
EAI Endorsed Transactions Preprint Research Article/Editorial

Amethod for automatic situation recognition in
collaborative multiplayer Serious Games
Viktor Wendel∗, Marc-André Bär, Robert Hahn, Benedict Jahn, Max Mehltretter, Stefan Göbel,
Ralf Steinmetz

Technische Universität Darmstadt, Multimedia Communications Lab, Darmstadt, Germany

Abstract

One major Serious Games challenge is adaptation of game-based learning environments towards the needs
of players with heterogeneous player and learner traits. For both an instructor or an algorithmic adaptation
mechanism it is vital to have knowledge about the course of the game in order to be able recognize player
intentions, potential problems or misunderstandings, both of the game(play) and the learning content.

The main contribution of this paper is a mechanism to recognize high-level situations in a multiplayer Serious
Game. The approach presented uses criteria and situations based on the game-state, player actions and events
and calculates how likely it is that players are in a certain situation. The gathered information can be used
to feed an adaptation algorithm or be presented to the instructor to improve instructor decision making. In a
first evaluation, the situation recognition was able to correctly recognize more than 80% of the situations in a
set of game sessions.

Received on XXXX; accepted on XXXX; published on XXXX

Keywords: Serious Games, Collaborative Learning, Game Mastering, Adaptation

Copyright © XXXX Viktor Wendel et al., licensed to ICST. This is an open access article distributed under the terms of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited
use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/XX.X.X.XX

1. Motivation
Especially for game-based collaborative learning sce-
narios, major fields of research are adaptation of learn-
ing content, difficulty, as well as game-pace and content.
First approaches to address problems in those fields
have been proposed, focusing on human instructor sup-
port and Game Mastering. Many of those approaches
consider what information needs to be presented to
the instructor and what adaptation mechanisms are
necessary and should be regarded.

A different approach is automatic adaptation of
multiplayer Serious Games. Any adaptation algorithm,
however, needs knowledge about the game state, the
learner/player state, and player progress and behavior
in order to be able to decide about proper adaptations
for the present game state. In particular, an algorithm
needs to be aware of problems and misunderstandings
during the game. Whereas a human Game Master can
rather easily recognize and judge what a player or a

∗Corresponding author. Email: viktor.wendel@kom.tu-darmstadt.de

group of players is doing at a certain moment during
the game session just by observing the scene, his/her
background knowledge of the game, and human
reasoning, this is extremely difficult to recognize
automatically. Especially in game genres where players
control an avatar in a rather open world and where they
can move freely in this world, deciding for themselves
about what to do next and how, it is a challenge to
automatically recognize what a player - or a team
- is doing at a certain moment. Examples for this
are Second Life1, mods of commercial role-playing
games, or collaborative multiplayer Serious Games like
Woodment [1] or Escape From Wilson Island [2].

The scenario observed here focuses on non-scene-
based open world action-adventure-like games using
avatars to (re-)present players. In this paper, we propose
an approach for automatic situation recognition in
multiplayer Serious Games. The goal is to automatically
recognize what a single player or a group of players

1secondlife.com/

1
EAI Endorsed Transactions Preprint

http://creativecommons.org/licenses/by/3.0/
mailto:<viktor.wendel@kom.tu-darmstadt.de>
rst
Textfeld
Viktor Wendel, Marc-André Bär, Robert Hahn, Benedict Jahn, Max Mehltretter, Stefan Göbel, Ralf Steinmetz: A method for automatic situation recognition in collaborative multiplayer Serious Games. In: EAI Endorsed Transactions, December 2014.

rst
Textfeld
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

V. Wendel, M.-A. Bär, R. Hahn, B. Jahn, M. Mehltretter, S. Göbel, R. Steinmetz

are likely doing at a certain point in a game, based
on information about their locations, their movements,
their actions, and their interactions. Therefore, an
interface is defined to access elementary and abstract
game states, current and past player actions, game
quests and (learning) tasks, and game relevant
attributes. Based on this, state diagrams regarding
dependencies between states are created and different
kinds of criteria to calculate probabilities of situations
are used. Criteria are defined based on space, time,
and state, like local or global criteria, distance criteria
or criteria based on game states or attributes. The
concept further includes an algorithm which calculates
which criteria are fulfilled using the data gathered
from the game. Based on that, the algorithm calculates
probabilities for players being in certain situations, like
trying to solve a certain task or exploring the level, etc.

We implemented our concept as an extension of the
existing collaborative multiplayer Serious Game Escape
From Wilson Island (EFWI) which offers group tasks
designed in a way such that players need to work
together and communicate in order to succeed [2]. A
Game Master Frontend has been implemented to enable
an instructor to perform instructor tasks from inside
the game at run-time [3]. The situation recognition
described in this paper is a direct extension to this
Game Master framework with the objective of enabling
the Game Master framework to automatically recognize
game relevant situation in order to inform and
support the Game Master and automatically perform
adaptations based on the recognized situations. An
initial study to evaluate the soundness and correctness
of our approach has been carried out comparing the
recognized situations with the situations recognized by
a real GM. The initial results are very promising. The
situation recognition was able to correctly recognize the
defined game situations in more than 80% of cases.
However, further evaluation is required including a
bigger set of users as well as additional games.

