This is a way to support resuming running
collaborations.

Leaving a session (leaveSession(userClientTuple user)): The
user at the given client machine is removed from the session’s user
list. The session window on the client’s machine is closed. Should
the session contain no more users, it is removed altogether.

Performing a task (performTask (Task t, RObject o)): Per-
forming a task within a session adds the corresponding TaskObjectTuple
to the session. The task is automatically performed on all active
users’ clients by the client’s SessionManager. The related RObject
is replicated and the Component Broker is used to determine the ap-
propriate Groupware Component. This component is then opened
in the session window. The users can now perform the task at hand.

Removing a task (removeTask (TaskObjectTuple t)): Remov-
ing a task removes the given TaskObjectTuple from the session’s list
of tasks. The client’s SessionManager closes the component which
has been opened for this task in the session window. The remaining
components are not affected by this operation. Should the session
contain no more tasks, it is removed altogether.

Note that the session contains no direct component information but only el-
ements from the task model. Using this information, the necessary component
information can be fetched at runtime. This way, a session can be suspended on
one system (with a certain set of components) and can be resumed on another
system (which could potentially yield a different set of components). Also, dif-
ferent users can open the same session and receive a different set of components.
These design choices have been made to support a flexible collaboration environ-
ment within which users can collaborate with a variety of different components.

It is also important to note that any RObject can be referenced through the
tasks performed in several sessions. Components in different sessions which are
invoked on the same RObject are, in effect, coupled: They reflect the current
state of the shared object, regardless of the session from which it was changed.
Additional tasks invoked on the object within a session, though, are shared only
within that session, even though they may reference objects shared in multiple
sessions.

Early usage experiences have shown that, depending on the realization of the
components, such parallel modifications of shared objects by users who are not
”in my session” seemed strange to some users. In the current model, sessions
do not contain any notion of access control or locking. As the user experiences
show, such a concept may need to be introduced in the future, along with
restrictions on the parallel use of shared objects in multiple sessions by different
groups of users.

86 CHAPTER 4. GROUPWARE COMPONENTS

4.7.2 Sessions and Group Awareness

The previous discussion can be taken as an illustration of the need for providing
group awareness information. The session information can be used to provide a
number of group awareness elements:

o Which users are in the same session? This information shows which users
will receive instances of components which are newly opened within the
session. A simple user list within an open session window could be suffi-
cient to display this information.

e Which users are currently accessing the same model object? This infor-
mation can be used to find out which users would be affected by changes
made to a shared data item. A reasonable presentation of this information
can be used to alleviate the previous experience that users of the running
system were confused as to which other users were currently accessing
(and potentially modifying) a shared object.

e Which tasks are currently being performed on a shared data item which
is being seen in this session? This can be taken to show the complexity
and diversity of the collaborative setting.

B

Docurment &

Ciagrarm

Figure 4.13: Suggestion for a session-based group awareness view

Additional group awareness (e.g. the plans of other users) cannot easily be
deduced from the session model information. The above information could be
displayed to the users in a ”session map” (see figure 4.13, similar to a fish-
eye view, which would always show the model object of the currently focused
component (i.e. the one having input focus in the window management sys-
tem) in the center and the related information about users, sessions and tasks
surrounding it.

4.7. SESSION MANAGEMENT 87

4.7.3 UML diagrams for dynamic session models

In order to describe collaboration situations, which always take place in sessions,
dynamic session model diagrams are used to model concrete running sessions,
with potentially multiple components actually being used on shared objects.
These diagrams need to illustrate the following concepts: A number of compo-
nent instances (at least one) access a shared object instance (i.e. the component
has the shared object instance as its model). The components were invoked
through specific tasks. These concepts are shown in the diagram elements in

figure 4.14.
==8ession==
Sessionl

==Camponent==
i anEditor:-DocumentEditor
P T—— T I
aDocument:DocumentSection
{__h_r_ov_\t_si ==Task==
M Bt S <=Companents=

aBrowser:Structureviewer

edit

==5ession==
Session2

=

|
|
|
|
|
|
=<Tagk== |
|
|
|
|
|
|
|

==Companent==
anEditor:DocumentEditor

Figure 4.14: UML diagram stereotypes for running sessions

The session model diagrams are extensions of the UML diagram type ”de-
ployment diagram”. Deployment diagrams model how the elements of the run-
ning system are distributed and how the collaborate. In this extended diagram
type, the previously defined UML stereotype extensions are reused. Addition-
ally, sessions are modeled as extensions of the diagram element ” Component”,
using the Stereotype <Session>>, as a diagram element which can include parts
of the running system. In the case of a session model diagram, the session items
hold component instances which have been invoked on an element of the shared
object model through a specific task. The task is shown on the ”dependency”
link, extended with the < Task>> stereotype.

The <Component>> elements, instances of Groupware Component classes,
are each bound to a specific instance from the replicated shared data model.

88 CHAPTER 4. GROUPWARE COMPONENTS

This relationship is implied in the task relationship between the component
instance and the shared model instance, since the instance on which a component
is invoked through a task automatically becomes that component’s data model.

Note that the session element in the diagram does not give any indication
about the fact on how many systems the session is currently open. If this
information needs to be modeled, it can be shown (see figure 4.15) using the
deployment diagram’s "node” element (the boxes in the figure) to represent a
specific node of the system on which a session is being used.

Svystem_B System_C
Z4Session=> Seszion2
SessionZ
Z2Component==
anEditor: hocu rmert Editor
Z2Camponents=
anEditor:Docurnernt Editor
. -~
| -~
R -~
T edit -~
-~
| ==Tase> /—’
zzTaser | -
-
S A
:edit P yetem_
-
| // <45 essionk=
W el Session
“<=25hared=>
abocument: Documert Section | edit <<Tage:s <<Components>
=== [7|7 |znEditor:Documert Editor
h"““————_______ 2T ashs >

T
browese T ——

=<Components>
2Brovwser StructureViewser

Figure 4.15: UML diagram stereotypes for running components on specific nodes

Even when modeling the specific nodes on which the sessions are running, the
shared object model instances remain outside of the node element (and each is
only shown once), since the shared object instances are automatically replicated
to those nodes which require the object instances and the components in the
various sessions are, conceptually, only interacting with a single model instance.

4.8 Server-Based Components
In complex collaborative processes, there are a number of operations which

need to be performed only once and which should be performed centrally (c.f.
requirement RD9).

4.8. SERVER-BASED COMPONENTS 89

As one example for such a centralized ”one-off” operation, consider the en-
actment engine in a distributed cooperative workflow setting. A number of
clients share a common workflow model within which they are collaborating.
The enactment of such a workflow, i.e. the switching between process steps,
the propagation of information elements, is an activity which is needed to co-
ordinate all clients and their activities. Hence, it is not directly attributable to
one specific client. Also, the enactment engine of a distributed workflow process
should obviously also run when no clients are currently connected (e.g. in order
to trigger time-dependent actions).

It follows that such an engine should not be realized as a client-side func-
tionality. Rather, it should be server-based and execute independently of (but
interacting with) the current state of the clients.

Other examples for such server-side functionality include monitoring cen-
tralized resources, performing scheduling or processing tasks, etc.

In order to support server-side components a specific subclass of MobileComponent
is used as superclass for all server-side components. Server-side components
publish tasks just like all components and they also provide a user interface in
the same way as all other components. When a task invoked on a replicated
object yields a subclass of ServerComponent, this component is instantiated on
the server. The component has full access to the shared data objects and can
modify them as needed. A Workflow Engine could, e.g., monitor the system
time and the current workflow model, advance tasks or add time-dependent to-
do items to a user’s to-do list. Figure 4.16 shows such a configuration, using the
UML extensions described in this thesis. A Workflow Engine server-side com-
ponent is running on the server, invoked on the shared workflow data through
its task ”enact”. The users’ sessions include WorkflowEditor components, used
to view and interact with the shared workflow data (and in this way with the
WorkflowEngine component). Note that no specific UML extensions are pro-
posed for server-side components, since this fact can be indicated by placing the
session containing the server-side component into a "Node” diagram element
depicting the server.

Since sometimes even server-based features need user intervention, server-
side components can also provide a user interface. This can be as simple as
displaying current status information, but it could also provide users with access
to the server with more elaborate interaction means. An instantiated server-
based component’s user interface is dynamically added to the server’s UI through
the use of tiled tabs.

In order to support server-side components, session management (see sec-
tion 4.7) needed to be extended slightly, so that a server-based component is
only instantiated once, even though the session is entered many times by many
different users.

90 CHAPTER 4. GROUPWARE COMPONENTS

=<=5ession== ==Hesggion=»
Sessiont Sessiont
==Camponent== ==(omponent==
anEditor:WorkflowEditor anEditorWorkflowEditor

!
==Taghk=> | edit
|

W
z=Shareds= = _edit ssTask==
workflowDataWorkflow

Serer

==8eggion==

==Components=
anEngine:WorkflowEngine

Figure 4.16: Server-Side component example

4.9 Help to the end-user when tailoring

The DyCE framework, with its component-based approach to constructing
groupware environments, provides users with the means to extend and tailor
their work environment. According to [Mor97] (as cited in [KT99]), three levels
of system tailoring can be distinguished:

e customization - selecting among a set of predefined configuration op-
tions,

e integration - linking together predefined components within or between
(an) application(s), and

e extension - improving the implementation by adding new program code.

The components in the DyCE framework are used to allow users to per-
form tailoring of the second type: Users can introduce additional tools into the
system, invoke various tasks on shared data objects and combine components
into configurations (see section 5.5). Such an environment needs support for
allowing users to become familiar with the system, to learn about the available
components and to receive guidance from the system.

In the DyCE framework, this help comes in several ways. For each shared
object used within the system, the users can use simple GUI operations to
receive a list of tasks which can be performed on this shared object. Since
each task contains a readable name, this list is assumed to be a readable list of
options available to the user.

Additionally, each component is expected to provide a help page (or pages)
in HTML format. This help, which can contain figures, external references, etc.,
needs to be accessible through a standard mechanism (i.e. each component’s
help file is expected to be called help.html and reside in the component di-
rectory). It is packaged with the component when deploying the component.

4.10. SYSTEM ARCHITECTURE 91

The user can access this help file within the client desktop with a "help” menu
option in the component window and in the component browser (a desktop
palette showing a list of all available components). In this way, components are
expected to be sufficiently documented in order to support the users’ learning
process.

An additional approach, which is also applied in [WHRT00b] and [WHRT00a]
is to learn the use of the different components from peers working within the
same system. By working together with other users on shared objects using
components which are linked to other components, users are expected to de-
velop an understanding of the possibilities offered by the groupware system, to
learn from and with the other users of the system.

4.10 System Architecture

Following the general concepts of Groupware Components and the programming
support provided for them, the system architecture and system design will now
be presented in incremental steps, each highlighting an important aspect of the
overall system.

The conceptual system architecture is shown in Figure 4.17, which depicts a
client machine connected to a server over the network. In the following subsec-
tions, a brief overview over the functional modules of this architecture will be
presented, before the individual functional modules are specified in more detail
in subsequent sections.

4.10.1 Server Architecture

The server provides the services which the clients use in order to provide the
collaboration support. In keeping with the CORBA way of describing a dis-
tributed system, the services are provided by service objects which implement
a predefined interface. The service interfaces of the server modules are included
in the relevant subsections of the system design.

The server includes the following modules:

Component Broker: Maintains the server side of the component-based
architecture. Manages the available components, stores and retrieves them using
the Component Broker and distributes them over the network. Since there is a
close relation between the interactive components and the objects created and
manipulated by them, the Component Broker is closely tied in with the Object
Management Service. The details of the Component Broker and the components
managed by it will be presented in subsequent sections.

Component Storage: Used for persistent storage of the components. Com-
ponents are fetched from the component storage when requested by a client. The
component storage stores the components in executable ”parcels” which can be
transmitted across the network and executed at the client node.

Object Manager: Manages the shared data objects at runtime. The object
management service is accessed by the clients when fetching objects, creating
new objects, etc. This service also uses the Object Storage to handle the per-
sistent storage of objects.

Object Storage: Stores the data objects persistently. Typically this task is
performed by a database system, providing an appropriate retrieval and query

92 CHAPTER 4. GROUPWARE COMPONENTS

Component Groupware
Desktop Ul Groupware Component
Cormponent
|
DyCE Framework Client
Sessian
Manager
Replication Managernent Service
Component
Manage ment i
] Object Manager Transaction
Manager
Dy CE Framewiarlk
Session
Manager
]
Replication Managernent Service
Component U zer Manager Object Manager — Transaction
Broker g ! g hlanager
R
Component .
Storage Object Storage Server
— —

Figure 4.17: System Architecture

interface.

Replication Management Service: This service is used to control replica
distribution, replica groups and data consistency. The Replication Management
Service keeps track of which objects are replicated at which client nodes.

Transaction Manager: The server side of the transaction management.
In order to provide object consistency, the system uses a transaction-based
approach: Clients perform transactions on the shared objects. These transac-
tions are validated and distributed by the server’s Transaction Manager. The
Transaction Manager needs to interact with the Object Manager and the Ses-
sion Manager in order to modify the server’s object replicas and distribute the
transaction information to the correct sites.

Session Manager: Manages the running sessions. Offers service interface
to add users to a session and to remove them from sessions, to create new
sessions and to perform tasks within sessions.

User Manager: Manages the user entries in the system. Interacts with the
Session Manager to manage the user lists of sessions; holds and makes available

4.11. GROUPWARE COMPONENTS - SUMMARY 93

information about the running system: Which users are currently logged in at
which clients?

4.10.2 Client Architecture

Each client system has a user interface, consisting of the component instances
which provide the application functionality. In addition to this, the user has
access to a ”Component Desktop User Interface” which provides access to the
available components.

The components at the user interface access the replicated data elements
through the use of an Object Manager, which encapsulates the object pool
and controls the components’ accesses to the objects. Closely related to the
Object Manager is the Replication Management Service, which keeps track of
the replicated objects and the current replication situation (e.g. which objects
are also replicated at which other nodes of the system, etc.).

The Replication Manager is tied in with the Replication Management Service
as well as the Object Management Service on the server, since any object which
resides on a client node also resides on the server and is therefore automatically
a replicated object (while the inverse does not hold true - an object on the server
need not always be currently used at a client node, hence it need not always be
replicated).

The Component Management sub-system provides support for component
access and component execution. On the client, the Component Desktop User
Interface interacts with the Component Management sub-system to access com-
ponent information and retrieve component implementations from the server’s
Component Broker.

The Component Manager is the client of the server’s Component Manage-
ment Service, it is able to query the available components, and retrieve compo-
nents. It is also responsible for propagating notifications to the user interface
when the set of available components changes. Also, the Component Manager
keeps track of which components are currently loaded on the client system. The
Component Manager is related to the Replication Manager, since the informa-
tion from both is required when a new object is replicated which needs a specific
component to be displayed or manipulated.

The Component Execution module, as the name would imply, is the basis for
executing the components once they have been fetched through the Component
Manager. It keeps track of which components are currently executing on which
shared objects in which sessions.

The Component Desktop Ul is the user interface built on top of the Compo-
nent Management and Component Execution as a starter application. This is
the application part with which users interact before tackling their actual tasks
using the Groupware Components -in this way the Component Desktop UI is
comparable to an operating system’s GUI desktop application.

4.11 Groupware Components - Summary
Groupware Components form the basis of the component-based groupware frame-

work DyCE. Using the framework, developers can implement new Groupware
Components, which can be deployed to users through a Component Broker.

94 CHAPTER 4. GROUPWARE COMPONENTS

Groupware Components are collaboration-aware; coupling of components is re-
alized using the replicated data-sharing approach: The shared data models are
developed based on the support provided by the framework. Shared data objects
and component implementations persistently stored in a server and are available
through a client application (req. RU1). New data objects can automatically be
dynamically replicated. Concurrent access to and modification of shared data
objects is handled by a transaction-based concurrency control mechanism, which
provides support for highly interactive groupware applications by allowing the
users to continue with their work while their operations (the transactions) are
still being validated. Avoiding the use of object locking increases the potential
for conflicting operations (leading to undoing users’ actions at a later point in
time) but permits maximum parallel activity.

The shared data model implementations are developed separately from the
components, are external to the components and are attached to the components
at runtime. This allows coupling different components on the same data model
(fulfilling requirement RU8). The mapping between shared data model imple-
mentations and the component(s) used to interact with these data elements is
provided by the central programming model, introduced in this chapter: task-
based programming. This reflective approach allows the Component Broker to
query a component’s tasks and allows runtime identification of the components
required for a specific task to be performed on a shared data object (fulfilling
requirement RU2).

Tasks being performed on shared objects form the basis of the framework’s
session management. New objects and new tasks can be introduced into run-
ning sessions and additional users can be invited into sessions. The entire session
model is also based on DyCE’s object replication mechanisms and is therefore
automatically shared in the distributed system. Using the information about
tasks and objects from the sessions, coarse-grained group awareness (i.e. who
is working on which objects in which session(s)?) can be provided (req. RU3).
More fine-grained group awareness is highly dependent on component user in-
terfaces and interaction semantics. Ubiquitous access to the collaboration in-
frastructure (RU5) and mobile work (RU9) are supported by the device-specific
extension features of the Task model (see section 4.6.5). Support for multi-
ple simultaneous collaboration modes (RU6) is provided by the session model,
which is based on the task information provided by the components. Com-
ponents can be used in individual or group sessions, an individual session can
be transformed into a group session (making the transition from individual to
collaborative work) by inviting other users into the session.

Using Groupware Components, flexible groupware environments can be con-
structed. Components are deployed to all other users through the Compo-
nent Broker, making the component-based collaborative system easily extensible
(RU7). Components can be dynamically invoked either by other components
or by user interaction. In this way, the users’ collaboration environment can
evolve over time as the content of their work evolves. End-User tailoring of the
environment is supported by providing users with the ability to combine com-
ponents into configurations, which can be deployed through the central server
and can be shared with other users.

The object-oriented framework provided for implementing the domain data
model and the Groupware Components, along with the UML extensions pro-
posed in this chapter support the developers’ reuse of existing programming

4.11. GROUPWARE COMPONENTS - SUMMARY 95

knowledge (RD1). Reusable shared data models (RD2) can be developed on
the basis of the ModelObject section of the DyCE framework and can be used
in several components due to the dynamic task binding between the components
and the domain data models. The use of specific framework classes for creating
the domain data model allows transparent replication of the data elements which
are to be replicated (RD3); non-shared data items (RD4) can be implemented
using the standard programming language mechanisms (i.e. without using the
framework support provided by the ModelObject and RObject classes). Ac-
cess to collaboration information (RD5) can be performed through the interface
methods of the Session class instance, which each opened Groupware Compo-
nent can reference. The deployment of newly developed components (RD6) is
the functionality provided by the Component Broker. Server-side components
(RDY) are provided as a specific feature of the component framework (see sec-
tion 4.8). The remaining developer requirements are implementation-specific
and are addressed in the concrete implementation, which is described in the
next chapter.

