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SUMMARY 

Multimedia applications handling audio and video data have to obey time characteristics of these 
media types. Besides a basic functionality to express time relations, correctness with respect to time 
constraints requires mechanisms which lead to favoured processing of multimedia operations. CPU 
scheduling techniques based on the experience from real-time operating systems offer a solution and 
provide multimedia applications with the ability to meet time-related quality of service requirements. 
This paper discusses mechanisms to express time in multimedia systems and describes an implemen- 
tation of a CPU scheduler designed to run under IBM's UNIX derivate AIX. The evaluation of the 
implementation based an measurements shows that the scheduler is able to support the time require- 
ments of multimedia applications and that such mechanisms are indeed necessary since otherwise 
deadline violations occur. 
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INTRODUCTION 

Owing to the periodicity of continuous-media data, the processing of audio and video 
data must occur also in this fashion. Moreover, the execution of these operations has 
to be finished within certain deadlines to serve the real-time characteristics of these 
media. Owing to these real-time characteristics of audio and video data, multimedia 
systems have to provide mechanisms to support time-related quality-of-sewice (QoS) 
guarantees. 

Sometimes, multimedia systems for single-user, and especially for single-task, 
machines provide only simple mechanisms to provide time-based operations, e.g. for 
delaying program execution, but no real-time support. It is often argued that this 
approach is sufficient for these systems since the CPU is used mostly for the multimedia 
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application during its run time. In those situations where the User has another time- 
consuming application running, it is easy for him to abandon that application. For multi- 
User and server systems such as video-on-demand Servers, this assumption is not valid. 
Other User applications can disturb multimedia applications in such a way that the 
perceived QoS is not acceptable. Real-time CPU scheduling techniques which serve 
multimedia application processing with respect to their time-criticality provide a sol- 
ution to these problems. 

This paper first discusses various methods to express time in multimedia systems. 
Then a real-time scheduling algorithm and its implementation for IBM's AIX Version 
3 operating system is described. Work for OS12 has been discussed in Reference 1. 
This is part of our work on the transport system HeiTS (Heidelberg Transport S ~ s t e m ) ~  
which offers real-time communication Support for distributed multimedia applications. 

Our goal is to show how a general-purpose operating system that is widely available 
on the market can be used for the processing of multimedia applications without a 
modification of its kerne1 structures. We did not intend to develop a new real-time 
system that is specifically tailored to multimedia requirements. 

EXPRESSING TIME IN MULTIMEDIA SYSTEMS 

Various ways to express time in multimedia systems exist which place different amounts 
of burden on the application programmer and provide different kinds of real-time sup- 
port. For simple programs, the mechanisms described in the next two sections are suf- 
ficient. In those cases, the timely operation is either hidden in high-level functions or 
is based on V 0  adapter characteristics. 

Prograrns which perform more complex tasks than just moving data from an input 
device to an output device often have to execute certain operations after some specified 
time. Hence, an operating system driven control of timing is needed. Consider, for 
instance, a server which reads data from a disk and sends it over a network periodically. 
In this scenario, neither the input device, the disk, nor the output device, the network, 
operate periodically. Therefore, the operating system must provide appropriate control 
mechanisms. Such mechanisms are explained after the next two sections. 

Hidden timing 
Often, multimedia environments for stand-alone Computer systems offer library func- 

tions which allow a programmer to play audio or video data in a simple way, e.g. 
consider a function such as play-audio-file. These functions perform the steps 
necessary to present the information to the User and hide the actual handling of time 
in their program code. Their use is simple for the application programmer, however, 
they serve only a closed set of applications. The functions cannot be adapted to specific 
application needs, e.g. to retrieve continuous-media data from the system, perform some 
application-dependent processing and present the result directly to a human User. Intern- 
ally, these functions are based on some of the methods described in the following sec- 
tions. 