2. Related Work
2.1. Collaborative Learning
Roschelle and Teasley [4] define collaboration as " a
coordinated, synchronous activity that is the result
of a continued attempt to construct and maintain
a shared conception of a problem". The concept of
Collaborative Learning is used widely in e-learning
and game-based learning. Dillenbourg [5] defined
Collaborative Learning as "a situation in which two
or more people learn or attempt to learn something
together". Various parameters define the success of
collaborative learning: One core element is the group of
learners, characterized by its size and its composition.
In this work, the focus is on small learner groups (2-
6 players) suitable for cooperative learning scenarios.
Johnson and Johnson [6] define five essential elements
of cooperation which are a prerequisite for cooperation
to take place in cooperative learning scenarios:
Positive Interdependence, Individual Accountability
and Personal Responsibility, Promotive Interaction,
Appropriate Use of Social Skill, and Group Processing.

Computer-supported collaborative learning (CSCL)
is the combination of computer technology and col-
laborative learning concepts. The fields of applica-
tion are communication, coordination, cooperation in
groups, and cooperative learning rooms (especially
virtual learning rooms) (Haake et al. [7], p. 358).
Whereas first virtual learning rooms were CSCL appli-
cations specifically designed for a CSCL purpose, most
often integrating a chat system and a shared screen,
later versions used existing virtual worlds like Second
Live or Massively Multiplayer Online Role-Play Game
(MMORPG) worlds [8].

2.2. Serious Games for Collaborative Learning
In Recent years, first CSCL Serious Games have
been designed and implemented. They incorporate
the CSCL principles and combine them with Serious
Games principles resulting in first multiplayer Serious
Games for collaborative learning [9]. Hämäläinen [10]
describes an approach of a collaborative game for
vocational learning focusing on design elements
essential for collaboration. Reuter [11] describe an
approach for designing and authoring multiplayer
adventures for collaborative learning deriving concepts
for puzzle design in multiplayer games.

2.3. Adaptation
The actions and tasks of the instructor can essentially
be categorized as assessment and adaptation. Adaption
might occur for factors like difficulty, narration, play-
ers’/learners’ preferences, or the need to compensate
a deficit. In general, a common definition of adapta-
tion is " [the] ability to make appropriate responses to

2
EAI Endorsed Transactions Preprint

A method for automatic situation recognition in collaborative multiplayer Serious Games

changed or changing circumstances" [12]. It is desir-
able to adapt games in various dimensions, like those
stated above. Charles et al. state that "Learning and
adaptation are viewed by some as a having a crucial
part to play in next-generation games" [13]. Kickmeier-
Rust and Albert [14] provide an overview over adap-
tation principles and techniques in Serious Games, like
adaptive behavior of agents, motivational interventions,
procedural and adaptive level and content generation.
Sweetser and Wyeth [15] defined the term ’GameFlow’,
transferring the concept of ’Flow’ [16] to games with the
goal of designing and evaluating enjoyment in games.
Their model includes the eight dimensions concen-
tration, challenge, skill, control, clear goal, feedback,
immersion, and social interaction. Chen [17] states that
one fundamental condition for Flow in games is that
the game must provide the right amount of challenges
to match with the players’ abilities. This, as well as
the adaptation principles stated by Kickmeier-Rust and
Albert [14], requires that the game knows about the
current game state and in what situation players are
currently in.

In order to be able to soundly adapt a game to player’s
needs and preferences, a sound model of a player is
necessary. A widely used player model is BartleâĂŹs
player model [18] for multi-user dungeons which has
been adapted for roleplay games. A more generic model
is proposed bei Houlette [19] which is based on a set
of player traits which can be freely defined according
to the game domain whereas each trait is assigned a
value in the range [0; 1]. Smith et al. [20] developed
a taxonomy of player modeling. They define a player
model using the four dimensions scope of application,
purpose of use, domain of modeled details, and source
of modelâĂŹs derivation or motivation. The situation
recognition proposed here will eventually feed and
update a player model which again will be used to select
appropriate adaptations.