96

CHAPTER 4. GROUPWARE COMPONENTS

Chapter 5

System Implementation

The concept of Groupware Components has been implemented in Java in the
DyCE (Dynamic Collaboration Environment) development framework. This
chapter will present the central implementation details of the different services
and architectural components included in the DyCE system design presented
in the previous chapter. Experiences from the implementation of the DyCE
framework and sample components will be discussed.

5.1 DyCE System Architecture

The system architecture of DyCE can be seen in figure 5.1. Implementation
details of most of the architectural modules will be presented in the following
sections.

The DyCE framework realizes collaboration in the form of a distributed
system, with multiple clients connecting to a single server. The server consists
of the following modules with the following responsibilities:

e Session Manager: Implementation of the Session Management Service
(see section 4.7).

e Component Broker: Maintains the Component Repository, manages
and provides access to the registered Groupware Components.

e HTTP Server: Used for downloading Groupware Component implemen-
tations to the client. Also used for integration of DyCE collaboration tools
into Web-based environments. Maintains HTML document base for use
in Groupware Components (e.g. as help files).

e Object Manager: Maintains the persistent Object Storage. Manages
shared objects (elements of the Shared Data Model level, instances of
RObject and Slot).

e Transaction Manager: Performs transaction validation and concur-
rency control, as well as distribution of validated transactions to the other
connected clients.

¢ ComponentBrokerServer: Mediates between the clients and the vari-
ous server modules accessible through RMI (Remote Method Invocation,

97

98 CHAPTER 5. SYSTEM IMPLEMENTATION

Carnponent Desktop

Shared CObjects

Cormponent -a—

Z O ponen-n

e —
Object [~]
'S 4 # Manager ¥
% Session g. A h 5
— Manager Transactiont—.4 @
Manager o
2
=
[
i L, |
. a
- — ED.-j— -I FEMI (Fermote Method Invocation) |—— — E - -
L
= S S A a
I =
—_ R
Session Transaction
Manager Manager L]
P =, 1]
HTTF & Companant Object M
arve Broker ject Manager| 4 |+
& ——
4 lj ComponentBrokarServef
BTML t Eumpqtnent Object
OcuUments EROSITONY Stnrage

Figure 5.1: System Architecture

see section 5.2.1). Creates and publishes the RMI server modules and
performs lookup operations on behalf of the clients.

The clients each contain the following architectural modules:

e Component Desktop: Client application GUI for accessing Groupware
Components.

e Session Manager: Client-side module of the distributed session manage-
ment service. Maintains the list of sessions active on the client. Creates
new sessions, joins and leaves sessions by interacting with the server-side
session management.

e Object Manager: Client-side module of the distributed Object Manage-
ment system. Maintains the set of replicatable objects currently replicated

5.2. COMMUNICATION IN DYCE 99

to the client (Shared Objects in the architecture diagram). Retrieves
object from the server when needed.

e Transaction Manager: Client-side module of the Transaction Manage-
ment system. Creates transactions, maintains transaction queues and
sends transactions to the server for validation. Received transaction vali-
dation responses and interacts with the Object Manager to maintain con-
sistent object state.

5.2 Communication in DyCE

Since the resulting system described in this thesis is a distributed co-operative
system, attention has to be paid to the underlying communication mechanism
used to link the system. There are a number of different options available as
a basis for communication in distributed systems, each with its distinct ad-
vantages and disadvantages. Client/Server or Server/Client Communication in
DyCE can be categorized according to the different requirements of timeliness of
the communication. Synchronous communication is used for those communica-
tions between systems which require a direct response without which processing
cannot proceed (i.e. the initiator of the communication is suspended until the
response is available), such as a part of a calculation that needs to be performed
on a different host and is required before the entire calculation can be contin-
ued. An example for a communication channel fulfilling the requirements of
synchronous communication is RPC (Remote Procedure Call). This form of
communication is often also called ”in-process” communication, since the pro-
cess context or flow of control seems to pass through the synchronous call from
the sender to the recipient and back again. Asynchronous communication be-
tween client and server (in either direction) is used for communication items
which can be likened to message delivery: The sender creates a message and
sends it on its way to the recipient. It is the responsibility of the underlying
support framework to ensure that the message reaches the recipient. The sender
can proceed, without waiting until the message actually reaches the receiver. In
this form of communication, it is not of interest to the sender that the mes-
sage reaches the client immediately, or that an immediate response is available.
Asynchronous communication can be compared to sending a message (and re-
ceiving a response) through email. This form of communication is also referred
to as ”out-of-process”.

It is important to note the dual use of the terms synchronous and asyn-
chronous in the course of this thesis. On the one hand, we can distinguish
between synchronous and asynchronous collaboration (relating to the perceived
immediacy of response from the other user and to the time bounds within which
changes made to a shared artifact at one site are observed at other sites); On
the other hand we distinguish between synchronous and asynchronous com-
munication in a distributed system, as described above. These two issues are
not entirely independent, but there is no direct relation in the form that syn-
chronous collaboration necessitates synchronous communication. The one use
of synchronous/asynchronous relates to a quality of the overall system, as per-
ceived by its users. The other use relates to implementation-specific details
which influence the system design but not the user functionality.

100 CHAPTER 5. SYSTEM IMPLEMENTATION

5.2.1 Java RMI

Java RMI (Remote Method Invocation) is the Java standard for communication
in object-oriented distributed systems. Similar to the CORBA (Common Object
Request Broker Architecture) distributed object architecture, RMI publishes ob-
jects’ interface methods and allows locating objects and invoking their methods
over the network. RMI can be likened to a object-oriented RPC, which, unlike
CORBA, is not language-independent. DyCE uses Java RMI for synchronous
communication between the client and the server (in both directions).

Overview over Java RMI

In an RMI-based distributed system, a machine (typically a server) publishes
a service object through a naming service. This service object conforms to a
programming interface (i.e. provides a number of public methods which can be
called) which is known to the client and which the client implementation uses
to generate stub objects. These stub objects act as local proxies to the RMI
service object, receive method calls from the client object and forward them
over the network to the appropriate service object.

The following is an example for a simple RMI service object, providing a
single service method for adding two numbers. The interface describing the
service offered by the server object, CalculationServiceInterface, specifies
the operations available to clients of the server object. The actual implemen-
tation of this interface, CalculationServiceImpl, is a class which implements
the actual functionality required for servicing the incoming request (i.e. adding
the two numbers passed as parameters and returning the result).

public interface CalculationServicelInterface
extends java.rmi.Remote

{
public int addTwoNumbers (int numl, int num2) throws
RemoteException;

}

public class CalculationServiceImpl
extends UnicastRemoteObject
implements CalculationServiceInterface
{
public int addTwoNumbers (int numl, int num2) throws
RemoteException
{
return numl+num2;

3

public void publish()
{
Naming.rebind(localHostname+"/Calculate", this);
}
}

public class CalculationClient

5.2. COMMUNICATION IN DYCE 101

{
public void doCalculation()
{
try
{
CalculationServicelnterface calculator;
calculator = Naming.lookup (remoteHost+"/Calculate");
if (calculator == null)
return;
int result = calculator.addTwoNumbers(5,4);
}
catch (Exception ex) { ex.printStackTrace(); }
}
}

While this example appears trivial (and has been stripped of much of the
required programming logic for illustrative purposes), it shows the main con-
sistuents of the RMI object-oriented inter-process communication:

e A public interface (CalculationServicelnterface), which is available
and known to all potential clients of a service.

e A service class (CalculationServiceImpl), implementing this interface
(and potentially adding functionality which it needs to perform its opera-
tions but which is not part of the public service interface). An instance of
this class (the service object) can be published through a naming interface,
so that clients can look it up and invoke its operations.

e A client object (CalculationClient), which uses the RMI naming service
to ”discover” the location of the service object. For this, the client object
requires a name (which can be fixed and well-known, like ”Calculate” in
the above example, or can be looked up from some other source). Using
this name, it retrieves a reference to the service object and invokes the
operations which are part of the service’s public interface.

The RMI support layer has the responsibility of receiving the method calls,
marshaling parameters and return values and invoking the correct object’s
method over the network.

Java RMI in DyCE

In DyCE, Java RMI is used for all synchronous communication between the
client and the server (in both directions). The services published by the server
are available through RMI invocations. Figure 5.2 shows the hierarchy of RMI
interfaces and classes used in DyCE.

These services have the following responsibilities:

e ComponentBrokerServer: The central service object of the server’s
RMI structure. The ComponentBrokerServer manages the instances of
all other public services (as described below) and is used to retrieve these
service objects. The implementation decision has been made not to publish
all RMI server objects through the naming interface (thus necessitating a

102

CHAPTER 5. SYSTEM IMPLEMENTATION

interface
UserBrokerinterface

L UserBroker

interface =
ServarThMBrokerinterface ! \

Server TMBroker

java.rmi.senver.UnicastRemoteObject |ﬂ

interface
java.mi.Remote 1 interface

C: Broker

ComponentBrokerinterface

interface
ComponentBroker Serverlerface ===
|
|
|
|

interface T

ObjectManagerinterfacel™-I —— — — —

|
ServerObjectManager :

ComponentBrokerServer

Figure 5.2: RMI Service object hierarchy

large number of public and well-known names which need to be resolved
using the RMI naming service), but rather to publish only one instance of
the ComponentBrokerServer on the server using a well-known RMI name
and using this to retrieve references to all other RMI server objects. In
this way, the set of available server objects can easily be extended (simply
by adding them to the ComponentBrokerServer), without requiring more
published RMI names (which would, in most cases, need to be hard-coded
into the application). An additional large benefit of this RMI indirection
is that we gain location transparency for the various server objects. The
different RMI server objects, whose references are retrieved using methods
of the ComponentBrokerServer, could be located on multiple machines on
the network (e.g. the ObjectManager could reside on a machine with a
large and fast database back-end, while the ComponentBroker could reside
on a machine which is more suitable for component management). This
distribution could be made transparent to the clients, since the methods
of the ComponentBrokerServer could, before they return the RMI server
references, do an additional step of lookup, locating the server objects
on another machine, In this way, a client would retrieve from machine A
a reference to a service on machine B and invoke that without actually
having to deal with the fact that it is operating in such a complex network
infrastructure. This support for location-independent service objects can
be exploited in settings where performance is of great importance and
where locating all service objects on one machine would be a performance
impairment!.

INote that this service distribution, while realizable with very little changes to the current
implementation has not been fully implemented in the DyCE framework; the discussions of
system architecture, etc., in this thesis therefore apply to the case where all services are located

5.2. COMMUNICATION IN DYCE 103

e ServerSessionManager: The server’s session management service. In-
vocations from the client to this service are used to query session state,
add sessions, etc.

e ObjectManager: The server’s object management service. This ser-
vice provides access to all shared data objects (instances of RObject) and
makes these available to the clients. Synchronous invocations to the ob-
ject manager are used to query object manager state, add new objects,
retrieve objects when required, etc.

e UserBroker: Server-side service which manages all users known in the
DyCE system. This service is used to retrieve user information, validate
logins, etc.

e ComponentBroker: The service managing all Groupware Components
registered in the DyCE server. The ComponentBroker manages the com-
ponent implementations as well as the task binding information. Calls to
the ComponentBroker are used to map tasks to component implementa-
tions, to register new components, etc.

e ClientObject: Callback RMI service object published by the clients to
allow callbacks from the server to the clients. Usually, RMI communica-
tion is uni-directional, i.e. a client invokes a method on the server and
receives a return value, but the server has no way of contacting the clients.
By creating a ClientObject on the client and passing its reference to the
server upon connecting, the server has a remote reference which it can use
to invoke callbacks on the client.

e ClientSessionManager: The client side of the distributed session man-
agement. The server uses callbacks to this object to add new sessions on
the client, query client session state, etc.

5.2.2 Asynchronous network communication layer

As has been described above, communication channels in a distributed sys-
tem can be divided into synchronous and asynchronous communication. Syn-
chronous communication in DyCE is performed over RMI. It is used for invo-
cation of service objects to perform a variety of services needed in the system.
The much larger part of communication (in terms of volume and frequency) in
DyCE is the asynchronous communication part.

Asynchronous communication in DyCE is used as the basis for the object
replication mechanisms, to maintain object consistency across sites. When ac-
cessing or modifying shared objects, the client creates transaction objects (see
section 4.3.5). These transaction object include all read and write accesses to
slots of shared objects. Once a transaction is committed, it is serialized and sent
over an asynchronous communication channel to the server. The server receives
the transaction, performs validation operations and sends the transaction and
additional control objects to the connected clients, again using asynchronous
communication.

on the one central server.

104 CHAPTER 5. SYSTEM IMPLEMENTATION

An asynchronous communication channel has been chosen for this commu-
nication, since the transaction updates do not require synchronous delivery (i.e.
the client does not need to be suspended until the server has received the up-
date transaction, the server does not need to be suspended until all clients have
received the transactions, etc.). Quite the inverse holds, in fact. Transaction-
based communication, accesses and changes to shared object occur very fre-
quently in the distributed cooperative system. If the clients were to deliver this
information synchronously, this would have very serious impact on the system
performance. This has been validated in an early implementation version of the
DyCE framework, where synchronous RMI calls were used to forward transac-
tion objects from the client to the server for processing 2. As the number of
clients connected to the server grew, the system was perceived to slow down
more and more and performance degraded to a point where the system was no
longer usable interactively. More detailed performance measurements of RMI-
based communication in distributed systems have been done elsewhere (e.g. in
[NPH99], [KFCO99]). These evaluations indicate the performance overhead in-
curred by using RMI to pass messages (objects) from the client to the server,
as opposed to more low-level communication mechanisms.

The alternative to this approach is to use asynchronous message passing,
directly using TCP/IP sockets. Asynchronous communication is especially ap-
plicable in the given communication setting, since the client does not expect
a direct return value from the server, in response to the transaction that was
passed from client to server. For socket-based communication, the Java network
library provides easy to use socket and stream implementations, allowing server
socket creation, connecting to a server socket, setting up streams (communica-
tion structures ensuring sequential FIFO delivery of messages) and transmitting
Java objects over these streams. A second generation of the network transport
module in the architecture has been implemented using message streaming over
TCP/IP sockets. This has been found to be a significant improvement over the
RMI-based implementation, since the client was no longer suspended until the
server had fully received the data packet containing the transaction.

Tests of this new implementation in have shown another performance bottle-
neck which starts to affect system performance as soon as more than five clients
are connected to the server and are active simultaneously. This bottleneck is due
to the connection-oriented nature of TCP/IP socket communication. For each
client connecting to a server socket (via a ”bind” call, see [Tan96] for details
about network programming abstractions and operations), a separate socket
is created to which the client is permanently connected - TCP (Transmission
Control Protocol) is a connection-oriented flow control protocol built on top of
the IP (Internet Protocol) low-level packet-based data transmission layer. The
socket to which the client is connected is dedicated to this one client and is
not available for input from other clients. Typically, a multi-threaded server
implementation is used for servers (e.g. in most HTTP Web servers): After
receiving the bind request from the client and setting up a socket connection, a
separate process thread is forked for handling each connection, since data could

2No actual performance measurements have been performed at this stage of the imple-
mentation, therefore no numerical data is available. The value of comparing such data to
current implementation benchmarks would be highly limited, though, since the implementa-
tion of DyCE has progressed so much in the meantime that no objective comparison would
be possible anyway.

5.2. COMMUNICATION IN DYCE 105

arrive over any of the connected sockets at any point in time. This reading
thread then performs a ”read” operation on the socket, suspending until a data
packet has arrived. The reading thread reads the entire data packet from the
network and forwards it to other modules for further processing, before it loops
and waits for the next packet. From this, a number of performance bottlenecks
arise when larger numbers of clients are connected to the server:

e Connection management: Since a dedicated connection is established from
each client to the server, the number of simultaneous socket connections
grows as each new client connects. With a high number of connected
clients, this can create resource bottlenecks on some operating systems
(while the limits on concurrently active sockets are more theoretical in
nature, using multiple threads on multiple sockets does incur a high cost
in thread context memory, allocated buffer spaces, etc.).

e Thread contention: As described above, a separate service thread is used
for each incoming socket connection. As long as concurrent operation of
the clients is low, this approach works very well: Suspended (non-active)
threads require little performance overhead. As a data packet arrives on
a socket, the corresponding suspended thread is resumed, the data can
be read and processed. This can be done with little interference with the
rest of the system. As the number of clients grows, though, the proba-
bility of simultaneous activity (and simultaneously arriving data packets
on multiple sockets) rises. The probability of such simultaneous opera-
tion is extremely high in the application domain of the DyCE framework
- interactive synchronous groupware - where many users are by definition
cooperating and concurrently viewing and manipulating data. As more
and more clients are active and sending data to the server, we are faced
with the issue of thread contention: Multiple threads needing to become
active at the same time in order to process the incoming data packets. This
leads to increased demand for thread scheduling, thread context switching
(suspending one thread, restoring the context of another thread and re-
suming that thread) and - ultimately - for synchronization: the incoming
data needs to be put into data queues and structures ready for process-
ing, these accesses to the shared data structures need to be synchronized
across multiple threads in order to prevent chaos. Thread management
and maintenance as well as synchronization use a large part of the system
performance.

For these reasons, which directly influence performance scalability with re-
spect to number of connected clients, it was decided to re-implement the network
communication layer yet again, this time going from TCP to UDP (User Data-
gram Protocol). UDP communication is not connection oriented. Data items
to be transmitted are wrapped in so-called datagrams, which make up the basic
unit if transmission in UDP communication. The server merely needs one UDP
socket for incoming packets, all UDP packets arrive at this socket and can be
read by a single thread. Regardless of the number of connected clients, a single
UDP input socket is sufficient, since all clients can send their data packets to
the one UDP server socket.

Since, unlike TCP, UDP performs no transmission or error control, UDP
provides less guarantees for message delivery:

106 CHAPTER 5. SYSTEM IMPLEMENTATION

e Guaranteed delivery: UDP packets are not guaranteed to arrive at the
target socket. Packets can be lost somewhere along the way (especially,
IP routers can discard UDP packets if buffer space is insufficient).

o Packet order: UDP packets are not guaranteed to arrive in the same order
in which they were sent. Even if multiple packets are sent from the same
sender to the same recipient, they can arrive in any order at the recipient
(provided that they arrive at all, see previous item). This is due to the
fact the UDP is a connectionless transmission mode, where subsequent
packets sent from one sender to one recipient can take entirely different
routes through the network.

e Packet duplication: UDP packets sent from the sender only once can
nonetheless arrive at the recipient multiple times.

e Restricted size: UDP packets are constrained in terms of the size of the
data they can carry. The high bound of this restriction is usually 64kB,
but the size can be further restricted by intermediate routers, buffers in
the machine’s IP stack, etc.

Since UDP provide so few transmission guarantees, it became necessary to
implement the required flow and transmission control in the DyCE network
communication layer. A network layer has been developed, which provided
the functionality of sending any serializable Java object from the sender to the
recipient. Using a combination of sequence numbers and buffers, packet loss,
packet sequence errors and packet duplication are compensated. The network
transport layer performs the following operations:

e Object serialization: The Java objects to be transmitted from the
sender to the recipient are serialized, i.e. they are transformed into a
low-level byte array representation which can be converted back to the
original Java object at the receiving site. In doing so, knowledge about
DyCE RObject structure is used to provide optimized serialization: If a
reference value in the object to be sent refers to a DyCE RObject, this
value is replaced with a placeholder value wrapping the RObject’s ID. The
object actually referenced is not serialized along with the original object.
In this way, the object serialization avoids sending DyCE data objects
from client to server redundantly.

e Data packeting: The data block resulting from serializing the Java ob-
ject to be sent can be much larger than can be transmitted in a single
UDP datagram. Therefore, data blocks which are too large need to be
split into multiple smaller blocks before they are transmitted.

e Packet flow control: In order to compensate packet loss, packet du-
plication and packet order errors, the sending and receiving side of the
network communication layer employ caches and buffers for storing trans-
mitted packets and for storing packets which cannot yet be processed,
since previous packets have been lost. Using a simple communication pro-
tocol between sender and receiver, based on sequence numbers of packets,
the receiver can request missing packets to be retransmitted. Upon receipt
of a retransmission request, the sender fetches the reference packet from

5.2. COMMUNICATION IN DYCE 107

its send cache and retransmits it. In order to compensate for delivery
problems along the way (e.g. overflowing network buffers in intermedi-
ate routers), the algorithm for retransmission is self-pacing: Each packet
contains a delay counter which is used to calculate a transmission delay
between the sending of this packet and the subsequent packet. Multiple
requests for retransmission of a packet increase the packet delay value, in
effect reducing the potential for network congestions, since the network is
given time to deliver the one packet before the next is transmitted. Suc-
cessful reception of a packet is confirmed using a confirmation packet, the
sender can then remove the packet from its packet cache.

e Packet reassembly and deserialization: After the receiver has re-
ceived all packets belonging to a serialized object, it can reassemble the
packets in the correct order (using the packet sequence numbers) and de-
serialize the Java object contained therein. This Java object is placed into
an incoming queue ready for processing by the other system components.

The error control algorithm implemented for the UDP-based delivery uses
an outgoing queue for unconfirmed packets in the sender, along with a sequence
number counter. The receiving side uses two packet queues, one for caching
packets received out-of-sequence (sequenceCache) and one for caching packets
received in the correct order but which are parts of a multi-packet message of
which the final packet has not yet been received (packetQueue). Additionally,
the receiver maintains a counter for the last correct sequence number received
from each potential sender (last_correct_seq(sender)). Each packet carries a
unique sequence number, p.seq, for which there is an ordering relation ”<”, to
discover whether the packet sequence number is before a given other sequence
number (i.e. if a packet’s sequence number is lower than another sequence
number). The algorithm for packet processing at the receiving side is shown
below (in a Java-like pseudo-language, for illustrative purposes).

/* Method called to process an incoming packet */
receiver.handle_packet (packet p)
{
if (p.seq <= last_correct_seq(p.sender)
{
/* The packet is a duplicate of one that has
already been processed successfully */
discard_packet (p);
}
if (p.seq > last_correct_seq(p.sender) + 1)
{
/* At least one packet lost between the last one successfully
processed and the one received. Store current packet for later use. */
sequence_queue.add (p);
sequence_queue.sort;
// Request a resend of the missing packets
for i=last_correct_seq(p.sender) to p.seq-1
p-sender.request_resend(i);
}

if (p.seq = last_correct_seq(p.sender)+1)

108 CHAPTER 5. SYSTEM IMPLEMENTATION

/* The packet is correct in the sequence */
last_correct_seq(p.sender) = p.seq;
if (p.status = MORE_TO_COME)
{
/* The packet is part of a multi-packet message
of which more packets will follow */
packet_queue.add (p);
}
if (p.status = LAST_OF_SEQUENCE)
{
/* The packet is the last (or only) packet
of the message */
packet q;
/* Concatenate all pending packets of this message */
while (packet_queue.size > 0)
{
q = q + packet_queue.first_element;
packet_queue.remove_first_element;

X
q = qtp;
/* q now contains the entire message and can
be deserialized and processed */
object o = g.deserialize;
0.process;
}
3
if !(sequence_queue.is_empty))
{
/* Does the sequence queue contain elements which can
now be processed? */
while (sequence_queue.first_element.seq =
last_correct_seq (sequence_queue.first_element.sender)+1)
{
packet p = sequence_queue.first_element;
sequence_queue.remove_first_element;
this.handle_packet (p);
}
X
b

Even though the network transport layer as described above seems to dupli-
cate a large part of the transmission control properties already present in TCP,
it is an important prerequisite for high scalability. With this network transport
layer, larger numbers of clients can be handled without serious performance
degradation on the server side.

Using the re-implemented UDP-based network communication layer, a test
of connecting more than five clients to the DyCE server at the same and per-
forming interactive operations on all five clients simultaneously was repeated.
The resulting performance was perceived to be higher than in the RMI-only case

5.2. COMMUNICATION IN DYCE 109

and also higher than in the TCP implementation. No systematic performance
evaluations have been done, though. systematic tests of system performance
under heavy load need to be done in the future. Also, additional steps need to
be taken to improve system performance even more, to allow DyCE to scale to
collaboration sessions including twenty or more active users.

Multicast delivery as a potential extension

In DyCE communication occurs between a single server and multiple clients.
The previous section described how UDP packet delivery is used to implement
asynchronous message-based communication. In the communication layer as
currently implemented in DyCE, it is the server’s responsibility to find the
right clients to which to send an object update packet. In many collaborative
situations, the set of connected clients does not change often. Also, in many
cases all clients taking part in a collaboration session will receive much the same
data packets, since the client object managers will to a large extent hold replicas
of the same objects.

This fact can be taken advantage of to optimize the network interaction done
by the server. Currently, if a transaction is to be sent to ten clients, the network
transport layer is invoked ten times in order to deliver the transaction for each
client. The network transport layer serializes the data packet ten times and
sends ten (or n*10, in the case of the transaction needing to be split up into
n packets) UDP packets over the network. Using UDP multicast, this network
traffic can be reduced and the performance (and therefore the throughput) of
the server can be improved.

Multicast packet delivery is a means for sending a single data packet to
multiple recipients. IP multicast transfer is similar to UDP in that it is packet-
based and not connection based. Instead of sending a packet to a single recipient,
it is sent to a multicast group, which other systems need to join in order to receive
the packets (see [HSH99] pp. 476ff for more details).

The network transport layer based on UDP provides much of the function-
ality which would also be needed when using IP multicast: packeting of data,
sequence management, handling of packet loss, reassembly of packets at the
receiving end. A logical extension to this would be to send the objects not to a
single recipient but to a group of recipients which could be matched to a multi-
cast group. Extensions to the network layer would need to be done to take into
account that different clients could receive different packet sequences, with some
packets reaching some clients, others reaching other clients (and in any order).
This could mean more flexible decisions to resend a lost packet to an individual
client (thus in the worst case sending a single packet more often than in the
non-multicast case) or resending it to the entire group (e.g. if more than 50
percent of the connected clients requested a packet resend within a certain time
frame. Additionally, the server would need to perform management of multicast
groups and multicast addresses.

More complex connection management, using a combination of IP multicast
and direct delivery, would need to be performed in situations where not all
clients are on a single sub-net. Multicast packets cannot be expected to go
across sub-net boundaries. In fact, in most cases they don’t (the exception
being the use of the MBone, the Multicast backbone, a globally available IP
multicast communication structure based on explicit bridges between sub-nets

110 CHAPTER 5. SYSTEM IMPLEMENTATION

participating in the MBone). In configurations where clients are on different
sub-nets, mechanisms would need to be employed in order to find an optimal
grouping of the clients into a combination of multicast groups and direct UDP
packet delivery.

All in all, using IP multicast packet delivery could prove to be a worthwhile
extension to the network transport layer, proving especially beneficial in those
cases where a large number of clients are active in the same collaboration ses-
sion(s) and need to have replicated many of the same objects. A more detailed
examination of the multicast communication issues and an implementation of
the extended network transport layer is beyond the scope of this thesis.

5.2.3 Hypertext Transfer Protocol - HTTP

The Hypertext Transfer Protocol, HT'TP, is the standardized protocol used -
initially - for communication between Web browsers and Web servers. HT'TP is a
stateless request-response type protocol used for requesting items of information
(the contents of a Web page, an image or other data forms) from a server. HTTP
transport uses a single server socket (port 80 is the port usually used for HTTP
communication) to which clients connect. A request packet, including among
other items information about the requested resource and the expected return
formats, is sent from the client to the server. This analyzes the request, locates
the requested file (or, as is increasingly the case, generates result content on-
the-fly) and returns the data to the client. The client/server connection is then
closed (please note that this description is a simplification; all details of the
HTTP protocol specification can be found in [FGM199]).

The DyCE server includes a complete HTTP server, capable of both HTTP
download as well as HT'TP uploads. DyCE uses the HT'TP protocol to down-
load the component implementations from the Component Broker and also uses
HTTP download images and other resources from the Web server integrated
in DyCE. Additionally, components deployed via the server from a client are
uploaded to the Component Broker using HTTP put.

A clear advantage of using HTTP transfer for these forms of transmission
is the ability to use standard HTTP transfer support already available in the
Java runtime library. HTTP download is one of the ways in which the Java
class loader downloads class implementations, e.g. when running an Applet in
a Web page. This mechanism needed to be extended to make it suitable for
locating and downloading Groupware Components from the server (e.g. more
sophisticated methods to locate the component implementations on the server
than a single HTTP URL needed to be added), but the Java programming
library provides a solid basis on which to base these extensions.

5.3 Integration with the Java standard API

Since DyCE is a development framework for the Java programming language,
it is important to examine how the idioms and design patterns chosen for the
framework integrate with the remainder of the rather large standard Java pro-
gramming library, e.g. the parts used for user interface development. An im-
portant requirement (RD1) stresses the need for developers to be able to make
use of as much of their previous programming experience as possible.

5.3. INTEGRATION WITH THE JAVA STANDARD API 111

5.3.1 The Swing GUI library and reusable cooperative
widgets

Groupware Components are visually interactive, i.e. they have strong ties to
the user interface. The user interface development library introduced in re-
cent versions of the Java SDK is the Swing GUI development framework. The
Swing library, which was introduced as a successor and an extension of the
Java Abstract Windowing Toolkit (AWT), provides a class hierarchy consisting
of nestable Containers and components, which can be used to build complex
graphical user interfaces.

The components of the Swing library follow a modified Model/View/Controller
approach: A graphical component, e.g. a table (JTable), acts as both the view
and the controller and has a data model (a subclass of AbstractTableModel).
Modifications to the component’s model are notified to the component through
listener interfaces (e.g. the table class JTable implements the interface TableModelListener
which provides a way in which the table’s data model can signal changes to all
components which are currently registered as its listeners.

The DyCE framework extends the Swing GUI library with the Groupware
Components. The groupware Component base class, MobileComponent, is a
subclass of the Swing library’s class javax.swing.JPanel, i.e. it represents a
rectangular area in the user interface and can contain any other Swing compo-
nents. In this way, DyCE Groupware Components can be used in many places
in user interfaces created using the Swing library, e.g. in dialog windows, in
complex layouts, etc.

Maintaining view consistency

Additionally, the mechanism for notifying DyCE Groupware Components about
changes to the shared data model mirrors related mechanisms in the Swing li-
brary: A group of Java interfaces, ObjectChangelListener and SlotChangelistener
are used to bind Groupware Components to objects of the replicated object set
and to be notified about changes occurring on these objects. The components
can then update their local displays accordingly, reflecting the new data state
at the user interface.

As has been discussed, DyCE separates the data (or domain) model objects
from implementation of the components working on these objects. When a com-
ponent is invoked on a shared object, by performing a task, the shared object is
bound to the component as its model. According to the Model/View/Controller
pattern of application development, the DyCE component acts as both the view
and the controller.

Similar to the approach used in Java’s GUI framework, Swing, the com-
ponent is bound to the shared object as an observer (in the DyCE frame-
work, the component becomes an ObjectChangeListener on the shared ob-
ject). Changes to shared objects are always done within transactions (see sec-
tion 4.3.5). In the validation phase of a transaction (either when a transaction
received from the server is being replayed on the client or when a transaction
originating on the client is confirmed by the server), the framework gathers all
ObjectChangeListeners registered on the affected objects and notifies these
(similar to the listeners in the Swing framework, a listener interface method,
objectChanged (ObjectChangeEvent o), is called, passing additional informa-

112 CHAPTER 5. SYSTEM IMPLEMENTATION

tion about the changes that occurred in the event object. It is the components’
responsibility to react to these notifications and update their display accord-
ingly.

This form of notification by model changes through the observer or listener
mechanism is close to the way in which GUI programming is done in the Swing
framework. The chosen paradigm should therefore be familiar to Java program-
mers.

DyCE extensions of Java widgets

In order to relieve developers of the burden of implementing similar GUI items
over and over again, DyCE provides a number of " DyCE-enabled” Swing com-
ponents. These are specialized extensions of Swing widgets (such as a specialized
text input field or a specialized checkbox) which can be bound to specific Slots
of the shared object model (for instance, the DyCE-enabled text field can be
bound to any Slot containing String data). The Swing widgets have been ex-
tended to automatically reflect user input (e.g. editing of the text) in the bound
Slot contents and to react to changes of the shared data model by automatically
updating their display. By using such DyCE-enabled Swing widgets and bind-
ing them to elements of the DyCE shared object model, developers can more
quickly assemble collaborative user interfaces. The extended widgets conform
to the same programming interface as the ones with which developers are al-
ready familiar, with the added requirement to bind a DyCE-enabled widget to a
certain Slot. Thus, such extended widgets can be used almost interchangeably
with regular Swing widgets.

It is important to note, though, that such DyCE-enabled Swing widgets
are used as part of Groupware Components and are not themselves Groupware
Components. Extended Swing widgets do not apply to a certain model object
implementation (they are merely bound to Slots which are contained in the
shared object implementation), nor do they publish tasks which can be invoked.

5.3.2 Implementing Transactions in Java

As has been discussed in section 4.3.5, accesses to the shared data objects need
to be encapsulated in transactions. These transactions need to be written by the
developer implementing the shared domain data model or the components. For
performance reasons, the DyCE framework does not use locking mechanisms
to synchronize access to shared resources. Rather, transactions are allowed
to proceed (optimistically) on the client originating the transaction. When a
conflict is detected post-hoc, the effects of those transactions which were in
conflict with other transactions need to be selectively undone (see [Wei93]).

A transaction performed on one of the nodes of the distributed system can
be understood to consist of three phases: the preparation phase, the transaction
operation phase and the transaction commit (validation) phase. In the trans-
action preparation phase, all necessary initializations are performed which are
required to allow the transaction to be performed. A transaction object needs to
be initialized, ready to add the operations performed in the transaction. In the
transaction operation phase, read and write accesses to the shared data objects
are performed and the appropriate information is added to the transaction ob-
ject. In the transaction validation phase, the transaction is wrapped up, sent to

5.3. INTEGRATION WITH THE JAVA STANDARD API 113

the server for validation and added to a local ”pending” queue. After the server
has reached the decision whether to allow the transaction to commit, it sends a
confirmation or cancel message to the originating machine and distributes the
accepted transactions to all other connected systems. If the transaction is not
allowed to commit, the system on which the transaction has originated needs
to perform an undo of the transaction and any transactions performed in the
meantime.

When providing framework support for programming transactions, the char-
acteristics of the components need to be taken into account, especially the multi-
threaded nature of the Java programming language. Transactions need to be
performed in a thread-safe manner; this means that even in a multi-threaded
application, the ACID properties of transactions need to be maintained: a trans-
action being performed on one execution thread must not be able to affect the
operation of transactions on another thread.

An initial approach to programming support for transactions in the DyCE
system consisted of a TransactionManager class with the appropriate support
methods for the transaction processing, implementing the following interface:

public class TransactionManagerInterface

{
// Get the TransactionManager for the local system
public static TransactionManagerInterface getTM();

// Start a new transaction
public boolean beginTransaction();

// Retrieve the current transaction
public Transaction getCurrentTransaction();

// Commit the current transaction
public boolean commit();

// Abort (undo) the current transaction
public boolean abort();

3

Using this interface, transactions could be programmed in user code, which
accessed values store in the instances of the shared data model. A transac-
tion could be begun using the beginTransaction method. This would do the
necessary initialization operations for the transaction preparation: Create an
instance of the Transaction class, initializing the transaction’s write set and
read set. Operations performed on the Slots of the shared data objects result
in the appropriate txOperation instances being added to the running transac-
tion. When committing a transaction with the commit method, the transaction,
including its read set and write set was serialized and sent to the server for val-
idation. The transaction was added to a pending transaction queue, waiting for
confirmation or cancellation from the server. A typical piece of user code, in a
shared data model of a geometrical shape, would look like this:

// Move the shape by an x and y offset

114 CHAPTER 5. SYSTEM IMPLEMENTATION

public void moveShapeBy (int dx, int dy)
{
TransactionManager.getTM() .beginTransaction();
int x = get("XPos");
int y = get("YPos");
X = x+dx;
y = y+dy;
set ("XPos",x);
set ("YPos",y);
TransactionManager.getTM() .commit () ;

}

The problem with these segments of user code, which caused unpredictable
effects in the course of highly active collaboration sessions with components built
on the DyCE framework was its lack of thread-safety. It is easy to construct
cases of transactions constructed as above running in different threads which
influence each other. Using this form of in-line transaction programming, such
effects are hard to avoid. Java offers the synchronized keyword to synchro-
nize multiple threads on a certain object (i.e. only one thread may be active
in a synchronized method at a time). This keyword is offered to allow Java
programmers to prevent multi-threading problems. Unfortunately, simply mak-
ing the transaction method moveShapeBy in the above example synchronized
would not have solved the concurrency problems, since other methods in other
objects (which would not be affected by the synchronized keyword) could be
performing operations which affect the operation of the transaction. Taking
into account the fact that also creating new transaction objects and commit-
ting transactions can affect each other, the problem lies not only in the accesses
to the Slot values. Merely making the beginTransaction and commit methods
synchronized would also not have been sufficient, since conflicts can also occur
at any point in the user program between these two instructions. It would be
impossible (and error-prone) to explicitly synchronize all segments of user code
where transactions are being created, Slots are being accessed, etc.