3. Approach
3.1. Problem Statement
The approach presented here focuses on the scenario
of collaborative learning in small groups using mul-
tiplayer Serious Games. The Serious Games regarded
here are considered to be non-scene-based, i.e. the
games are open in terms of sequence and pacing. Typ-
ical games and genres include action adventures, role-
play games, games with first person shooter mechanics,
and games which rely on an open world, like many
sandbox games (e.g. Minecraft). Therefore, it can be
stated that it is impossible to predict the next game
state from the current game state due to the high degree
of player freedom. This means that it is practically
impossible to foresee player movement or player actions
based on the current game state. An example is a group

of players standing at a certain point in a roleplay game.
They can decide to go east, west, north or south, or - to
make it even more complicated - they can go east for
a few steps and then change direction. The possibility
space is infinite merely through player movement, not
including any other player actions. Thus, as each player
has full control over his/her character, it cannot be
predicted what will happen next. This is contrary to
e.g. scene-based games where it is much easier to define
concrete game-states due to limited player freedom. In
that type of game, usually player actions at a specific
point in the game are clearly defined and limited (i.e. by
predefined dialogue options, doors to chose, or buttons
to press, which deterministically lead to a next ’scene’,
i.e. ’state’). The player freedom in the open world is the
core problem for recognizing what situation a player -
or a group of players - is in. Machine-based situation
recognition needs to derive a situation from certain
environmental conditions which are clearly defined.
This can be easy in some cases, e.g. when a player action
is triggered by interacting with a game object. If a player
clicks on a game object, like e.g. a berry bush, it can be
stated that the player is in a ’gather berries’ situation.
This situation can clearly be gathered from the game as
it is linked to one concrete trigger (’clicking the "Gather
Berries"-button’). An example for a converse case is a
situation which occurs in Escape From Wilson Island.
Players need to surround a heron in order to hunt it.
A human instructor can easily judge when players are
moving to hunt and surround the heron from the play-
ers’ movements. However, as there are no hard triggers
(players are just moving) or events clearly defining the
start of the hunting situation, this is very difficult to
recognize automatically. The players’ actions (including
their movement) need to be evaluated algorithmically.
Merely evaluating a player’s position is not enough in
this case as a player can be at a position for various
reasons.

3.2. Game Interface
The developed situation recognition mechanism uses
elemental game-data like game variables, player
parameters, or elemental game actions, like moving, or
triggering events by pressing a button. Based on those,
game states and tasks are defined. Game situations
are defined using different kinds of criteria which
indicate that the situation is currently present. Finally,
all situations are evaluated periodically, calculating a
probability for each situation to be present at a certain
point in the game session. Following, core definitions
will be presented:

Definition (Game Variable). A Game Variable v ∈ V is an
elemental piece of information about the game. The set
V contains all game variables. The function ω assigns a
value of v’s codomain: ω : v → {N,R,B}.

3
EAI Endorsed Transactions Preprint

V. Wendel, M.-A. Bär, R. Hahn, B. Jahn, M. Mehltretter, S. Göbel, R. Steinmetz

Game variables can change either through game
events or through player actions.

Definition (Game State). The Game State GS is a concrete
allocation of all game variables V in the game:

GS =

v0
v1
...

v|V|

 (1)

The game state changes whenever a game variable
v ∈ V changes.

Definition (Action (repetition)). An Action a ∈ A is an
elemental player activity which has a well-defined effect
on the game state GS. A is the set of all Actions. The
effect on GS is defined as a manipulation α of a subset
of game variables V ′ ⊆ V :

α : GS, a→ GS with GS ◦ a = GS ′ (2)

An action can be as simple as ’move forward’
triggered by pressing the respective key, or ’gather
berries’ triggered by clicking on a berry bush game
object. Note: Although in a game an action might have
a number of prerequisites which have to be fulfilled
for the action to be executable (e.g. a player needs to
be within a certain distance to a game object in order
to trigger the object), this is no relevant information
here. The game itself takes care about checking the
prerequisites. The situation recognition only needs to
know when an action was performed.

Definition (Shape). A Shape s ∈ S describes a complex
combination of game variable states. S is the set of all
Shapes.

Thus, a shape is a boolean expression over a set of
game variables which evaluates to true or false.

A shape s is considered ’active’ if the boolean
expression bes describing the shape evaluates to true,
else ’inactive’. A boolean expression be is either an
elemental boolean expression or a composed boolean
expression. An elemental boolean expression compares
the current value of a game variable v ∈ V with a
target value using an arithmetic test operator. The
arithmetic test operators used are: =,,, >, <,≥,≤; The
target value is a concrete value of the respective game
variable’s value range (e.g. x > 5). A composed boolean
expression combines two boolean expressions using a
boolean operator. The boolean operators used to define
a game state are: and, or, not, xor: The set Vs ∈ V is the
set of game variables which are used in the boolean
expression bes. The value of all used variables Vs is
taken from the current game state GS.