The solution to this problem is to use the Java programming language feature
referred to as anonymous inner classes (unnamed classes encapsulated within
the implementation of another class, visible only within the context of the sur-
rounding class) and providing a base framework class Transaction from which
user transactions can be derived as anonymous inner classes, can be instantiated
as transaction objects and can be performed. In this way, the transactions be-
come indivisible and synchronizable transaction blocks, which can be evaluated
under control of the DyCE framework. The Transaction base class provides the
single entry point for performing the transaction - the doIt() method, which
cannot be overridden in subclasses. User code is implemented in a transaction
body method, txBody():

public class Transaction

{
protected Object txResult;

/.

5.3. INTEGRATION WITH THE JAVA STANDARD API 115

// Abstract method for implementing user code
public abstract void txBody();

public synchronized final Transaction doIt()

{
beginTransaction(); // Make a transaction
txBody O ; // Perform the user code for the transaction
doCommit () ;
return(this);
}
public Object result()
{
return txResult;
}

}

By making the dolt method synchronized and final, it is ensured that only
one thread may be active in the dolt method at a time. The synchronized
construct is re-entrant, though, meaning that the same thread may run through
the dolt method several times. This new and thread-safe Transaction class
can now be used in user code as follows:

// Move the shape by an x and y offset
public void moveShapeBy (int dx, int dy)
{
new Transaction()
{
public void txBody()
{
int x = get("XPos");
int y = get("YPos");
x = x+dx;
y = ytdy;
set ("XPos",x);
set ("YPos",y);
}
}.doIt();

3

This implementation of transaction blocks exhibits several features which
are desirable for the transaction model in the DyCE framework. Transactions
can be mested: A single thread can perform as many nested calls to the dolt
method as it likes. The implementation of beginTransaction only needs to verify
whether there is already a running transaction before initializing the read set and
write set (so that no pervious operations are accidentally removed). In everyday
development of DyCE components, the code written in the txBody method very
often calls other methods of other objects which also contain transactions. These
transactions are now nested into the surrounding transaction. When the outer-
most transaction exits its user code routine, the doCommit method commits

116 CHAPTER 5. SYSTEM IMPLEMENTATION

it along with all nested transactions. The solution is thread-safe: Due to the
assertions of the synchronized construct, no two different threads can be active
in the dolt method at the same time. After the first transaction has entered
the dolt method, subsequent calls to dolt on other threads are suspended until
the initial transaction commits. Also, there can be no dangling locks: When
the transaction code leaves the dolt method - whether by an error condition or
after successful completion - no locks or semaphores remain to be removed in
order to permit other transactions to proceed.

5.3.3 Type wrappers for Java types

As has been discussed in section 4.2.6, knowledge about the functionality of
complex data structures can be used to increase possible concurrency of oper-
ations. As specified in the previous chapter, Slots provide two basic methods
for accessing them: getValue() and setValue(). These accesses are monitored,
wrapped in transactions and transmitted via the server to other clients. Us-
ing such elementary Slot operations, a Slot can contain any data type and Slot
accesses always conform to the following simple pattern:

1. Read the Slot’s contents into a temporary variable
2. Modify the object or data value

3. Write the changed value back to the Slot.

In the case of complex or large data structures (e.g. a Slot containing a list of
elements in a Vector or other list structure), writing the changed Slot contents
in step 3 results in a transmission of the entire data structure contents to all
connected clients (since the framework can have no knowledge of what exactly
changed in the data object and has to assume that an entirely new object has
been written into the Slot). This approach, while homogeneous and functional,
can lead to a large volume of unnecessary data being transmitted, if many small
changes are made to large data structures.

In order to improve on this situation, the DyCE framework provides DyCE
wrappers for common complex data types. So far, wrappers have been developed
for the linked list class Vector and the Hashtable data structure. Additional
data type wrappers will be developed as when required. The DyCE type wrap-
pers inherit from the Java base classes and are therefore polymorph with these
classes. Along with these new subclasses, extensions to the Transaction class
hierarchy presented in section 4.3.5 have been implemented. All modification
methods in these classes (methods modifying the data object’s contents) have
been overridden according to the following pattern:

1. Check for running transaction. Throw exception if no transaction active;

2. Create instance of appropriate changeOperation subclass, storing infor-
mation about current state for later undo operations;

3. Perform requested change on local data structure;

4. Store information about the change to be done in the changeOperation
subclass instance;

5.3. INTEGRATION WITH THE JAVA STANDARD API 117

5. Add changeOperation subclass instance to running transaction.

For each overridden modification method, an appropriate subclass of changeOperation
needs to be implemented, which is able to perform and undo the changes re-
quested by the method invocation.
When a transaction received over the network is being replayed locally
by the Transaction Manager, the changeOperation subclass instance method
perform() will be called, to replay the change locally by applying the change
on the local replica of the data structure.
As an example, consider the following code snippets from the DyCE-enhanced
Vector (linked list) data structure, specifically the method and change opera-
tion class for adding a new element to the list:

/** Helper class for Vectors in the data model */

public class Vector
extends java.util.Vector

{

/** Wrap addElement for ModelObjects, thereby hiding
the Vector’s access to RObjects from the client.
DyCE-Aware! Adds the appropriate changeOperation */
public synchronized void addElement (Object o)
{
if (o instanceof GroupComponents.0ObjectModel.ModelObject)
super.addElement (((GroupComponents.0ObjectModel.ModelObject)o).
getDatalbject());
else
super.addElement (o);
try
{
if (oid == null)
{
return;
}
// Create the changeOperation instance and add to
// running Transaction
Transaction.getCurrent () .addOperation (
new VectorAddElement (
slotname,
oid,
ObjectManager.getObjectManager () .getObject (
oid, ClientObject.getMyClientID()).getLClock(),
o)
)3
// Here we need to notify the Slot of changes
GroupComponents.0ObjectModel.Slot.changed (oid, slotname);

118 CHAPTER 5. SYSTEM IMPLEMENTATION

catch (Exception ex)
{

ex.printStackTrace();

3

}

/**
* changeOperation for adding an Element to an
* instance of GroupComponents.Utilities.Vector.
*/
public class VectorAddElement

extends VectorChangeOperation

implements Serializable

{
Object addedObject;
public VectorAddElement (String sn, ObjectID o, int lc, Object added)
{
super (sn, o, lc);
addedObject = added;
}
/** Perform this operation simply by actually adding the object */
public void perform()
{
Vector v = (GroupComponents.Utilities.Vector)
(getAffectedObject());
v.addElement (addedObject);
}
/** Undo the effects of this operation */
public void undo()
{
Vector v = (GroupComponents.Utilities.Vector)
(getAffectedObject());
v.removeElement (addedObject);
}
}

Since the DyCE transaction framework ensures that operations are per-
formed and undone in order, the changeOperation implementation can perform
the requested functionality by adding the given object when performing the
operation and removing it when undoing the operation.

For Slots containing such DyCE-enabled data types, the component devel-
oper is no longer restricted to using only the read/modify/write interaction
paradigm. Rather, he can use the more natural way of interacting directly
with the complex data structure implementation and rely on the fact that the
framework will handle these changes correctly and maintain all object replicas’
consistent state.

5.4. THE GROUPWARE DESKTOP 119

5.4 The Groupware Desktop

The Groupware Desktop is the standard client application available as part of
the DyCE framework. The desktop (see figure 5.3) provides end-users with sup-
port for accessing the Groupware Components and shared objects. Additionally,
it provides some awareness information. It has been developed to fulfill the re-
quirement RU1, providing access to shared artifacts and collaborative tools.

IS [=] E3

tietze@DyCE
File Infio Desktop Looké&Feel ?

User List
{1 Daniel A. Tietze

i R

[Flcomponent Browser :

[

DiagramEditor
open

k edit

Hew Component

Status: T= Confirmed : -925248871:974032412940; unconfirmed : 0

Figure 5.3: Groupware Desktop client application

The Groupware Desktop shown in figure 5.3 provides the following features:

e Component Browser: The Component Browser (in the window on the
left part of the screenshot) provides direct access to all Groupware Compo-
nent currently registered in the system. By interacting with the Compo-
nent Browser, users can create new shared objects and invoke tasks upon
these. Invoking the tasks leads to creating a new session, and loading and
opening the necessary Groupware Component in this new session, as has
been previously described. The screenshot shows the popup menu used by
the user to create a new model object instance for a shared drawing and
invoke one of the tasks "open” and ”edit” on the newly created instance.
This is the way in which end-users create new sessions and set up new
documents which they wish to use and edit collaboratively.

e Registering a component: Transferring components uses the JAR
(Java Archive) mechanism supported by the Java Development Kit. A
JAR file is a compressed archive of all class implementations and resources
belonging to a Groupware Component. This includes any icons or other
external support files required by the component implementation. Using
the ”New Component” button on the user interface, end-users can register

120 CHAPTER 5. SYSTEM IMPLEMENTATION

new Groupware Components to the Component Broker. After selecting
the component implementation JAR archive, setting a name and an icon
to use for that component, the component implementation is uploaded to
the Component Broker. The newly registered component shows up in all
connected users’ Component Browser and can be used right away, without
the need to shut down and restart the clients. This is the means by which
users can dynamically extend the working environment (see req. RU7).

e Desktop: The desktop part of the Groupware Desktop provides function-
ality similar to the desktop environments from familiar operating systems.
Users can place shortcuts to shared objects on their desktop for easy access
to these objects (see icons e.g. "My Diagram” in screenshot). Again, a
popup menu provides direct access to the task information stored for each
of the model object classes and allows invoking a task on a shared object,
creating a new session and opening the necessary Groupware Component
on the shared object.

e User list: The user list, on the right-hand side of the window, provides a
list of all users currently logged in to the system. This list can be used to
contact other users and to invite them into running collaboration sessions.

When the user invokes a task on a shared object, either from one of the
icons on the desktop or from the Component Browser, a new session is created,
containing the component discovered for that task. For each session, an inde-
pendent window is created which contains all Components used in that session
(see figure 5.4). In each session window, there is information about which users
are currently in the session (see top bar in right-hand window). Users can be
invited into running sessions e.g. by dragging the representative of the user
from the Groupware Desktop user list to the user list in the session window.

The menu (see indicator in figure 5.4) in the component-related frame in
the session window allows invoking additional tasks on that component’s data
model. These tasks can be invoked within the same session (thereby adding a
component to the running session, performing the task for all users currently in
the session) or in a new session, thereby spawning an independent session on the
same data model. By using multiple windows to each represent a running session
and providing access to elements of the shared object space and components,
along with the possibility for opening new sessions and adding components to
running sessions, users are provided with a large degree of flexibility in creating
their collaborative settings. Individual sessions can be spawned e.g. to work in-
dependently on other sections of a shared document, other users can be invited
into such spawned sessions. Also, totally independent shared objects can be
created and component invoked on them, in order to perform individual tasks
or private, non-coupled, work in parallel. Thus, multiple simultaneous collabo-
ration modes as well as transitions between them (RU6) are supported in the
Groupware Desktop.

5.5. END-USER TAILORING 121

tietze@DyCE

File Info Desktop

[=]Component Browser :
=

ORCA

v DiagramEditor

HTML Browse

S
@) HTML Control
Composition

254 Chat

-

New Component

atus: Tx Confirmed : -92524897 -

Session menu for
invoking additional
Tasks.

=10
Look&Feel 7
User List
{ Daniel A, Tietze
a3 i Jr
Egilielze's DyCE 5Session
View
tietze rubart |
EoRcA:

. . Eq]
New Session Same Session |

age Title: |<untitied= "Black - ||sansserif - " 8 - ||2 - |

|| Eb| B
2| o< | Eb| B

Figure 5.4: Groupware Desktop and a running session

5.5 End-User tailoring

An important requirement for the Groupware Components was to provide end-
users with support for combining existing components as the need to do so arises
in the course of the collaborative process (req. RU10). The DyCE framework
includes as a Groupware Component the tool used for coupling Groupware Com-
ponents and deploying the newly combined components to other users. Using
this tool, Groupware Components can be coupled into so-called Configurations.
A Configuration is defined as follows: A Configuration consists of a human-
readable name and a set of Configuration Items. A Configuration Item is a
tuple CI = {name, class, task,rect} where

e Cl.name is a human-readable name for the Configuration Item,

e (Il class is the name of a shared object class,

e Cl.task is the identifier of a task published on CI.class,

122 CHAPTER 5. SYSTEM IMPLEMENTATION

e (lrect is a rectangle denoting relative layout information

5.5.1 Use of the end-user tailoring tool

The configurations can be collaboratively created in a visual Configuration Ed-
itor (see figure 5.5), which allows naming the configuration and adding new
Configuration Items to the configuration. The layout editor (see lower part of
Configuration Editor in screenshot) allows relative positioning of the rect infor-
mation for each Configuration Item, using a rubber-banding feature.

E;a tietze's DyCE Session

View
tietze Invite user
[Composition
New Session Same Session |
Name: [Multichaf | IE1 Mutti-window
Mame | ModelOhject class | Task
DrawingAres Diagrams.Diagram edit
ChafTranscript Chat.SharedChatMo... |open

DrawingArea

Grid : 4

| Increase Grid || Decrease Grid

ChatTranscript

Add Attribute

Figure 5.5: Using the Configuration Editor to compose Groupware Components

The shared model of the Configuration Editor is a Configuration object.
This Configuration object can be treated like all other DyCE shared objects:
A shortcut can be placed on the desktop, its ID can be used to refer to it from
other components, etc. Additionally, a configuration can be ”started”. Starting
a configuration results in creating instances of all shared object classes included
in the Configuration Items, performing the specified tasks on these and laying
out the resulting components according to the layout information contained in
the Configuration Items. The resulting combination of components is displayed
as a single tool in a new session window, other users can be invited into the
session and use the combined components collaboratively. The Configuration
Editor shown in figure 5.5 is being used to combine a shared chat component,
accessed by introducing a shared chat model and the appropriate task, with a
group drawing tool, accessed by introducing a shared drawing model and the
appropriate task. The collaborative use of this configuration is shown in figure
5.6. Here, two users are collaborating using the resulting combined component,
which provides a combination of chatting and drawing, to support a graphically

5.6. SHARED WORKSPACES ON THE WEB 123

enhanced chat session (or to use the chat tool to discuss the contents of a shared
drawing).

53 tietze’s DyCE Session - configured

View
tietze rubart Invite user

[Elconfigured = 2 -

DREASENEERE

Daniel ‘ SignOff

Daniel: Can you explain the hottom right box?
essica: That's for persistent starage:

JED

Say'.|

Figure 5.6: Collaborative use of combined Groupware Components

5.5.2 Configuration based on tasks

As can be seen, the combination of Groupware Components does now directly
access the components to be combined. Rather, the end-user specifies shared
objects and tasks to invoke on them and performs a rough relative layout. This
approach carries the flexibility gained from the task model through into combin-
ing the components. Instead of specifying fixed configurations of specific tools,
the decision of which tools to use is left to the system, based on the information
in the task model. Whenever a configuration is started, the tasks contained
therein are resolved using the Component Broker and the correct components
are identified. Should the set of available components change, or should dif-
ferent components be used for different users, the configuration still remains
valid. Even if components are replaced with ones with enhanced functionality,
the system ensures that these components work in all configurations based on
the shared object space.

5.6 Shared Workspaces on the Web

One requirement stated in chapter 2 is that of ubiquitous access to the col-
laboration support system (RU5). One computing infrastructure which is be-

124 CHAPTER 5. SYSTEM IMPLEMENTATION

coming increasingly available to a wide variety of systems is the World-Wide
Web (or Web for short). By making DyCE components accessible over the Web,
DyCE-based shared workspaces can be accessed from virtually any Web-enabled
system.

5.6.1 Downloading DyCE itself

As has been shown in section 5.1, the DyCE server (the server’s user inter-
face is shown in figure 5.7) includes an HTTP server, which allows DyCE to
serve itself to Web-based clients. DyCE components can be embedded in Web
pages and can be used for collaboration over the Web and for ubiquitous access.
Downloading DyCE from its own HTTP server also avoids problems with the
”sandbox model”, in which Applets may only connect back to the server from
which they were loaded. After downloading DyCE from its own server, the
DyCE Applet is allowed to connect back to the DyCE server using UDP and
RMI, which allows the distributed system to be established.

[ComponentBroker Server - D.Tietze, 1999 =] B3
Server Management Database

User List

JR

Daniel A Tietze
Jirg M. Haake
Stefll

hartin Wessner

Creating a security manager -
rmiregistry not found - creating my own

i Creating ComponentBrokerServer instanc
Starting RMI server process —

=

Objects : 8
Clients: o
Sessions: 1]
DB Size : 460

DyCE Server ready and accepting connections

Figure 5.7: The DyCE server ready for use

5.6.2 Transferring Components

Components registered in the Component Broker are stored in JAR (Java
ARchive) files, which include the implementation files of the Groupware Com-
ponent, as well as the implementation files which make up the shared data files.
Along with these Java class files, the JAR archive contains any resources, such
as icon images, help texts, etc. which are required by the component. In order
to allow retrieval of the component and its supporting files at runtime, the Java
class loader has been extended to make use of the Component Broker. Any
class file or resource file requests which cannot be fulfilled by local access (i.e.
by accessing a locally stored file) is delegated to the server’s Component Bro-
ker, which has access to the previously registered JAR archive and can serve the
files from there. Attempting to access local versions of the requested files is a
means for providing developers with the ability to to test out their component
implementation together with the server, without having to re-register the com-
ponent after every change. Obviously, for deployed DyCE installations no local

5.7. EXPERIENCES FROM DYCE DEVELOPMENT 125

component implementations are used, in order to prevent version mismatches
between the collaborators’ installations.