The function f assigns {true, false} to the boolean
expression be depending on the the current game state
GS, i.e. depending on the current allocation of the
relevant variables which are used in be. The function
g assigns {active, inactive} to a shape depending on the
value of its boolean expression.

f : be,GS→ {true, f alse}
with f (be,GS) = true if be evaluates to true

using the variable allocations in GS;

g : S→ {active, inactive}
with g (s) = active if f (bes,GS) = true, else inactive;

(3)

According to the above definition, at every point in
the game, n states can be active simultaneously with
n ∈ [0; |S|].

Definition (Task). A Task t ∈ T is defined as the tuple t =
(St, σs, σe, σa,) with σs, σe, σa ∈ Σ, δ : Σ,A→ Σ. The set
of Tasks T contains all Tasks.

A task is a well-defined assignment which has to be
fulfilled by one or more players. A task consists of at
least two states, the start state ss and the end state se.
The start state defines conditions to be met before the
task can be started (or for the task to be assigned). The
end state is reached when the task is fulfilled. There
can be a number m with m ≥ 0 of states between start
and end state. The set Σ contains all states of t. The
state sa denotes the active state. The function δ defines
which successor state becomes active after performing
a (player) action a. Thus, δ is a semantic note telling
the situation recognition which action(s) are expected
to be performed by players next for them to advance in
the respective task based on the task’s current state. The
situation recognition can use this information to adapt
the game if necessary (e.g. if players are taking too
much time to execute this action, or if they lack a skill
required for this action). Due to the clear unambiguous
structure of a task, it is possible to use state transitions
to predict players’ most probable next actions and
subsequently the next situation.

Whenever an action anow is executed, the situation
recognition checks whether a task t’s active state sat
changes. If δ(sat , anow) is defined, sat = δ(sat , anow), else
sat .

Definition (Region). A Region is a well-defined area in the
game world (e.g. defined by a square or a circle).

The specific definition of a region is left to the game.
The relevant information about a region is whether one
or more game-relevant entities are inside an area.

4
EAI Endorsed Transactions Preprint

A method for automatic situation recognition in collaborative multiplayer Serious Games

In order to be able to evaluate which situation is
currently present, a set of criteria is used. A situation
is defined to be true if all of its criteria are fulfilled.

Definition (Criterion). A Criterion c ∈ C, whereas C is the
set of all Criteria, is an item which defines if a game
condition is fulfilled.

For each type of criterion, an evaluator function e
continuously evaluates to which extend it is fulfilled.
Many criteria can either be 0 or 1 as they are evaluated
in a binary way (either ’true’ or ’false’). Whenever a
player is referred, one or more players who are part of
the situation, are meant. A player is part of a situation
if he/she is part of at least one criterion of the situation.

In general, there are two types of criteria:

1. Criteria which specify one or more players.

2. Criteria which refer to one or more players.

3.3. Criteria types

Atomic Criterion
A criterion which is directly retrievable from the

game (state), i.e. from a game variable, e.g. ’Is player x
moving?’. An Atomic Criterion refers to the question if
a game variable has a specified value. Thus, it can only
be evaluated to 0 or 1, respectively ’false’ or ’true’ for
the related condition.
e(c) = 1, if the respective game variable has the

desired value, else 0.
The Atomic Criterion specifies the player which is

related to the game variable, if any.

(Class) Spatial Criterion
A class of criteria which make use of player or object

positions. Three concrete criterion types are defined:
Local Criterion, Global Criterion, and Distance Criterion.

Local Criterion
A Local Criterion is considered fulfilled if the

respective player is in the related Region. A player can
either be in the specified region or not. Hence, the Local
Criterion can only be evaluated to 0 or 1, respectively
’false’ or ’true’ for the related condition.
e(c) = 1, if the a player is in the specified area, else 0.
The Local Criterion specifies the player which is in the

specified region.

Global Criterion
A Global Criterion is based on the Local Criterion type.

It contains a set of regions and defines the relationship
between them. Possible relationship types are:

1. Visiting a set of specified regions in a given order
(either by one player or by several players).

2. Being in a set of specified regions at the same time
(several players).

For the former relationship, the following evaluation
function is used:
e(c) = |regionsvisited|

|regionstobevisited|
In this case, the Global Criterion specifies the

player(s) which visited at least one of the specified areas
at the correct point in time.

For the latter relationship, the criterion can be either
fulfilled or not, thus:
e(c) = 1, if all areas are being occupied by at least one

player, else 0.
In this case, the Global Criterion specifies the players

which are in the specified areas.

Distance Criterion
A Distance Criterion is based on the distance between

a player and another player/object/region. Therefore, a
player, an object, a region and a value maxd istance is
specified.

e(c) = 1 − min(current_distance,max_distance)
max_distance

Players are specified implicitly, here.

(Class) Temporal Criterion
A class of criteria which are based on a point in time

or on a time interval. Two concrete criterion types are
defined: Time Criterion and Interval Criterion.