Deployment of new components must also be supported. For this, the HTTP
server in DyCE also accepts HTTP PUT requests for uploading JAR files con-
taining components. This allows uploading components to the server using an
HTML form (see figure 5.8). This HTML form can again be served from DyCE’s
HTTP server, providing an easy Web interface to extend the system. Similar file
uploads to a shared workspace have also been realized in BSCW [BAB*97] but
in BSCW this mechanism is used to maintain repository contents, not extend
the CSCW system itself.

pCE Component Upload - Metzcape

Datei Bearbeiten Ansicht Gehe Communicator Hilfe

L d Y A d e B 3 & O

Zrichk i Meuladen Anfang Suchen Guide Drucken Sicherheit Shor,

Adding a new DyCE Component

This form can be used to upload a DyCE Groupware Component to the server. In order
to correctly register the component, select the implementation archive (JAR) file and
provide the recuired information,

FPlease note - depending on the size of the component archive yvou upload, the transfer
might take a while. Please be patient.

JAE. Archive : I Durchsuchen... |
Cotnponent Short MName |
Component Ioon I Durchsuchen... |

Upload Component |

DywCE Home page

’E ={D‘=| |D0kument: U bermittelt

Figure 5.8: HTML form for Component upload

5.7 Experiences from DyCE development

The DyCE framework was developed following an iterative development model
(sometimes also referred to as rapid prototyping - a term which seems to sound
a bit negative). An initial prototype of the framework and some components
using it was initially developed in a rather short time. Subsequently, there
were two forms of tests - the framework suitability for developing groupware
components was tested by introducing several developers (some very experienced
in Java development, others less so) to the framework and having them build
additional components. In parallel, the components which were already present
were tried in various collaborative as well as single-user settings. The aim

126 CHAPTER 5. SYSTEM IMPLEMENTATION

of these tests was to quickly gather requirements and priorities for the next
development iterations. Since this was a rather informal process, no formal
evaluation has been done and no formal evaluation results can be presented.

In the following iterations of extensions of the DyCE framework, new func-
tionality has been added and the framework itself has been refined in a process
that can best be termed stepwise refinement. One of the steps in object-oriented
development which is gaining more wide-spread acceptance is that of refactoring
- improving the design of existing code to eliminate areas of the design or the
implementation which, while they actually work OK, nonetheless smell bad (see
[Fow99] for more details about this).

In the course of refactoring the framework, more and more parts of the frame-
work were ”bootstrapped”, i.e. the framework was redesigned and extended to,
in effect, use itself. For example, initially there were specific classes (regular
Java classes) representing users, sessions, components and other DyCE-internal
data structures. This was necessary in order to get DyCE working at all. Once
the general functioning of the framework had been established, these data struc-
tures were gradually replaced with ” DyCE-ified” versions of themselves, so that
now most of the DyCE internal data structures are in fact ModelObject sub-
classes and fully benefit from the replication support, concurrency control, etc.
Finally, the DyCE framework is a very homogeneous framework, with very lit-
tle control structures outside of the framework. This bootstrapping approach
has proven to be very beneficial in that it aids the framework’s comprehensi-
bility (less underlying concepts need to be understood and issues learnt once
can be re-applied in various parts of the framework) and its maintainability
(changes or improvements to a central mechanism such as the object model or
the replication management immediately benefit large parts of the framework).

These benefits are, in our opinion, only achievable in an iterative develop-
ment approach. The final homogeneous, self-referential design of the framework
using itself would have been next to impossible to come up with beforehand
(without the previous implementation experience) and would have been very
hard to implement and test from the beginning.

Chapter 6

Usage Experiences

The system described in this thesis has been used to develop several collabora-
tive components for a variety of usage situations. This chapter will present a
number of systems developed on the basis of DyCE. Each system’s design will
be presented, followed by a description of how the system exploits the features
of the DyCE system.

6.1 Shared HTML Presentations

Using DyCE as a basis, an HTML-based collaborative presentation system has
been developed, which can be used for slide-show presentations where one pre-
senter shows a presentation, consisting of a set of slides in HTML format, to a
- potentially distributed - group of viewers (e.g. students).

The HTML presentation system consists of four parts (see figure 6.2):

e The HTML Presentation model. This is modeled as a list of URLs referenc-
ing the slides making up the presentation and a ”current” slide indicator.
The slides themselves are stored in the DyCE HTTP server (but could
also be fetched from any Web server).

e The HTML PresentationController component. This component publishes
the task ”control” on the data model class HTMLPresentation. It is used
to control the presentation. For this, it allows paging forwards and back-
wards through the presentation slides, updating the ”current” slide in the
shared HTMLPresentation model.

e The HTMLPresenter component. The HTMLPresenter component is a
MobileComponent subclass. It publishes the Task ”control” on an HTML-
Presentation. When invoked on an HTMLPresentation, the HTMLPre-
senter fetches and displays the slide indicated in the HTMLPresentation
model as the current presentation location. In order to do so, it incorpo-
rates an HTML viewing panel (from the standard Java libarary). When
the ”current” value of the presentation is changed (by the HTMLPre-
sentationController), the new slide is fetched and the display is updated
accordingly.

127

128 CHAPTER 6. USAGE EXPERIENCES

FE] tietze's D o [m] 53
Wiew
tietze Invite user inspect
O G EEE SR e e e e |5
Same Session Mew Session Component Model
URL : | hitp:Mocalhostindes himl | Go |
[tietze's DyCE Session _ O] x|
@ » View
tietze rubart Invite user inspect
EHTMLPresent 13 DS s mes s i s s e B
Same Session New Session Component Model

Welcome to the DyCE documentation

A short help on DyCE
Component Browser
Each DyCE component publishes tasks on model object types, e.9. the XCHIPS

To work on a new, empty object using one component, the Component Browse|
which the selected component works on will be created

[4]

Pl b m ks

Figure 6.1: Shared browsing in an HTML-based presentation

e The HTMLBrowser component. The HTML Browser component extends
the HTMLPresenter component. It publishes the Task ”browse” on an
HTML Presentation. In addition to the shared presentation functional-
ity inherited from HTMLPresenter, the HTMLBrowser component allows
true cooperative navigation. If a user follows a link in the HTML page,
the shared model is updated and all other users’ browsers (or presenters)
follow. This allows collaborative exploration of HTML content.

The screenshot in figure 6.1 shows two shared presentation sessions (from
the point-of-view of the user controlling the presentation), with the HTMLPre-
sentationController being used in an individual session by one user (the tutor,
who is controlling the presentation) and the HTMLPresenter component used
collaboratively by two users in a shared session. In the shared presentation
component, the users are viewing the presentation page to which the tutor nav-
igates using the control component. As has been explained, when navigation
(changing pages) occurs in the presentation controller, the coupled presentation
components automatically follow, resulting in a shared presentation.

Using these components on a shared HTMLPresentation model, any number
of viewers can simultaneously use the HTMLPresenter to view the presentation
which is controlled by the tutor, using the HTMLPresentationController com-
ponent.

This HTML Presentation example is also a good example of how shared
DyCE models can be used to synchronize components accessing an external
resource (in this case the presentation of HTML slides stored on a Web server).

6.2. COLLABORATIVE HYPERMEDIA 129

==Compongnt==
HTMLPresenter

<=8hared=»
HTMLPresentation
+ HTMLPresenter <=<Slot==
woid prepareGl «=Taske> present _ . | +vector presentationURLs
+void objectChanged ==5lot==
+void giveTaskBindings +5tring Mame
+woid sethodel <=8lot=>=
+int currentslide
+ HTMLPresentation
+yoid initializeSlots

A

hrowse |

zeTaskss |
|

| contral
1
==Companant==
HTMLPresentationControl

==Component==
HTMLBrowser

+HTMLPresentationControl

+ HTMLErowser +void prepareGUl
+void giveTaskBindings +void ohjectChanged
PageLoader +void giveTaskBindings

Figure 6.2: Design of HTML Presentation Environment

6.2 Collaborative Hypermedia with Awareness
Support

The DyCE system has been used to implement the collaborative hypermedia
workspace ideas described in [Haa99]. The goal was to provide a shared Hy-
permedia Workspace which provides a number of tools with group awareness
mechanisms. The awareness-enhanced tools include:

e a group aware search tool for performing complex searches on the shared
hypermedia workspace (labeled (1) in figure 6.3),

e a structure navigator providing a hierarchically structured overview over
the workspace structure (labeled (2) in figure 6.3) together with awareness
information about sessions running on the workspace contents,

e a content editor for shared hypermedia content (not shown).

6.2.1 Design of the Shared Hypermedia Workspace

In order to realize the system, the first step was to develop a shared hypermedia
model which was to form the basis of the shared workspace. This hypermedia
model was developed as an extension of the DyCE shared object model. A
general hypermedia layer was implemented (see figure 6.4), which includes:

e a general link model for typed hypermedia structure which provides sup-
port for multiple link schemas (consisting of a set of permitted link types,
defined as a triple {linktype, sourceclass, destinationclass}.

e a hypermedia framework, consisting of a number of interface definitions
(Java interfaces); by implementing these interfaces, any object model class
can denote itself to be linkable and be included in the hypermedia struc-
tures.

130 CHAPTER 6. USAGE EXPERIENCES

Eg_{;haake's DyCE Session

2l Query Toal Q} [

Mew Session Same Session

\ \ﬂi haake's DyCE Sestion
haake

HMWorkspace.Process_Structure.Process

i Haigator

Add restriction Folder New Session Same Session

worked on by ¥ | Daniel A. Tietze (tietze@darmstadto loueny Result
9 WorkspaceName (Jessica Rubart, Daniel A. Tietze)

isperformed by ¥ | SharedWorkspaceTeam © J Contents of Workspace
i @ £ The Paper
€ iz Chapter 1
Search © £ Chapter 2
© & Related Work
¢ Navigator % Topic Weas {Jirg Haake)
Folder New Sesslon Same Sesslon [DocHolder
Query Result @ 551\ Users, Teams and Roles of Workspace
@ ::;‘g\ﬁri‘lin Pracess (lrssica Rubart, Daniel &, Tintze, lir o ﬁ: CONCERT
S @ Create Outline {Jessica Rubart, Daniel A. Tietze) = % Tasks and Processes of Workspace

Ch——— o
-, Wirite FirstDraft (Daniel ., Tiet
S.@ Wiite FirstDraft (Daniel A. Tietze) 9 L7 writing Process (Jessica Rubart, Daniel A, Tietze, Jorg H

%‘E Gather Material (Jorg Haake, Jessica Rubart)
Determine Topic

Z Create Outline (Jessica Rubart, Daniel &, Tigtze)
= Wirite First Draft (Daniel A, Tietze)

' Z Review and agree on further work

(7] Beautiful avout

Figure 6.3: Tools of the Shared Hypermedia Workspace

e support classes providing services such as link management, schema man-
agement.

The shared hypermedia model consists of three distinct areas, each pro-
viding classes with an appropriate nesting structure: Process Structure, Team
Structure and Content Structure.

On the basis of this hypermedia layer, a number of components were imple-
mented, which provide the functionality described in [Haa99].

A shared navigator visualizes hierarchical structures (such as shared work-
spaces, query results, etc.) along with awareness information. Using an Explorer-
like presentation consisting of nested folders representing composite elements of
the structure to be displayed, the users can collaboratively navigate such nested
structures, showing or hiding sub-structures as they please.

A group aware search tool allows a group of users to co-operatively search
the shared hypermedia workspace for elements matching certain query condi-
tions. The query can be formulated interactively, using interaction elements
provided by object model implementations implementing the interfaces from a
query framework. As the shared navigator is used to visualize the query results
from the search tool, the query results are automatically group-aware (i.e. con-
tain information about which of the elements found is currently being used by
which users).

The Workspace Editor is used to view and manipulate the structured hy-
permedia workspaces. Whereas the navigator provides a tree-like view of hy-
permedia structures, the workspace editor provides spatial layout capabilities
on two-dimensional workspaces. The workspace editor provides access to all
elements modeled in the shared hypermedia model. Root elements of the Con-

6.2. COLLABORATIVE HYPERMEDIA 131

<=Bhared==
GroupCt Li Linkable

1

‘ =<Bhared=» |

==Bhared=»

HMWorkspace.Team Structure.Role HMwWorkspace.Team Structure.Actor HMWorkspace.Content Structure.Content

T

==Bhared=» |

==8hared=»
HMWorkspace.Team Structure. HMUser

==Shared=»
HMWorkspace.Team Structure.Team

==8hared=»
HMWorkspace.Content Structure.DocurmentHolder

==Shared==>
HmMWorkspace.Process Structure.HMTask

<«Shared==

HMWorkspace.Process Structure.Process HMWorkspace.Content Structure.Composite

=«5hared== |

Figure 6.4: Hypermedia Object Structure - Overview

tent Structure, the Team Structure and the Process Structure allow creating
nested structures from the hypermedia model. The graphical editor also allows
creating the Hypermedia links, according to the current hypermedia schema,
which are not directly expressed in the object model. All accessible link types
are available and can be instantiated in the workspace simply by drawing a
connection between objects in the workspace.

Similar to the Workspace Editor are the editor components for the three
areas of the hypermedia model: the Process Editor, the Composite Editor and
the Team Editor. A speciality of the Process and Composite editors are that
they allow the inclusion of DocumentHolders: Special content objects which
can store arbitrary objects from the shared object space. The DocumentHolder
objects in the shared workspace provide access to the DyCE Task model - they
allow direct invocation of the DyCE Tasks published for the class of which the
DocumentHolder content is an instance. So, if for instance the DocumentHolder
contains a reference to a Diagram, the DocumentHolder uses the services pro-
vided by the ComponentBroker (see chapter 5.1) to discover the DyCE Tasks
available for the Diagram class. These Tasks can then be invoked within the
same DyCE session or in a new DyCE session. By including DocumentHolder
instances within the co-operative hypermedia workspace, the Process and Con-
tent structures can be used to structure a shared workspace which provides
access to other shared artifacts (of arbitrary type).

6.2.2 Usage Scenario for Shared Hypermedia Workspaces

One possible usage scenario for the shared hypermedia workspaces is a joint
writing process collaboratively structured and then performed by a group of
users working on a scientific paper.

The group is modeled using the Team Structure. Sub-teams can be in-
troduced in order to distinguish between the authors, colleagues who help in

132 CHAPTER 6. USAGE EXPERIENCES

reviewing the paper and external reviewers.

The structure of the paper is modeled using the nested composite structures
from the Content Structure part of the shared hypermedia model. The paper is
subdivided according to the chapters: Introduction, Chapters 1 through n and
References.

The Process Structure part of the shared hypermedia model is used to design
a process model for the shared writing task: Process substructures are created
for gathering of related work, joint writing, reviewing by colleagues, managing
of literature references and finally external peer review. Within the process
structure, elements from the team model are used to assign responsibilities to
each user within the process model. Additionally, elements from the composite
structure (such as the composites created for each chapter) are included in the
process structure to denote that a specific step of the process (e.g. writing
chapter one) is associated with a certain composite of the paper (chapter one).

The authors can then proceed to work on the paper, each accessing the
composites created for the chapter on which he or she is supposed to work.
In a writing process stretching over multiple days or weeks (as writing scien-
tific papers usually does), the search tool can be used to keep track of which
composites are currently being worked on, which ones are assigned to a user,
etc. Within the composites, DocumentHolder instances can be created for the
different elements used in the chapters and a variety of DyCE components can
be used to create the contents: figures can be created using a diagram editor
component, the text body can be written using a shared text editor component.
Material from external sources on the World Wide Web can be referenced using
the shared HTML Presentation component.

6.3 Collaborative Extended Enterprise Engineer-
ing

In the EU project EXTERNAL, DyCE has been used as the basis for the de-
velopment of a system for distributed collaborative engineering and operation
of extended enterprises (see [WHRTOOb]). Here, the collaborative hypermedia
workspace implementation was reused and extended with extended enterprise se-
mantics used for creating and executing Extended Enterprise (EE) models. The
central component of the collaborative extended enterprise engineering system
ist the XCHIPS component (see figure 6.5).

By basing the shared EE modeling system on the flexible hypermedia-based
shared workspace, and thus on the DyCE component model, the EXTERNAL
implementation was able to achieve significant re-use of previous components,
providing a running prototype at a very early stage in the project. This early
prototype was deployed very early on in the project to the project partners
and was then extended iteratively. Over the course of the project (which is an
ongoing project at the time of writing this), the EXTERNAL suite has been
extended with additional Groupware Components, which were added to the
already deployed system as Groupware Components. These new components
include an integration of Microsoft NetMeeting conferencing and application
sharing tool, an integration of Microsoft Internet Explorer for access to arbitrary
Web content (exceeding the capabilities of the HTML browser already available

6.4. LESSONS LEARNED FROM USE OF DYCE 133

as a DyCE component), an extended shared hypermedia-based EE modeling
and operation workspace, an integration with external tools from other project
partners as well as several other components.

E:giwwang's DypCE Session [_ O]]
Users in the chient [Esﬁlnn
Session “Twwang ‘ Invite user | inspect
5 XCHIPS on My Folder i o XCHIPS
Menu bar —i— game Session New Session Component Model Hrouser,
@ 2 & e RaE &d foolbar
—f— ¥ notepad | 1 Q Start i
= Z Content
‘L Whiteboard |- . - @ Finish Pane
i Notepad href
Object % P gt nis <> Milestans
Palette & e Z By Task
= genpral ‘
for Dacumert | g Actor Object
Informatio) = [~] Foider, |
Al = Foler 3 [L [T Faider| onara) gﬂ Weeting Palette
| |Reauirements WM prosesses Froduet for
and & organization| " PH:‘CESS
Organizat b - uﬂTal S ;n
; esource
views aly, Position "%, coordinate Views
[E— e
g Person 7 7ol ", change
i Organization
"4, has 5; ", supervise
L "y filed by "4, assignto
free link | " partic
hetween — 8- "%, general =) JOR e | B .
any objects = |

Figure 6.5: The XCHIPS component

By re-using the DocumentHolder model from the shared Hypermedia Work-
space, EXTERNAL workspaces are directly extensible with any new DyCE
components that become available. References to new shared data objects can
be inserted into the workspace at any point in time, tasks can be invoked on
these shared objects and new components can be introduced into the collab-
oration setting. This approach, along with a re-use of already existing DyCE
components, made it possible to deploy the EXTERNAL prototype at such
an early stage in the project, while still maintaining the prototype and adding
extensions to the already deployed system.

6.4 Lessons learned from use of DyCE

When using DyCE as the basis for the development of the components and
environments described above, the advantages of the flexible component-based
development approach became apparent.

Re-use of previously developed components was directly supported and be-
came one major design focus of the developers involved in these projects. For
instance, providing a general task-aware container (termed document holder)
in the shared hypermedia workspace provided a straight-forward way for inte-
grating existing models - and thus Groupware Components - into the shared
workspace. The document holder allows the users to invoke all published tasks
on a given shared object, thereby providing direct access to other components,
which weren’t a direct part of the shared hypermedia workspace. In this way,

134 CHAPTER 6. USAGE EXPERIENCES

e.g., it was possible to use a previously developed shared text editor and a shared
diagram editor in order to use the shared hypermedia workspace as a tool for a
collaborative writing process.

In the past year, the DyCE framework has been used regularly as basis
for the development of new Groupware Components by around ten developers
(members of the IPSI research staff as well as students). In the course of this
work, a wide range of components have been developed, including components
for

e shared multimedia presentations using multi-point access to streaming
media (see [XFT101)),

e shared multi-point multimedia conferencing,
e collaborative games,

e shared object-oriented sketches,

e collaborative brainstorming, etc.

As development continues, the set of available and reusable Groupware Com-
ponents is steadily increasing. By making developers aware of the potential for
component re-use, the components built on DyCE can be made reusable and
reuse-friendly. In this way, any of the above components can e.g, be used to
extend the EXTERNAL shared modeling tool. Should a shared multimedia pre-
sentation facility be required in an EXTERNAL shared workspace, the shared
object can be added to the EXTERNAL model (by the end-users) and the re-
lated Groupware Components can be invoked on this object. In this way, end-
user extensibility and modification of their work environment has been achieved.

With regard to the developer requirements shown in chapter 2, a number of
experiences were gathered in the course of using the DyCE framework. Over the
last couple of months before writing this thesis, several new developers have been
introduced to the DyCE framework and are now using the DyCE framework in
their everyday project work. The experiences gathered from the introduction of
these new developers gave some good insights into the strengths and weaknesses
of the DyCE development framework.

The potential for reuse of existing programming knowledge (RD1) was first
experienced with the development of a shared multi-user chat component. This
component was developed by an inexperienced DyCE developer (but an expe-
rienced Java developer) by taking an existing Chat Applet (already conform-
ing to the Model-View/Controller abstraction due to its use of the Swing GUI
framework as a basis) and replacing the data model used by the Applet with
a DyCE shared data model. This adaptation was done within the course of
one day after starting to use the DyCE framework. A couple of the existing
components, such as the shared HTML presentation component, demonstrate
the value of a common shared data model which can be reused across multiple
components (RD2). In the presentation example, a single shared presentation
model is used across several components. The shared data models, in combina-
tion with support for transparent sharing of data objects (RD3), without having
to implement command- or event-based protocols between the components or
other communication means, has been observed to simplify design and develop-
ment discussions and to aid distributed development of components in a team

6.4. LESSONS LEARNED FROM USE OF DYCE 135

of several developers. After the developers agreeing on a common data model,
complex collaborative environments could be decomposed into several compo-
nents, which were developed independently by different developers. Due to the
unifying nature of the common data model, the independent development and
subsequent integration of the components have become comparatively easy. The
support for server-side components (RD9) has greatly simplified the design of a
set of components for collaborative learning, where functionality regarding the
control of learning protocols (structured approaches to tackling collaborative
tasks in learning situations) could be implemented in a server-side component,
thus resolving complex scheduling and control issues which complicated a pre-
vious design. Over the course of the next months, the support for combining
existing components into configurations (RU10) will be used to put together an
integrated (but adaptable) learning environment for language learning.

In the course of the projects based on DyCE so far, little experience has been
gathered with end-user tailoring and combination of the Components. So far,
use of the DyCE framework has focused on use of the development framework by
developers and use of the resulting Components by end-users. It is anticipated
that a new project, scheduled to begin in 2001, will exploit DyCE features
for combining Groupware Components into new system prototypes. In this new
project, rapid prototyping of Components for computer-based language training
will necessitate faster iterations of component development and experiments
with new designs. One of the aspects under examination is the layout and
composition of tools for language learning and group awareness. Using the
component configuration functionality provided by DyCE, it is envisioned that
changes to the working environment can be made by end-users or other non-
developer members of the research staff, simply by changing the composition of
the components available.

136 CHAPTER 6. USAGE EXPERIENCES

Chapter 7

Discussion

This chapter will summarize the main aspects of the thesis and compare the
presented approach to the requirements stated in chapter 2. A comparison to
the state of the art will motivate the list of the thesis’ main contributions. The
thesis concludes with a number of topics for future research which can be based
on the work presented here.

7.1 Summary

Today’s flexible team structures and evolving collaboration processes, as en-
countered e.g. in creative working environments and in the context of Extended
Enterprises, place high demands on the groupware environments aiming to sup-
port these collaborations.

The main requirement, from which other requirements can be derived (both
in terms of users’ as well as developers’ requirements) is to have available flexible,
extensible groupware environments which can be modified and extended by end-
users as well as by developers at run-time, as the users’ collaborative processes
evolve. This thesis aims at making a contribution to the design, development
and deployment of such collaborative environments.

The approach taken is that of component-based development: collaborative
environments can be constructed from Groupware Components - interactive col-
laborative components which can be dynamically deployed, invoked and com-
bined into new configurations which can then be used collaboratively. In order
to support the development of Groupware Components, a Java-based develop-
ment framework has been designed and implemented. This framework, called
DyCE (Dynamic Collaboration Environment), is presented in this thesis along
with the underlying concepts which were developed to allow the design and
implementation of flexible collaboration environments.

The separation between the implementation of components and the shared
domain objects manipulated by the components aids the combination of different
components and the use of shared artifacts in evolving collaborative processes.
Component implementations are stored in a central Component Repository and
are dynamically downloaded to the client machines when they are required.

The flexible combination of components and the runtime extensibility of the
resulting system are supported by the task-based programming model presented

137

138 CHAPTER 7. DISCUSSION

in chapter 4. Using this model, components are bound to shared object classes
and are retrieved from a Component Broker when a specific task is invoked on a
shared data object. As has been discussed in section 4.6, this loose binding be-
tween components and shared objects allows different components to be invoked
on common shared data objects and allows a selection of components based on
different types of end-points, different end-user requirements, etc.

Groupware Components can be linked in a number of ways, depending on
user preferences and requirements. First of all, components can invoke other
components (indirectly) by performing a certain task which is published in the
Component Repository by another component. Multiple components can access
(display and modify) the same shared data items (potentially in different ways).
The DyCE framework ensures that the components are notified and that they
are kept in a consistent state. Additionally, object-based event propagation is
available between the components (see section 4.5). This allows components
to send events to all components currently accessing a shared object. The
combination of these approaches gives developers great flexibility in designing
the Groupware Components and collaboration environments based on them.

End-user tailorability is supported by providing a graphical tailoring in-
terface which allows users to combine different components. These combined
components (Configurations) are also modeled as shared objects, can be shared
between users and allow access to groups of components as composed entities.

7.2 Comparison to requirements

This section will present an overview of the way in which the requirements from
chapter 2 have been addressed in the system design and implementation.

7.2.1 End-User Requirements

RU1 - Access to shared artifacts and collaborative tools: The shared ar-
tifacts, which are modeled as shared objects, are stored persistently in a shared
object database. The artifacts, along with the implementation of the compo-
nents, are distributed in the system at runtime, as soon as they are required.

RU2 - Computer guidance in selecting appropriate tools: This is
supported through the use of the task-based programming model. Using these
tasks, users can invoke components on shared objects and can quickly find out
which components are available for use with a given shared object. Learning how
to use the available components is supported through provision of hypertext-
based online help for each component.

RUS3 - Provision of Group Awareness: Group awareness is available on
the task and session layer. The system can provide information about which
users are accessing which objects in which sessions (i.e. together with which
other users). More sophisticated group and process awareness mechanisms have
been built on top of the DyCE framework, e.g. in the Shared Hypermedia
Workspace presented in chapter 6.

RU4 Support for synchronous as well as asynchronous collabora-
tion: Synchronous collaboration is supported by the tight coupling between
the shared objects and facilitated by the automatic view updating at the GUI
level. Dynamic object replication, in combination with consistency maintenance

7.2. COMPARISON TO REQUIREMENTS 139

based on transaction management, as well as the object-based event broad-
casting channels, support synchronous collaborations across sites and between
components. Asynchronous collaboration is supported by the persistent Object
Storage, which is used to store object structures between editing sessions (and
therefore serves also as a basis for the exchange taking place in asynchronous
collaboration).

RUS5 - Ubiquitous access to collaboration environment: The ability
to deploy DyCE workspaces over the Web, by using DyCE’s integrated Web
server as a collaboration-extended Intranet server makes shared workspaces
available in many environments.

RUG6 - Multiple simultaneous collaboration modes and transitions
between them: Users can invoke individual (non-shared) editing or viewing
sessions on any shared objects. At any point, additional users can be invited
into the editing session, thereby making the transition from private to group
work. The design decision has been made to allow concurrent access to shared
objects also in multiple private sessions, thereby in effect providing coupled
collaboration across sessions. A locking mechanism (or other means to restrict
shared objects to private use) could be a useful extension.

RUY7 - Dynamic extensions of the collaboration environment: Com-
ponents can be added to the system (to the Component Broker) at runtime,
without the need to shut down running clients and without disrupting running
collaborations in any way. Newly added components are registered in the Com-
ponent Broker using their task interface and are immediately available to all
users for collaborative use.

RUS8 - Coupling of different tools: This requirement is also fulfilled by
the task-based programming model, using tasks to provide a binding between
components and shared objects (or object classes). The division between com-
ponent implementation and object-oriented shared data model allows invoking
several different components on common shared data objects.

RU9 - Support for mobile work: Mobile appliances have certain restric-
tions, e.g. in terms of memory and display size. By extending the task-based
programming model to contain information about the infrastructure constraints
that apply to a component (e.g. the information that a certain component is
"PDA-Compliant”), such devices can be supported and can take part in complex
collaborative work situations. Also, the dynamic nature of the system, the fact
that components are downloaded when required and shared data objects are
dynamically replicated, support the use of such mobile appliances with limited
resources in collaborative situations.

RU10 - Combination of existing tools (End-User tailorability): Us-
ing the interactive configuration editor, users can combine the available compo-
nents into configurations, which can then be shared with other users. Also, by
introducing new components into the system and invoking components on any
shared data objects (through the task information published by the component),
users can flexibly extend and adapt their collaborative work environments.

RU11 - High system performance: System performance is addressed in
the DyCE framework by the use of dynamic replication mechanisms (which re-
sults in only the currently required objects being replicated to a client’s machine)
and the use of optimistic concurrency control for the users’ actions. Also, the
UDP-based network layer has been developed specifically in order to improve
scalability and performance of the overall system. No systematic evaluation

140 CHAPTER 7. DISCUSSION

of system performance and scalability has been done so far, so that concrete
performance measurement results cannot be presented in this thesis. Such per-
formance evaluations remain as future work.

7.2.2 Developer Requirements

RD1 - Reuse of existing programming knowledge and experience: Ev-
ery new development framework requires some time to learn and to become
proficient in (see [Pre99]) - DyCE is no exception. Yet, the Groupware Compo-
nents are based on Java’s Swing component set; in fact, they provide a natural
extension to these models/toolkits. The use of Java RMI for the object commu-
nication also allows reuse of programming experience. The (necessary) design
decision to instate a separate type and variable system (the Slots) makes it
necessary for experienced Java developers to learn additional concepts.

RD2 - Reusable data models: The decoupling of data objects and Group-
ware Components presented in chapter 4 makes the shared data model reusable
for different components.

RD3 - Transparent sharing of collaboration artifacts: The trans-
parent sharing is achieved through the tight binding between the Object Man-
agement and Replication Management and the fact that objects are accessed
through the appropriate interfaces, which automatically make use of the Repli-
cation Management Service and the Object Management Service.

RD4 - Support for shared as well as private data items: Shared
data objects are modeled using the RObject and Slot classes from the DyCE
framework. These objects can automatically by replicated by the system. Non-
Shared (local) data items are available by using Java’s regular instance and class
variables.

RDS5 - Access to co-operation information when required: Using
the information available from the Session Manager and Component Broker as
presented in section 5 allows the creation of group awareness mechanisms such
as the user lists present in the sample Groupware Components developed for
the group-aware shared hypermedia workspace, described in section 6.1.

RD6 - Deployment of newly developed components: The deploy-
ment is facilitated by the Component Management Service GUI which allows
importing new Groupware Components over the net, as well as by the feedback
mechanisms present in the Component Broker and Component Desktop UI,
which give users information about the set of available components and make
newly deployed components usable instantly, without the need to restart the
client application, etc.

RDT - Technical scalability of the solution: The collaboration frame-
work presented in this thesis imposes scalability along multiple dimensions. The
main determining factors appear to be the size of the shared object space and
the number of shared data objects used concurrently as well as the number of
simultaneously connected clients. Through the use of dynamic replication and
reference to collaboration session information for object discarding, etc., a grace-
ful degradation of performance is expected. On order to address the scalability
issues with respect to the number of connected clients, an asynchronous network
communication layer based on UDP has been implemented. No measurements
of performance issues have been done, though.

7.3. COMPARISON TO RELATED WORK 141

RDS8 - Support for integration into external architectures: This
integration is supported by the HTTP-based access to information from the
collaboration situations. Using these standard access mechanisms, DyCE com-
ponents can be embedded into Web pages, etc.

RD9 - Support for server-side components: Server-side components
are supported by a specific base class of the system. Like all other compo-
nents, these server-side components can access shared objects and publish task
information. Invoking such a component (either through another component
performing a task or by user interaction) opens the component on the server,
with access to shared data objects. A server-side user interface can provide
interactive elements (e.g. for monitoring or interaction purposes).

7.3 Comparison to related work

Chapter 3 has presented a number of systems for developing groupware. The
comparison to these systems will concentrate on the main deficits identified
in those systems with the same focus as DyCE, namely the development and
deployment of flexible, component-based groupware (see section 3.4).

The Visual Component Suite system does not give the end-users access to
the components which make up the collaborative system. In this approach, users
cannot extend the system by adding new components (RU7), not can different
components be flexibly coupled on common shared data (RUS), as is supported
by the ModelObject part of the DyCE framework. Since there is no end-user
tailoring support such as the Configuration Editor (see section 5.5), end-users
cannot flexibly combine existing components (RU10).

The Disciple system lacks a common shared data model, which can be reused
across different components (RD2). Therefore, the system cannot support the
coupling of different tools on shared data (RU8). The deployment of newly
developed components (RD6) is supported by being able to load JavaBeans
components into the shared workspace from Web locations, similar to the func-
tionality supported by the HTTP server part of the Component Broker. Disciple
has no equivalent to the task-based programming model though, so users are
not provided with support in selecting the appropriate tools for the task at hand
(RU2).

The approach to sharing taken in the TeamComponents system (multicast
method invocation) results in lack of support for combining different components
(RUB). Also, due to the fully distributed nature of the DreamTeam environ-
ment underlying the TeamComponents, no support is provided for server-side
components (RD9).

The EVOLVE platform provides a high degree of support for end-user tai-
lorability of the collaboration system (RU10), dynamic extension of the collab-
orative system (RU7) and easy deployment of components and newly tailored
instances of components (RD6). The approach of encapsulating the collabo-
ratively edited data items in the components and providing data sharing only
through synchronized RMI (Remote Method Invocation) access to the shared
data items stored in one location, will result in low system performance (not
fulfilling requirement RU11), and prohibits the coupling of different tools on the
same shared artifact (RUS8). In order to address these requirements, the DyCE
framework uses a data replication approach and uses transaction management

142 CHAPTER 7. DISCUSSION

and concurrency control to address concurrency issues. Also, it remains un-
clear how the EVOLVE platform can support asynchronous collaborative work
(RU4), with users accessing shared objects even if the other users’ components
(which hold that shared artifact) are not currently available.

The GROOVE system provides a collaboration environment within which
workspace contents (shared data items and tools) are fully replicated between
users. GROOVE provides comprehensive support for tool deployment (RDG6)
and synchronous as well as asynchronous collaboration (RU4). The GROOVE
approach to data sharing is to encapsulate data changes into ”command” ob-
jects, which can be serialized and broadcast to all connected clients. This means
that GROOVE applications have to be specifically developed with collabora-
tion in mind and there is no transparent sharing of data items (RD3) - the
GROOVE tools needs to accept and handle the command objects which en-
capsulate application-specific behaviour. Also, there is no explicit data model
which could be reused across components (RD2); due to this fact, GROOVE
does not support the coupling of different tools on the same shared item (RUS).
GROOVE does not provide any support for dynamic replication, as is done in
DyCE - the entire contents of a shared workspace are replicated to all connected
users. It is unclear how this approach scales with workspace size (RD7). Es-
pecially, the initial replication of a new shared workspace has been experienced
to take a rather long time (this also depends on available network bandwidth),
which can hinder spontaneous collaborations. The DyCE framework, on the
other hand, only replicates those objects which are currently required, allowing
users to start working with a new shared workspace quickly, and replicating
additionally required objects on-demand, as work in the shared workspace pro-
gresses.

7.4 Contributions to the state of the art

The work presented in this thesis advances the state of the art in the following
areas:

Component-based groupware: The approach of constructing extensible
groupware from large-scale collaborative components aids flexibility and extensi-
bility of groupware environments. The use of the DyCE framework in a number
of projects has demonstrated the applicability and benefits of this approach.

Extensible component-based environments: The concept of loose cou-
pling between the interactive components and the data objects manipulated by
them, in the form of the proposed task-based development framework, with its
extensions for multi-platform components, can also be used beneficially in the
design of single-user extensible environments.

Interactions in component architectures: The ability to combine dif-
ferent (kinds of) components in collaborative sessions, with the possibilities of-
fered by dynamic, run-time extensions, aid the creation of flexible collaborative
environments, well-suited to fulfill the requirements posed by today’s highly dy-
namic team-work settings. The ability to couple different types of components
on the same shared data objects, with object consistency and object-based event
broadcasting mechanisms supporting the coupling of the components, allows the
decomposition of the collaborative system into individually deployable and ex-
changeable functional modules.

7.5. FUTURE RESEARCH 143

Modeling component-based groupware: The proposed extensions of
the UML notation aid the design and discussion of groupware environments,
especially when building groupware in teams of several developers.

7.5 Future Research

In its current state, the DyCE framework can be (and is) used to develop a
variety of components for different collaborative activities. A number of issues
remain which should be investigated further.

7.5.1 Support for mobile disconnected work

Mobile disconnected operation (use of mobile devices which are not permanently
connected to the network) is one of the scenarios in supporting mobile users.
By integrating a versioned object model and by supporting intelligent caching
of Groupware Components, support for mobile disconnected work could be pro-
vided.

An important part of such research would certainly be in how far discon-
nected (or intermittently connected) users can be tightly integrated into collab-
oration processes (e.g. by using intelligent agents to represent the interests of
the users while they are disconnected).