Time Criterion
The Time Criterion can only be fulfilled at a certain

point in time (this point can actually be a time span, like
e.g. ’at night’). Therefore, two points in time are defined:
tmin and tmax. Let tnow denote the current point in
time:
e(c) = 1, if tmin ≤ tnow ≤ tmax
Note: tnow, tmin, and tmax can refer to continuous

time scale (global time) or recurring time (e.g. time of
day). If it refers to a continuous time scale, there can
only be one time interval where e(c) = 1. Otherwise,
there can be a time span with e(c) = 1 every cycle. There
is no player specified or referred to.

Interval Criterion
The Interval Criterion is used to measure the time

distance since the last occurrence of an event or action.
Therefore, an action or an event is specified, as well as a
max_distance value. Let tnow denote the current point
in time, and tlastoccurence the point in time when the
action or event occurred the last time:
e(c) = min((tnow−tlastoccurence),1)

maxd istance
.

A player is specified if the Interval Criterion refers
to a player action. The player who triggered that action
last is the specified player.

5
EAI Endorsed Transactions Preprint

V. Wendel, M.-A. Bär, R. Hahn, B. Jahn, M. Mehltretter, S. Göbel, R. Steinmetz

Explanation of field Value
Name Name of the situation String
Description Description of the Situation String
Caused by ’Player’ or ’Group’ String

Criterion0
...
Criterionn

Criteria which need to be fulfilled
for this situation to be true

Csit ⊆ C

Table 1. Situation

(Class) State-oriented Criterion
The class of state-oriented criteria is based on a

certain (part of the) game state, i.e. a shape or a player
attribute. Three concrete criteria are defined: Shape
Criterion, Attribute Criterion, and Inventory Criterion.

Shape Criterion
Uses a concrete shape, i.e. is considered fulfilled if the

respective shape is active:
e(c) = 1, if the a shape is ’active’, else 0.
There is no player specified or referred to.

Attribute Criterion
The Attribute Criterion is based on player attributes.

If a player attribute has a certain value, is above or
below a certain threshold, or is in a certain range, the
criterion is considered fulfilled. Therefore, either xmin
is specified as a lower threshold, xmax is specified as an
upper threshold, both xmin and xmax are specified as a
range, or xeq is specified as a concrete value. Let xnow be
the current value of the player attribute.

1. If only xmin is specified: e(c) = 1, if xnow ≥ xmin,
else 0.

2. If only xmax is specified: e(c) = 1, if xnow ≤ xmax,
else 0.

3. If xmin and xmax are specified: e(c) = 1, if xmin ≤
xnow ≤ xmax, else 0.

4. If only xeq is specified: e(c) = 1, if xnow = xeq, else
0.

The player whose attribute is evaluated, is the specified
player.

Inventory Criterion
This criterion is used to model the necessity of an

item to be in a player’s inventory.
e(c) = 1, if the specified item is in the player’s

inventory, else 0.
The Inventory Criterion refers to a player which is part

of another criterion of the situation.

Task Criterion
This criterion is used to make a task a prerequisite

of a situation. The task needs to be either in the state
’not started’, ’ongoing’, or ’finished’. Therefore, xtask is
specified as ’not started’, ’ongoing’, or ’finished’. Let
xnow be the current state of the task.
e(c) = 1, if xtask = xnow, else 0.
The Task Criterion does not specify or refer to a player.

3.4. Situation Evaluation
Definition (Situation). A Situation sit is a point of interest
in the game which can be considered interesting or
relevant due to its meaning for the game or game
purpose.

In contrast to shapes, situations are not easily
tangible by defining a boolean expression over a set
of concrete game variables. Rather, situations are used
to describe vague incidences during the course of the
game. Those incidents would usually be categorized by
a human person which is able to recognize and judge
player behavior and game situations.

A situation is defined via a set of criteria Csit: sit :=
Csit ⊆ C A situation is considered partially present if
only a part of its criteria is fulfilled or one or more of its
criteria are only partially fulfilled. A situation is either
caused by one player or by the whole group.

Note: in contrast to a shape, which has two concrete
states: active and inactive, a situation has a continuous
value range of [0; 1] indicating the probability that the
situation is present.

For each situation, the situation recognition calcu-
lates how likely it is that the situation is currently
present. This is performed on a cyclic basis, like every
frame. However, for performance reasons this can be
reduced to once per second. Therefore, it evaluates
the situations’ criteria. For each criterion, an evaluator
function e assigns a value between [0; 1]: e : C −→ [0; 1]
The situation’s sit degree of presence e(sit) thus is:

Hence, it is possible to assign a probability value
(between 0 and 1) for each defined situation in
the game. The evaluator then orders all situations
according to their evaluation value in a descending
order, trimming those situations where e(sit) < δ with
δ being a threshold to define a minimum probability.

6
EAI Endorsed Transactions Preprint

A method for automatic situation recognition in collaborative multiplayer Serious Games

e(sit) =

|Csit |−1∑
i=0

e(ci)

|Csit|
(4)

3.5. Situation Examples
Following, two examples will be presented showing the
use of criteria to define a situation:

Example 1: Skyrim - Buying a house in the city of
Whiterun:

• Local Criterion: Is the player in Whiterun?

• Task Criterion: Is the player ’Thane’ of
Whiterun?2

• State Criterion: Did the player already slay the
first dragon?

• Distance Criterion: Is the player close to the Non-
Player-Character Proventus Avenicci?

• Inventory Criterion: Does the player possess more
than 5000 pieces of gold?

If all of the criteria listed above are fulfilled, there is
a high probability that the player is on his/her way to
buy a house in Whiterun. If however, only some of the
criteria are fulfilled, the player however is not Thane, it
is still possible that he/she is trying to buy the house,
but just does not yet know that he needs to be Thane.
Or, he/she approaches the NPC because he/she wants to
buy something else. Subsequently, the probability that
the player is about to buy the house is still relatively
high.

Example 2: EFWI - Building the log hut:

• Local Criterion: Are the players close to the hut
building area?

• State Criterion: Is the first part of the hut build
already?

• Atomic Criterion: Is a large palm being carried?

If all of those criteria are fulfilled, it can be assumed
with a very high probability that players are trying to
finish building the log hut. If, however, only a part
of those criteria is fulfilled, the players are probably
trying something else (like building the raft, or carrying
logs to make firewood) or they, for example, do not
know where they have to build the hut. Therefore, the
probability that the players are actually building the log
hut is lower, but significantly above zero.

2The player can become Thane of Whiterun (a title of nobility) by
solving a quest, i.e. a task

4. Implementation
We implemented our approach as a Unity3d-based
library coded in C# and used the existing Serious Game
Escape From Wilson Island for a first evaluation. Due
to its Game Mastering interface, EFWI already provides
access to its Game Variables and Actions. That provides
all necessary information for the situation evaluation.

4.1. Escape From Wilson Island
EFWI is a multiplayer Serious Game focusing on
collaboration and teamwork. The narration can be
described as a collaborative ’Robinson Crusoe scenario’.
The tasks to be solved by the players are designed in
a way such that players need to work together and to
coordinate their actions. The overall task is to escape
from a deserted island where the players stranded. In
order to achieve this goal, the players need to build a log
hut for shelter, establish a food supply, build a raft, find
and fill a gas bottle, steer the raft towards the second
island, and ignite a signal fire. The single tasks require
a high amount of teamwork and coordination. Carrying
a palm to build the log hut, for example, requires three
players to coordinate their movement to not let the
palm fall down. More detailed information about the
game can be found in [2]. The Game Master concept and
frontend is described in [3].

4.2. EFWI Tasks
In EFWI, players need to solve several sub-tasks, like
building the log hut, or filling the gas bottle, in order
to finally fulfill the overall task of escaping from the
island.

4.3. EFWI Example Situation
The following example describes the definition and
evaluation of the Situation ’Filling Gas Bottle’. Table 2
shows a list of the defined Criteria.

The gas bottle can only be filled at night. Therefore
the first Criterion evaluates to 0 if it is day, and to a
value between 0 and 0.2 at night, with 0.2 at midnight.
A player needs to provide light to find the correct geyser
at night. Therefore, a player needs to have a flashlight
in his/her inventory. If this is the case, the second
Criterion is evaluated to 0.2, otherwise to 0. Players also
need to have the empty bottle in their inventory. So this
criterion evaluates to 0.2 or 0, if not. Players can only
fill the bottle, if they are in the ’Geyser Region’ of the
island. If players are close to the geysers, this Criterion
evaluates to 0.2. The farther away players are, the lower
this value becomes, until it reaches 0 when players
are far enough away. Finally, the flashlight needs to be
on, so that players can fill the bottle. So this Criterion
evaluates to 0.2 if the flashlight is on, and to 0 if not.
Thus, if all of those Criteria are fulfilled completely,

7
EAI Endorsed Transactions Preprint

V. Wendel, M.-A. Bär, R. Hahn, B. Jahn, M. Mehltretter, S. Göbel, R. Steinmetz

Figure 1. Schematic of all Escape From Wilson Island tasks

Criterion Name Criterion Type Explanation Value Range
DayNight TimeCriteria Day-night-Cycle [0;0.2]
FlashlightInInventory InventoryCriteria Flashlight in inventory? [0;0.2]
EmptyBottleInInventory InventoryCriteria Empty Bottle in inventory? [0;0.2]
GeyserRegion LocalCriteria Player in geyser Region? [0;0.2]
FlashlightUsed StateCriteria Flashlight being used? [0;0.2]
FilledBottleInInventory InventoryCriteria Full Bottle in inventory? [0;-1]

Table 2. Criteria of the’ Filling Gas Bottle’ situation

the Situation would be evaluated to a value close to 1.
Once players filled the bottle with gas, they won’t try
to fill it again. Therefore, the FilledBottleInInventory
Criterion is added which is evaluated to -1 if a player
already has a filled gas bottle, zeroing out all positive
evaluations of the other Criteria. So, even if players are
moving around the geysers at night, having a flashlight
on, they probably are not trying to fill the bottle, if it is
already filled.