7.5.2 Extension of Task framework

Currently, the Tasks presented in this thesis carry little to no syntactic and
semantic information. By extending the Task framework to provide syntactic
and semantic information (e.g. which tasks are allowed to which users within the
context of which other tasks, how many participants are required for a certain
task, etc.), more meaningful Task structures could be constructed.

Such an extended Task framework could also be used in other collabora-
tion settings, e.g. as the basis for the POC ("points of collaboration”) model
described in [WP00].

7.5.3 Support for time-dependent media

Currently, there are no hard constraints placed on the timing and distribution
of transactions. The solution chosen in the DyCE framework is suitable even
for highly interactive Groupware Components.

For time-dependent media (video or audio clips or even multimedia telecon-
ferencing), timing and synchronization mechanisms need to be developed which
allow the modification and presentation of data in collaborative tools to be syn-
chronized with media streams. Additionally, mechanisms need to be developed
which ensure that all users in a collaborative session are receiving synchronized
media streams (played out at the same time). Lack of such synchronization
could severely disrupt collaboration and coordination between the users.

Envisioning a shared workspace as the one presented in the experiences chap-
ter, enhanced with the ability to store videos or audio clips in the shared work-
space, the additional problem of late-joiner support arises. How can a late-joiner
”catch up” with the group currently using the shared workspace? How can a

144 CHAPTER 7. DISCUSSION

sensible point of entry be determined which permits a meaningful continuation
of collaboration in the session?

The issue of time-dependent media is becoming more important as we are
faced with the development of distributed collaborative learning environments.
A large part of learning material (e.g. in the case of language learning) is
available as movie or sound files and collaborative learning support is becoming
increasingly important in today’s business and education settings.

7.5.4 Improved network structure

The current network structure of the DyCE framework uses a star-shaped topol-
ogy with multiple clients connecting to a single central server. The system
performance and scalability can be improved by implementing a more exten-
sible network structure, e.g. using a hierarchical, tree-type network topology,
with intermediate caches, routers and multiplexers. Such a network topology
can greatly benefit the use of DyCE-based collaboration environments in cor-
porate and other large-scale installations. The router modules required for such
network structures should also make DyCE-based environments usable in net-
work environments with firewalls, e.g. by providing so-called application-level
gateways which can allow DyCE network traffic to be processed and forwarded
through firewalls.

Additionally, object mobility and load balancing mechanisms can be ex-
plored, which allow a more optimal distribution of shared objects and load
between multiple servers.

As a first step towards this goal, a number of performance measurements of
the network transfer, and its influence on overall system performance should be
performed.

Appendix A

Implementation of a sample
Groupware Component

Shown here for illustrative purposes is the source code of a sample component
and its associated data model.

A.1 The sample component

The sample component allows interaction with two data values (which form
the data model) - a String value, edited in a text entry field, and a numeric
value, modified through two buttons (for increasing and decreasing the numeric
value). These values can be modified collaboratively, changes to the data values
are displayed to all connected users. he user interface of the sample component
is shown in figure A.1

& Demo

Mew Session Same Session

ounter :

Hello World

+

Figure A.1: GUI of sample component

The following sections show the source code of the domain data model class
developed for this component and the source code of the component itself. The

145

146 APPENDIX A. A SAMPLE GROUPWARE COMPONENT

source code is fully commented in order to illustrate the main aspects of devel-
oping DyCE components and data models.

A.2 The data model class

package Demo;

import GroupComponents.ObjectModel.ModelObject;
import GroupComponents.ObjectModel.RObject;

public class DemoModel extends ModelObject
{

/** "Empty" Constructor */
public DemoModel() { super(); }

/** Constructor for passing an existing RObject instance.
Used when replicating objects, when we fetch an RObject
instance from the server and locally need to wrap it

in an appropriate ModelObject subclass instance.

ote: We only replicate RObjects. The ModelObjects are
created locally. This is possible, since each RObject
knows its appropriate ModelObject class and since
ModelObject subclasses cannot add any replicated

state outside of the RObject (instance or class variables
are considered to be local and non-replicated). */
public DemoModel(RObject o) { super(o); }

/** public getter for the counter slot. Convert
Integer value to int for easier handling. This method
needs to be called within a transaction (this can also be
a displaytransaction, since no contents are modified). */
public int getCounter ()
{

Integer i = (Integer) (get("counter"));

return i.intValue();

}

/** public setter for the counter slot. This method
must be called in a transaction, which can’t be a
DisplayTransaction, since slot contents are modified. */
public void setCounter (int i)

{

set ("counter", new Integer(i));

}

/** Public getter for the counter slot, returning the
Integer instance */
public Integer getCounterInt()

A.3. THE COMPONENT IMPLEMENTATION

{

}

return (Integer)get("counter");

/*x Initialize the Demo Object’s slots */
public void initializeSlots()

{

A.3

/* A slot is described by a slot name and an initial
Slot content object. This slot content object defines
the slot value’s type. The definition of a slot
called counter, below, is similar to defining
an instance variable as

Integer counter = new Integer(1);
If DemoModel were to extend a ModelObject class
other than ModelObject itself, we would need to call
super.initializeSlots here. We don’t in this case, as
the ModelObject base class doesn’t have any slots. */
newSlot ("counter", new Integer(1));
newSlot ("text", new String ("Hello World"));

The component implementation

package Demo;

/** Each Component should be in a package. Its model
clas should be in the same package. A package can

hold multiple components (actually, this i what is to be
expected in complex systems). */

import
import
import
import
import
import

import
import
import
import

import

import

java.awt.GridLayout;
java.awt.event.ActionEvent;
java.awt.event.ActionListener;
java.util.Vector;
javax.swing.JLabel;
javax.swing.JButton;

GroupComponents.swing.DyCETextField;
GroupComponents.ComponentModel .MobileComponent ;
GroupComponents.ComponentModel.ObjectComponentTask;
GroupComponents.0ObjectModel.ObjectChangelListener;

GroupComponents.0ObjectModel.ObjectChangeEvent;

Demo .DemoModel ;

/** Sample component used to initeract with a
DemoModel instance. It displays the counter part of
the DemoModel in a label and provides two buttons

147

148 APPENDIX A. A SAMPLE GROUPWARE COMPONENT

for increasing and decreasing the counter. The text

part of the model is jointly edited in a shared textfield

(provided as a convenience widget in DyCE). */

public class DemoComponent extends MobileComponent
implements ObjectChangelistener, ActionListener

{
/** The label for displaying the counter content from the model */
JLabel counterLabel;

/** A DyCE-enabled Textfield for the string content from the model */
DyCETextField textfield;

/** Component Constructor, only used for initializing
REALLY important state. We don’t do User Interface
stuff here, since that is only done in the prepareGUI
method, which is called by the DyCE framework at the
appropriate time. */
public DemoComponent ()
{

super () ;

}

/** Set up the component’s GUI elements. The DyCE
framework ensures that at this point, setModel has
already been called so that the component knows
its Model. This might be necessary in initializing the GUI. */
public void prepareGUI()
{
/** Since we’re accessing the model when creating
the GUI, we’ll need to do this within a DisplayTransaction */
beginDisplayTransaction() ;
setLayout (new GridLayout(3,2));
counterLabel = new JLabel(getDemoModel() .getCounterInt().toString());
add (new JLabel ("Counter : "));
add (counterLabel);
add (new JLabel ("Text : "));

/* Set up a DyCETextField and bind it to the slot

called "text" in the model. The TextField will take care

of interacting with the slot contents and keeping current. */
textfield = new DyCETextField (10,getModel(), "text");

add (textfield);

JButton bl = new JButton ("-");
bl.addActionListener(this);
add (bl);

JButton b2 = new JButton ("+");
b2.addActionListener(this);
add (b2);

A.3. THE COMPONENT IMPLEMENTATION 149

commitDisplayTransaction();

}

/** Return the task bindings for this component. The
DemoComponent publishes the Task "demonstrate" on a
ModelObject. This information serves as the basisfor
the dynamic binding between ModelObject instances
and GroupComponents. */

public void giveTaskBindings(Vector taskList)

{
/* Use method chaining to also fetch the Task bindings
from superclasses. */
// super.giveTaskBindings (taskList);
/* Each Task published by a component is modelled
by an instance of ObjectComponentTask, which contains
a Task name, the full name of the ModelObject subclass
to which this task applies and the name of the component
class itself. */
taskList.addElement (new ObjectComponentTask (
"demonstrate",
"Demo .DemoModel",
getClass() .getName()));
b

/** Helper method for accessing the component’s Model */
protected DemoModel getDemoModel()
{
return (DemoModel) (getModel());
}

/*x Notification method to receive ObjectChangeEvents.
Overridden from ObjectChangelistener interface.

Called whenever the contents of this component’s
Model change. */

public void objectChanged(ObjectChangeEvent ev)

{
/* We need to do the GUI updating within a
display transaction. */
beginDisplayTransaction() ;
counterLabel.setText (getDemoModel () . getCounterInt () .toString());
commitDisplayTransaction() ;

}

/** Increase the ModelObject’s counter value */

protected void increase()

{
/* This needs to be done in a transaction. Giving the
transaction an identifying name might later help in
debugging. */

150

}

APPENDIX A. A SAMPLE GROUPWARE COMPONENT

beginTransaction("increase");

getDemoModel () . setCounter (getDemoModel () . getCounter () +1) ;
commitTransaction();

/* We’re not doing any GUI refreshing, etc. here. This will

be done when the transaction commits. DyCE will have gathered

up all objects affected by a transaction and will notify

their ObjectChangelisteners. That’s why we have our objectChanged
method which does the updating.

*/

/** Decrease the ModelObject’s counter value */
protected void decrease()

{

}

/** Similar to increase(). See there for details. */
beginTransaction("decrease");

getDemoModel () . setCounter (getDemoModel () . getCounter () -1) ;
commitTransaction();

/** Notifier method from ActionListener */
public void actionPerformed(ActionEvent e)

{

if (e.getActionCommand().equals("+"))
increase();

if (e.getActionCommand().equals("-"))
decrease();

Appendix B

UML Overview

This appendix presents a brief overview over the notation elements of the Unified
Modeling Language (UML), as used in the body of this thesis. For more details
about the UML, see [Fow00].

B.1 Standard UML notation

UML class diagram notation basics

Basic class symbol, showing an
attribute defined in the class, as
well as a method (which retums a
String value).

Class 1

-anAftrikutecint
+anQperation:String

Class symbol showing an abstract
AbstractClass class (of which no instances can be
created) with an abstract method,

+ahatracilethoc vold } . .
which needs to be implemented in
all concrete subclasses.

Class symbaol showing a class with
AClass

a class attribute and a class
method (i e. belonging to the class
and not a specific instance). These
are shown in the diagram as
underlined elements.

+hufferSize:int

+etinstance:AClass
+interfacedethodint

UML representation of a Java

Interiace Interface - a definition of public
InterfaceDefnition access methods which needs to be
anintaraceNethodSiing implemented in all classes which
implement the given interface.

Figure B.1: Basic class representation

152

Supcrclass

Subclass

Class inheritance: The class
"Subclass" extends the class
"Superclass”

APPENDIX B. UML OVERVIEW

irtarfarma
Annterface

+interfacelMethocting

M

|
AClass

-interfazemMethadint

Interface inheritance: The class
"AClass" implements the
interface "Aninterface".
Therefore, it needs to implement
all methods defined in
"Aninterface".

Figure B.2: Inheritance Relationships between classes

AClass AnotherClass
-interfaceMethod:int
Curmnpusile 0= Component
- .
Whole o« [P
SomeClass SomeOtherClass

{Directed) Association between two
classes.

Compaosition (with cardinality): The
"Composite” is composed of Zero or
more dependent instances of
"Component”. If the Composite
instance is removed, the components
will be removed as well.

Aggregation {with cardinality). The
"Whole" contains Zero or mare (non-
dependent) instances of the "Part”.

Dependency. "SomeClass"” depends on
"SomeCtherClass", e.g. because ithas
attributes of that type.

Figure B.3: Other Relationships between classes

B.2. GROUPWARE UML EXTENSIONS 153

B.2 UML extensions for component-based group-
ware

The following extensions to the UML notation have been defined in this thesis
to model collaborative environments consisting of Groupware Components.

<=Shareds» Instances of the class "DocumentSection” are
DocumentSection shared domain data objects. The class
==5Slpt=> "DocumentSection” is a subclass of the
-subSections Vector framework class "ModelObject” and defines
==Slot=> the two Slots "subSections” and
-gectionContent:String "sectionCantent”.
=<sharad=» ! ;
DomainData The Groupwa_r_e Component |mplemented in
Py the class "EditingComponent” publishes the

-sormevalue: St nig task "edit" on instances of the shared domain
model class "DomainData”.

M

|
==Tagk== Iedit

|

|

==Compaonent==
EditingComponent

Figure B.4: UML extensions for modeling Groupware Components

154 APPENDIX B. UML OVERVIEW

I =-3ession-=
Ei‘ Session 1

==Component==

anEditor:Editing Component

| ==Session==
| edit Session 2

==Shared==

) ==Camponent==
aDocumentDomainData |« _ YW sTask=> | _|dieweriiowingComponent

==Task==

The shared domain data object aDocument is accessed by two
GroupwareComponents, each in its own session. One component has

been invoked through the "edit" task on that shared domain object,
the other through the task “view".

Figure B.5: UML extensions for modeling running sessions

Deployr entSystem A se_ssion i_s running on a specific node_ of the system.
Inthis session, a component has been invoked on a
shared domain data object through the task "edit”.

==5essiunss
aSession

==Tagk==

==8hsred==
someOhject.DomainData

Figure B.6: UML extensions for modeling running sessions on a specific node

Appendix C

List of publications

The following publications have appeared so far (Dec. 2000) or have been ac-
cepted for publication:

Weigang Wang, Jorg M. Haake, Jessica Rubart and Daniel A. Tietze:
Hypermedia-based support for cooperative learning of process knowledge. In:
Journal of Network and Computer Applications (2000), 23. pages 357-379. Dec
2000.

Daniel A. Tietze, Till Schiimmer: Kooperative Softwareentwicklung. In:
Gerhard Schwabe, Norbert Streitz, Rainer Unland (Hrsg.): CSCW-Kompendium.
Lehr- und Handbuch zum computerunterstiitzten kooperativen Arbeiten. Springer
Verlag. 2001 (to appear)

Daniel A. Tietze, Ralf Steinmetz: Ein Framework zur Entwicklung kom-
ponentenbasierter Groupware. In: R.Reichwald, J.Schlichter (Ed.): Verteiltes
Arbeiten - Arbeit der Zukunft (Proceedings der Fachtagung D-CSCW 2000),
S.49-62, German Chapter of the ACM, Berichte, 54, Stuttgart, B.G.Teubner,
September, 2000, ISBN 3-519-02695-3

Weigang Wang, Jorg M. Haake, Jessica Rubart, Daniel A. Tietze: Support-
ing Cooperative Learning of Process Knowledge on the World Wide Web. Pro-
ceedings of 26th EUROMICRO CONFERENCE, Maastricht, the Netherlands,
2000

Jan Schiimmer, Thomas Tesch, Daniel A. Tietze, Ajit Bapat: Introduc-
ing Groupware in Administrative Environments - Experiences from the POLI-
WORK Project. In: Bullinger, H.-J., Ziegler, J. (Ed.): Human-Computer In-
teraction: Communication, Cooperation, and Application Design. Proceedings
of HCI International 99, Munich, Germany, August 22-26, 1999, pp. 492-496,
vol. 2, Mahwah, New Jersey, Lawrence Erlbaum Associates, 1999, ISBN 0-8058-
3392-7

Jorg M. Haake, Daniel A. Tietze: User-Interface Erfahrungen im Infor-
mationsverbund Berlin-Bonn: Ein Bericht aus dem POLIWORK-Projekt. In:
Ralf Reichwald, Manfred Lang (Ed.): Tagungsband: Kongress ” Anwenderfre-
undliche Kommunikationssysteme”, S. 61-77, Munich, Hiithig-Verlag, June 16-
17, 1999, ISBN 3-7785-3937-X

155

156 APPENDIX C. LIST OF PUBLICATIONS

Rolf Reinema, Daniel A. Tietze, Ralf Steinmetz: IMCE - An Integrated
Multimedia Conferencing and Collaboration Environment. In: Proceedings of
the First National CSCW Workshop (CCSCW98), pp. 95-100, Beijing, China,
Publishing House of Electronics Industry, Dec., 1998, ISBN 7-5053-5066-8

Daniel A. Tietze, Ajit Bapat, Rolf Reinema: Document-Centric Groupware
for Distributed Governmental Agencies. In: P. Fankhauser, M. Ockenfeld (Ed.):
Integrated Publication and Information Systems: 10 Years of Research and
Development. GMD-IPSI, pp. 75-90, GMD, Sankt Augustin, Selbstverlag GMD
- Forschungszentrum Informationstechnik GmbH, 1998, ISBN 3-88457-968-1,
(reprint of CAiSE paper)

Daniel A. Tietze, Ajit Bapat, Rolf Reinema: Document-Centric Groupware
for Distributed Governmental Agencies. In: Pernici, B., Thanos, C. (Ed.): Pro-
ceedings of the 10th Conference on Advanced Information Systems Engineering
(CAiISE’98), pp. 173-190, Pisa, Italy, June 8-12, 1998

Rolf Reinema, Daniel A. Tietze, Ralf Steinmetz: IMCE - An Integrated
Multimedia Collaboration Environment. In: Poster Proceedings of the Sixth
ACM InternationalMultimedia Conference (MULTIMEDIA’98), Bristol, 1998

Thomas Knopik, Daniel A. Tietze, Marc Volz, B. Paul, H. Speichermann,
C. Wittinger: Towards a Collaborative Document Archive for Distributed Gov-
ernmental Agencies. In: Lehner, F. and Dustdar, S. (Hrsg.) (Ed.): Telekoop-
eration in Unternehmen, pp. 65-78, Gabler Edition Wissenschaft: Information
Engineering und IV-Controlling, Dt. Univ.-Verl, Wiesbaden, 1997, ISBN 3-
8244-6433-0

Ajit Bapat, Jorg GeiBler, David Hicks, N.A. Streitz, Daniel A. Tietze: From
Electronic Whiteboards to Distributed Meetings: Extending the Scope of DOL-
PHIN. In: Conference Video of the ACM 1996 Conference on Computer Sup-
ported Cooperative Work (CSCW ’96), Boston, Massachusetts, November 16-
20, 1996

Jorg M. Haake, Jorg Geifller, Daniel A. Tietze, Ajit Bapat: Hypermedia-
based Collaboration Support . In: Wolf, M., Reimer, U. (Ed.): Proceedings of
the First International Conference on Practical Aspects of Knowledge Manage-
ment (PAKM ’96), Vol. 2, Basel, Switzerland, October 30-31, 1996

Daniel A. Tietze, Marc Volz, Thomas Knopik: Kooperatives Dokumenten-
management. In: GMD Jahresbericht 1995/96, pp. 51-57, Sankt Augustin,
Selbstverlag GMD - Forschungszentrum Informationstechnik GmbH, 1996, ISSN
0949-2283

Bibliography

[AW96]

[BAB*97]

[BBD*91]

[BCMOY5]

[BDMM99]

[BRS99]

[BSSS97]

[CGJIPYS]

Abdel-Wahab. Using Java for Multimedia Collaborative Applica-
tions. Proc. 3rd International Workshop on Protocols for Multi-
media Systems (PROMS’96), October 1996.

R. Bentley, W. Appelt, U. Busbach, E. Hinrichs, D. Kerr,
K. Sikkel, J. Trevor, and G. Woetzel. Basic Support for Coop-
erative Work on the World-Wide Web. In International Journal
of Human-Computer Studies: Special issue on Innovative Applica-
tions of the World-Wide Web. Academic Press, 1997.

R. Balter, J. Bernadat, D. Decouchant, A. Duda, A. Freyssinet,
S. Krakowiak, P. Ledot, M. Meysembourg, H. Nguyen Van,
E. Paire, M. Riveill, C. Roisin, X. Rousset de Pina, R. Scioville,
and G. Vandome. Architecture and Implementation of Guide, an
Object-Oriented Distributed System. Computing Systems, vol. 4,
num. 1:31-67, 1991.

Georges Brun-Cottan and Mesaac Makpangou. Adaptable Repli-
cated Objects in Distributed Environments. Rapport de Recherche
2593, Institut National de la Recherche en Informatique et Au-
tomatique, Rocquencourt (France), May 1995.

Guruduth Banavar, Sri Doddapaneni, Kevan Miller, and Bodhi
Mukherjee. Rapidly Building Synchronous Collaborative Appli-
cations By Direct Manipulation. In Proceedings of ACM 1998
Conference on Computer Supported Cooperative Work (CSCW98),
pages 139-148. ACM Press, 1999.

James Begole, Mary B. Rosson, and Clifford A. Shaffer. Flexible
Collaboration Transparency: Supporting Worker Independence in
Replicated Application-Sharing Systems. ACM Transactions on
Computer-Human Interaction, Vol. 6, No. 2, June 1999:95-132,
1999.

James Begole, Craig A. Struble, Clifford A. Shaffer, and Randall B.
Smith. Transparent Sharing of Java Applets: A Replicated Ap-
proach. In Proceedings of the 1997 Symposium on User Interface
Software and Technology (UIST’97), pages 55-64, 1997.

Annie Chabert, Ed Grossman, Larry Jackson, and Stephen Pietro-
vicz. NCSA Habanero (r) - Synchronous collaborative framework

157

158

[Cha96]

[Col9T]

[DCS94]

[DeS97]

[DGO+94]

[Dou95a]

[Dou95b]

[EGS89)

[Eng97]

[ESSGS00]

[FGM+99)]

[Fow99]

[Fow00)]

BIBLIOGRAPHY

and environment. http://havefun.ncsa.uiuc.edu/habanero/
Whitepapers/index.html, 1998.

David Chappell. Understanding ActiveX and OLE. Microsoft
Press, 1996. ISBN: 1-57231-216-5.

David Coleman. Groupware - Collaborative Strategies for Corpo-
rate LANs and Intranets. Prentice-Hall, 1997. ISBN: 0-13-727728-
8.

Prasun Dewan, Rajiv Choudhary, and Honghai Shen. An Editing-
Based Characterization of the Design Space of Collaborative Ap-
plications. Journal of Organizational Computing, pages 219-239,
1994.

Alden DeSoto. Using the Beans Development Kit 1.0, September
1997.

G. Dermler, T. Gutekunst, E. Ostrowski, N. Pires, T. Schmidt,
M. Weber, and H. Wolf. JVTOS - A Multimedia Telecooperation
Service Bridging Heterogeneous Platforms. International Confer-
ence on Broadband Islands, 1994.

Paul Dourish. Developing a Reflective Model of Collaborative
Systems. ACM Transactions on Computer-Human Interaction,
2(1):40-63, March 1995., 1995.

Paul Dourish. The Parting of the Ways: Divergence, Data Manage-
ment and Collaborative Work. Proc. Fourth European Conference
on Computer-Supported Cooperative Work ECSCW’95, 1995.

C. A. Ellis and S. J. Gibbs. Concurrency control in group systems.
SIGMOD Record (ACM Special Interest Group on Management of
Data), 18(2):399-407, June 1989.

Robert Englander. Developing Java Beans. O’Reilly and Asso-
ciates, 1997. ISBN: 1565922891.

Abdulmotaleb El Saddik, Shervin Shirmohammadi, Nicolas D.
Georganas, and Ralf Steinmetz. JASMINE: Java Application Shar-
ing in Multiuser INteractive Environments. International Work-
shop on Interactive Distributed Multimedia Systems and Telecom-
munication Services 2000 (IDMS 2000), October 2000.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee. RFC 2616: Hypertext Transfer Protocol —
HTTP/1.1. ftp://ftp.isi.edu/in-notes/rfc2616.txt, 1999.

Martin Fowler. Refactoring - Improving the Design of Ezisting
Code. The Addison-Wesley object technology series. Addison-
Wesley, 1999. ISBN: 0-201-485676-2.

Martin Fowler. UML Distilled, Second Edition - A Brief Guide to
the Standard Object Modeling Language. Addison-Wesley, Reading,
MA, 2000. ISBN: 020165783X.

BIBLIOGRAPHY 159

[GM94]

[Gor99]

[Gre9l]

[Gre9s|

[Gro00]

[Haa99]

[HHBY6)]

[HK97]

[HKMO8]

[HMOg]

[HSHY9)]

[IBHS97]

[Ise98]

[javaT]

[J1.96]

S. Greenberg and D. Marwood. Real Time Groupware as a Dis-
tributed System: Concurrency Control and its Effect on the Inter-
face. Research Report 94/534/03, February 1994.

H.T. Goranson. The Agile Virtual Enterprise : Cases, Metrics,
Tools. Quorum Books, October 1999. ISBN: 1567202640.

Saul Greenberg. Computer-supported Cooperative Work and
Groupware. Academic Press, London, 1991.

S Greenberg. Real Time Distributed Collaboration. Kluwer Aca-
demic Publishers, 1998.

Groove. Peer Computing Comes to the Internet - Introducing
Groove. http://www.groove.net, 2000.

Jorg M. Haake. Facilitating Orientation in Shared Hypermedia
Workspaces. In Proceedings of ACM Group’99, Phoenix, Arizona,
November 1999.

A. Helal, A. Heddaya, and B. Bhargava. Replication Techniques
in Distributed Systems. Kluwer Academic Publishers, 1996.

Markus Horstmann and Mary Kirtland. DCOM Architec-
ture. http://msdn.microsoft.com/library/backgrnd/html/
msdn_dcomarch.htm, July 1997.

J. Hummes, A. Kohrs, and B. Merialdo. Software Components for
Cooperation: a Solution to the ”Get Help” Problem. In Proceed-
ings of COOP’98: Third International Conference on the Design
of Cooperative Systems, May 1998.

J. Hummes and B. Merialdo. Design of Extensible Component-
based Groupware. Computer Supported Cooperative Work - An
International Journal, 1998.

Merlin Hughes, Michael Shoffner, and Derek Hamner. Java Net-
work Programming, second edition. Manning Publications Co.,

Greenwich, CT, 1999. ISBN: 1-884777-49-X.

Philip Isenhour, James Begole, Winfield S. Heagy, and Clifford A.
Shaffer. Sieve: A Java-Based Collaborative Visualization Envi-
ronment. In IEEFE Visualization 97 Late Breaking Hot Topics
Proceedings, pages 13-16, October 1997.

Philip L. Isenhour. Sieve: A Java-Based Framework for Collabo-
rative Component Composition. MSc Thesis, Virginia Polytechnic
Institute and State University, February 1998.

Java Beans API Specification. http://java.sun.com/products/
javabeans/docs/spec.html, July 1997.

Richard Jones and Rafael D Lins. Garbage Collection : Algorithms
for Automatic Dynamic Memory Management. John Wiley & Son
Ltd., 1996. ISBN: 0471941484.

160

[Joh91]

[Joh97]

[KFCOY9]

[KT99]

[LJLR90]

[LL90]

[LLSG92|

[LP00a)

[LPOOb)

[LWM99]

[Mar99]

[Mey89]

[Min75]

BIBLIOGRAPHY

R. Johansen. Leading Business Teams. Addison-Wesley, Reading,
Mass, 1991.

Ralph E. Johnson. Frameworks = Components + Patterns. Com-
munications of the ACM, Vol.40, No. 10:39-42, October 1997.

K. E. Kerry Falkner, P. D. Coddington, and M. J. Oudshoorn.
Implementing Asynchronous Remote Method Invocation in Java.
In Proc. Parallel and Real-Time Systems (PART’99), December
1999.

Michael Koch and Gunnar Teege. Support for Tailoring CSCW
Systems: Adaptation by Composition. In Proc. 7th Euromicro
Workshop on Parallel and Distributed Processing, pages 146-152.
IEEE Press, 1999.

J. Chris Lauwers, T. A. Joseph, Keith A. Lantz, and A. L. Ro-
manow. Replicated Architectures for Shared Window Systems: A
Critique. In Proceedings of the conference on Office Information
Systems, pages 249-260, 1990.

J. Chris Lauwers and Keith A. Lantz. Collaboration awareness in
support of collaboration transparency: requirements for the next
generation of shared window systems. In Conference proceedings on
Empowering people: Human factors in computing system: special
issue of the SIGCHI Bulletin, pages 303-311, 1990.

Rivka Ladin, Barbabra Liskov, Liuba Shrira, and Sanjay Ghe-
mawat. Providing High Avilability Using Lazy Replication. ACM
Transactions on Computer Systems, pages 360-391, November
1992.

Radu Litiu and Atul Prakash. DACIA: A Mobile Component
Framework for Building Adaptive Distributed Applications. In
Proceedings of Principles of Distributed Computing (PODC) 2000
Middleware Symposium, July 2000.

Radu Litiu and Atul Prakash. Developing Adaptive Groupware
Applications using a Mobile Component Framework. In Proceed-
ings of CSCW’2000, December 2000.

W. Li, W. Wang, and I. Marsic. Collaboration Transparency in the
DISCIPLE Framework. In Proceedings of the ACM International
Conference on Supporting Group Work (GROUP’99), Phoenix,
AZ, November 1999.

I. Marsic. DISCIPLE: A Framework for Multimodal Collaboration
in Heterogeneous Environments. ACM Computing Surveys, 1999.

Betrand Meyer. Object-oriented Software Construction. Prentice-
Hall International, 4th edition, 1989. ISBN: 0-13-629031-0.

M. Minsky. A framework for representing knowledge. The Psy-
chology of Computer Vision, pages 211-277, 1975.

BIBLIOGRAPHY 161

[MN9g]

[Mor97]

[NPH99)

[omg00)]

[OV91]

[Phi99)]

[Pre99]

[PS94]

[PS95]

[RG96]

[RU9S]

[RUOO]

[Sai9s]

[SC00]

T.D. Meijler and O. Nierstrasz. Beyond Objects: Components.
Academic Press, 1998.

A.I. Morch. Three Levels of End-user Tailoring: Customiza-
tion,Integration, and Extension. Journal: Computers and Design
in Context, 1997.

Christian Nester, Michael Philippsen, and Bernhard Haumacher.
A More Efficient RMI for Java. In Proc. ACM 1999 Java Grande
Conference, 1999.

CORBA Basics (CORBA Frequently Asked Questions). http:
//wuw.omg.org/gettingstarted/corbafaq.htm, 2000.

M.T. Oszu and P. Valduriez. Principles of Distributed Database
Systems. Prentice-Hall International, Inc., Englewood Cliffs, New
Jersey, 1991.

W.Greg Philips. Architectures for Synchronous Groupware. tech.
report 1999-425, Department of Computing and Information Sci-
ence, Queen’s University, Kingston, Ontario, 1999.

Wolfgang Pree. Komponentenbasierte Softwareentwicklung mit
Frameworks. dpunkt Verlag, Heidelberg, 1999.

Atul Prakash and Hyong Sop Shim. DistView: Support for Build-
ing Efficient Collaborative Applications using Replicated Objects.
In Proceedings of CSCW’94, 1994.

David Plainfosse and Marc Shapiro. A Survey of Distributed
Garbage Collection Techniques. International Workhop on Mem-
ory Management, September 1995.

M. Roseman and S. Greenberg. Building real time groupware with
GroupKit, a groupware toolkit. ACM Transactions on Computer-
Human Interaction, pages 66-106, March 1996.

Jorg Roth and Claus Unger. DreamTeam - A Platform for
Synchronous Collaborative Applications. Groupware und organ-
isatorische Innovation (D-CSCW’98), pages 153-165, 1998.

Jorg Roth and Claus Unger. Developing synchronous collaborative
applications with TeamComponents. In R.Dieng et al., editor,
Designing Cooperative Systems - Proceedings of coop’2000. 10S
Press, 2000.

Adib Saikali. The Hitchiker’s Guide to the Microsoft Component
Object Model. http://www.csclub.uwaterloo.ca/\ asaikali/
HitchGuideToCom.html, September 1998.

Oliver Stiemerling and Armin B. Cremers. The EVOLVE Project:
Component-Based Tailorability for CSCW Applications. Al and
Society, issue 14:120-141, 2000.

162

[SKFS99]

[SKSHY6]

[S5S99]

[STBT99)

[Sti99)]

[Sti00]

[Sum9g|

[Szy97]

[Tan96]

[tHOS]

[The01]

[WDM99)

BIBLIOGRAPHY

Abdulmotaleb El Saddik, Oguzhan Karaduman, Stephan Fischer,
and Ralf Steinmetz. Collaborative Working with Stand-Alone Ap-
plets. In In Proc. of the 12th International Symposium on Intel-
ligent Multimedia and Distance Education(ISIMADE’99)., pages
203-209, August 1999. ISBN 0-921836-80-5.

C. Schuckmann, L. Kirchner, J. Schiimmer, and J.M. Haake. De-
signing Object-Oriented synchronous groupware with COAST. In
Proceedings of the ACM 1996 Conference on Computer Supported
Cooperative Work (CSCW’96), pages 30-38. ACM Press, New
York, 1996.

Christian Schuckmann, Jan Schiimmer, and Peter Seitz. Model-
ing Collaboration using Shared Objects. In Proceedings of ACM
GROUPY9, Intrnational Conference on Supporting Group Work.
ACM Press, 1999.

Jan Schiimmer, Thomas Tesch, Ajit Bapat, and Daniel Tietze.
Introducing Groupware in Administrative Environments - Expe-
riences from the POLIWORK Project. Bullinger, H.-J., Ziegler,
J. (Ed.): Human-Computer Interaction: Communication, Coop-
eration, and Application Design. Proceedings of HCI International
’99, pages 492-496, 1999.

Oliver Stiemerling. Komponentenbasierte Anpassbarkeit von
Groupware. In Proceedings of DCSCW’98, pages 225236, Dort-
mund, 1999.

Oliver Stiemerling. Component-Based Tailorability. Ph.d. thesis,
Rheinische Friedrich-Wilhelms-Universitt, July 2000.

Robert Summers. Official Microsoft(c) NetMeeting(tm) Book. Mi-
crosoft Press, 1998. ISBN: 1-57231-816-3.

Clemens Szypersky. Component Software - Beyond Object-oriented
Programming. Addison-Wesley, 1997.

Andrew Tanenbaum. Computer Networks. Prentice Hall, 1996.
ISBN: 0133499456.

Henri ter Hofte. Working Apart Together - Foundations for Com-
ponent Groupware, volume No. 001 of Telematica Institute Fun-
damental Research Series. Telematica Instituut, Enschede, the
Netherlands, 1998. ISBN: 90-75176-14-7.

The Yankee Group. Communication, Collaboration, Coordination:
The "Three Cs” of Workgroup Computing. www.yankeegroup.
com, 2001.

W. Wang, B. Dorohonceanu, and I. Marsic. Design of the DIS-
CIPLE Synchronous Collaboration Framework. In Proceedings of
the 3rd IASTED International Conference on Internet, Multime-
dia Systems and Applications (IMSA’99), pages 316-324, Nassau,
Grand Bahamas, October 1999.

BIBLIOGRAPHY 163

[Wei93]

[WHRT00a]

[WHRTO0D)]

[WJIHO7]

[Wol9g]

[WP00]

[WPS*00]

[XFT+01]

William E. Weihl. Transaction-Processign Techniques. In
Sape Mullender (ed.), editor, Distributed Systems, Second Edition,
chapter chapt.13, pages 329-351. 1993. ISBN: 0-201-62427-3.

Weigang Wang, Jorg M. Haake, Jessica Rubart, and Daniel A.
Tietze. Hypermedia-Based Suppport for Cooperative Learning of
Process Knowledge. special issue on Support for Open and Dis-
tance Learning on the WWW in Journal of Network and Computer
Applications, pages 357-379, December 2000.

Weigang Wang, Jorg M. Haake, Jessica Rubart, and Daniel A. Ti-
etze. Supporting Cooperative Learning of Process Knowledge on
the World Wide Web. In Proceedings of 26th EUROMICRO Con-
ference, Vol.2, pages 20-27, Maastricht, the Netherlands, Septem-
ber 2000.

O. Wolfson, S. Jajodia, and Y. Huang. An Adaptive Data Repli-
cation Algorithm. ACM Transactions on Database Systems, Vol.
22, No. 2:255-314, June 1997.

Ouri Wolfson. Adaptive Replication. http://www.eecs.uic.edu/
“wolfson/html/replic.html, 1998.

Martin Wessner and Hans-Riidiger Pfister. Points of Cooperation:
Integrating Cooperative Learning into Web-Based Courses. In Pro-
ceedings of the NTCL2000, The International Workshop for New
Technologies for Collaborative Learning, Hyogo, Japan, 2000.

Matthias Wiesmann, Fernando Pedone, Andr Schiper, Bettina
Kemme, and Gustavo Alonso. Understanding Replication in
Databases and Distributed Systems. Proc. of the 20th Interna-
tional Conference on Distributed Computing Systems (ICDCS),
Taipet, Taiwan, 2000.

Bo Xiao, Stephan Fischer, Daniel Tietze, Jorg M. Haake, and
Ralf Steinmetz. Integratiing Multimedia support into Web-based
Shared Workspaces. Submitted to: WWW’10 Conference, 2001.