The following Table 3 contains Game Variables and
Actions which are being accessed to evaluate the
Criteria:

4.4. EFWI Situation Recognition GUI
In the Game Master GUI (Figure 2), the highest
evaluated situations are being displayed for each player
and for the whole group. The GM can adjust how many

situations to display for each player/group between
only the most significant or all situations.

5. Evaluation

An initial study to evaluate the soundness and
correctness of our approach has been carried out
comparing the recognized situations with the situations
recognized by a real GM. Therefore, the following
situations have been defined as relevant: ’Build log hut’,
’Build raft’, ’Drive raft’, ’Explore island’, ’Fill bottle’,
’Hunt heron’, ’Idle’, ’Ignite fire’, and ’Search berries’.
Those situations cover the first part of the game until
steering the raft towards the second island.

8
EAI Endorsed Transactions Preprint

A method for automatic situation recognition in collaborative multiplayer Serious Games

Name Type
Game Variables GameTime Float

FlashlightInInventory Bool
EmptyBottleInInventory Bool
FullBottleInInventory Bool
Player Position (player attribute) (float,float,float)

Player Actions PickupBottle
Fill Bottle
Move
SwitchFlashlightOnOff

Regions GeyserArea
Table 3. Example Game Variables, Player Actions, and Regions in EFWI

Figure 2. Game Master overview over the game including the situation recognition

5.1. Setup

Five game sessions (with two runs each) were played
with random players. In the first run, a Game Master
was watching the gaming session via the Game Master
Frontend. The visualization of recognized situations
was disabled. The Game Master was instructed to write
down what he/she thought what a player/the group
was doing once per minute or whenever he/she thought
players were doing something new. The notes were
provided with a timestamp. Those notes were then
compared to the situations recognized by the situation
recognition. The situation recognition was always able
to recognize the same situation for the group within 1-
5 seconds of the actual situation happening. For single
players, the correct situation was always among the
three most significant evaluated situations. After that,
in a second game run with the same Game Master the
visualization of the situation was enabled. Now, GMs
again observed the game. After the game run, the GMs
gave feedback on the situations which the situation

recognition had proposed. All of the GMs stated that
the situation they thought to be present was among the
first three situations recognized for a player, and among
the first two situations for the group.

5.2. Discussion

In sum, the initial study showed that the situation
recognition worked very well for the game EFWI.
A Game Master can use the information displayed
as a means to reduce to cognitive load during the
process of moderating a game session. The additional
information might help to judge the current state
of the game and the learning/gaming process and
help to decide about adaptation measures. In terms
of automatic adaptation of multiplayer games, it can
be stated that the automatic recognition of game
situations can be viewed as a prerequisite of being
able to make sound adaptations to a game. Therefore,
the situation recognition presented here might be a

9
EAI Endorsed Transactions Preprint

V. Wendel, M.-A. Bär, R. Hahn, B. Jahn, M. Mehltretter, S. Göbel, R. Steinmetz

first step towards a sound adaptation of non-scene-
based multiplayer games with a high amount of player
freedom. Being able to automatically recognize the
situation, a group of players/learners is in, might
help to recognize problems in the learning/gaming
process and subsequently react with an appropriate
game adaptation. However, a comprehensive study
under laboratory conditions is required for further,
more precise statements. Moreover, it is necessary to
evaluate the situation recognition framework in other
similar games for evidence about the genericity of the
concept.

6. Conclusions
In this paper we presented an approach for automatic
situation recognition in collaborative multiplayer Seri-
ous Games as a foundation for automatic adaptation of
collaborative multiplayer Serious Games. Our approach
uses basic information about the game, like elemen-
tal game variables and player parameters as well as
player actions and game events. Situations are defined
based on criteria which describe a game situation using
elemental game information. An evaluation algorithm
periodically evaluates the probability of a situation to
be present. We implemented our approach as an exten-
sion of the existing collaborative multiplayer Serious
Game Escape From Wilson Island and performed an ini-
tial evaluation. First results showed that our approach
is able to correctly recognize the defined situations in
congruence with human instructors. However, a more
comprehensive study is required for more detailed
results as well as information about the transferability
of our concept to other games of similar type.

References
[1] Wendel V, Babarinow M, Hörl T, Kolmogorov S, Göbel

S, Steinmetz R. Woodment: Web-Based Collaborative
Multiplayer Serious Game. In: Pan Z, Cheok AD,
Müller W, Zhang X, Wong K, editors. Transactions on
Edutainment IV. vol. 6250 of Lecture Notes in Computer
Science. 1st ed. Springer; 2010. p. 68–78.

[2] Wendel V, Gutjahr M, Göbel S, Steinmetz R. Designing
Collaborative Multiplayer Serious Games. Education
and Information Technologies. 2013;18(2):287–308.

[3] Wendel V, Göbel S, Steinmetz R. Game Mastering in
Collaborative Multiplayer Serious Games. In: Göbel S,
Müller W, Urban B, Wiemeyer J, editors. E-Learning
and Games for Training, Education, Health and Sports
- LNCS. vol. 7516. Darmstadt, Germany: Springer; 2012.
p. 23–34.

[4] Roschelle J, Teasley S. The Construction of Shared
Knowledge in Collaborative Problem Solving. In:
OŠMalley C, editor. Computer-supported Collaborative
Learning. Berlin: Springer-Verlag; 1995. p. 69Ű–97.

[5] Dillenbourg P. What Do You Mean by Collaborative
Learning? In: Dillenbourg P, editor. Collaborative-
learning: Cognitive and Computational Approaches.
Oxford: Elsevier; 1999. p. 1–19.

[6] Johnson DW, Johnson RT. Making cooperative learning
work. Theory into practice. 1999;38(2):67–73.

[7] Haake J, Schwabe G, Wessner M. CSCL-Kompendium:
Lehr-und Handbuch zum computerunterstützten koop-
erativen Lernen. Oldenbourg Wissenschaftsverlag; 2004.

[8] Eustace K, Lee M, Fellows G, Bytheway A, Irving L.
The Application of Massively Multiplayer Online Role
Playing Games to Collaborative Learning and Teaching
Practice in Schools. In: Atkinson R, McBeath C, Jonas-
Dwyer D, Phillips R, editors. Beyond the comfort zone:
Proceedings of the 21st ASCILITE Conference; 2004. .

[9] Zea NP, Sánchez JLG, Gutiérrez FL, Cabrera MJ,
Paderewski P. Design of Educational Multiplayer
Videogames: A Vision From Collaborative Learning.
Advances in Engineering Software. 2009;40(12):1251–
1260.

[10] Hämäläinen R. Using a game environment to foster
collaborative learning: a design-based study. Technology,
Pedagogy and Education. 2011;20(1):61–78.

[11] Reuter C, Wendel V, Göbel S, Steinmetz R. Multiplayer
Adventures for Collaborative Learning With Serious
Games. In: Felicia P, editor. 6th European Conference
on Games Based Learning. Reading, UK: Academic
Conferences Limited; 2012. p. 416–423.

[12] Kaukoranta T, Smed J, Hakonen H, Rabin S. Understand-
ing pattern recognition methods. AI game programming
wisdom. 2003;2:579–589.

[13] Charles D, Kerr A, McNeill M, McAlister M, Black M,
Kcklich J, et al. Player-centred game design: Player
modelling and adaptive digital games. In: Proceedings
of the Digital Games Research Conference. vol. 285.
Citeseer; 2005. .

[14] Kickmeier-Rust MD, Albert D. Educationally Adaptive:
Balancing Serious Games. Int J Comp Sci Sport.
2012;11(1).

[15] Sweetser P, Wyeth P. GameFlow : A Model for
Evaluating Player Enjoyment in Games. Computers in
Entertainment (CIE). 2005;3(3):1–24.

[16] Csikszentmihalyi M. Flow: The Psychology of Optimal
Experience. Harper Perennial; 1991.

[17] Chen J. Flow in games (and everything else).
Communications of the ACM. 2007;50(4):31–34.

[18] Bartle R. Hearts, clubs, diamonds, spades: Players
who suit MUDs. Journal of Virtual Environments.
1996;1(1):19.

[19] Houlette R. Player Modelling for Adaptive Games. AI
Game Programming Wisdom II. 2004;p. 557–566.

[20] Smith AM, Lewis C, Hullet K, Sullivan A. An inclusive
view of player modeling. In: Proceedings of the
6th International Conference on Foundations of Digital
Games. ACM; 2011. p. 301–303.

10
EAI Endorsed Transactions Preprint

	1 Motivation
	2 Related Work
	2.1 Collaborative Learning
	2.2 Serious Games for Collaborative Learning
	2.3 Adaptation

	3 Approach
	3.1 Problem Statement
	3.2 Game Interface
	3.3 Criteria types
	3.4 Situation Evaluation
	3.5 Situation Examples

	4 Implementation
	4.1 Escape From Wilson Island
	4.2 EFWI Tasks
	4.3 EFWI Example Situation
	4.4 EFWI Situation Recognition GUI

	5 Evaluation
	5.1 Setup
	5.2 Discussion

	6 Conclusions