Adapter-based timing 
For some simple programs, e.g. programs playing audio data stored on disk via an 

audio adapter, it may not be necessary to use expiicit programrning techniques to pro- 
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do { unblock - 
read-audio-buffer(); Q blodr 

writcbuffer 
write-buffer-toadaptero; -- 

) while (more data available); read-buffer 

Figure I .  Adapter based timing 

vide timely operation. Such programs can rather be based on the characteristics of the 
output device, e.g. the audio adapter. This adapter provides some buffer space in form 
of a FIFO queue into which the program writes data to be played. The adapter's pro- 
cessor reads data from the buffer and converts it into sound waves. If the buffer is full, 
the program is blocked from further processing. If the adapter's processor has removed 
data from the buffer space the process can be unblocked and continue processing as 
detailed in Figure 1. 

The methods described in the last two sections are only sufficient for simple appli- 
cations. Now, mechanisms for more complex programs are discussed. 

An approach often taken by application programmers for writing periodic programs 
is the use of loop/delay constructs. These constructs rely on mechanisms provided 
by most operating Systems to delay the execution of a program for a certain amount 
of time, such as UNIX's sleep function. They are used in the following way where 
f denotes some function for processing the data: 

get-time (t) ; 
while (read(data) != eof) { 

f (data) ; 
write(data1; 
t = t + period; 
get-time(t1); 
delay(t-tl); 

1 

While such constructs avoid the influence of the actual execution time of the operations, 
in a preemptive multi-tasking environment-or due to interrupt processing-this 
approach is not correct since the Statements are not executed atomically. Any preemp- 
tion between the calculation of the length of the delay period and its use in the delay 
operation leads to time drifts since in that case the computed value is too large and the 
delay too long. Using a function which delays the execution until a specified point in 
time instead of delaying a specified amount of time can solve this problem: 
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get-time(t); 
while (read(data1 != eof) (: 

f (data) ; 
write (data) ; 
t = t + period; 
delay-until(t); 

1 

The same problem has been recognized in Ada83, and the Ada9X revision took this 
into account by the introduction of the above-mentioned delay until p r imi t i~e .~  A func- 
tionally similar primitive can also be found in Chimera IIq4 

Although this approach leads to correct timing, it places the burden of time handling 
and temporal state information management on the application programmer. It is better, 
and safer, to have the underlying operating system do this work. 

Asynchronous events 
Notifications by asynchronous events may be used by programs dealing with devices 

where the event indicates that some change in the device state has occurred. Similarly, 
this may be used to indicate timer expirations. Processing these events leads to the 
execution of specific program sequences, often called signals handlers or callback func- 
tions, to reflect the changed system state. 

This method separates time handling and functional specification. However, often 
only subsets of functions may be executed in an event handler, which means that only 
state changing operations such as setting flags may be performed but no regular appli- 
cation processing. Furthermore, mutual exclusion between the application program and 
the event handler during access to shared data structures has to be enforced to avoid 
state inconsistency. Owing to the non-determinism of asynchronous events it is a gen- 
eral fact that those programs are hard to analyse and to debug because in subsequent 
executions the order of events can be different. 

Periodic threads 
Periodic threads are threads which perfonn their operations at fixed periodic points 

in time without explicitly specified intervention by the application programmer. Periodic 
threads are described for example in References 5,  6 and 7. Using periodic threads, the 
programmer specifies some characteristics of the thread such as estimated pro- 
cessing time, period and entry-point. In each period, a thread is created which 
calls the specified entry point, executes the given functions, which take about the esti- 
mated time and exits: 

create-periodic-thread(entry-point, 
processing-time, period): 

. . . 
entry-point ( ) 
1 

/' the actual computation * /  

f 0 :  
1 
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This approach separates functional and temporal specification in a similar fashion as 
the asynchronous event handling approach does. However, the functionality provided 
by the periodic thread and the asynchronous event handling method are different, i.e. 
in the periodic approach the tasks are inherently periodic in nature and the limitations 
of the event handling approach do not apply to the periodic thread model. Additionally, 
the periodic thread model provides the underlying system components with information 
about resource usage. 

Periodic processes 
Periodic processes are similar to periodic threads. Since process creation is much 

more expensive than thread creation, the process does not exit after the execution of 
each period's operations but calls a function schedule-me to wait for the beginning 
of the next penod.* Thus, the execution scheme differs slightly: 

p = create-new-process ( ) ; 
inform-scheduler(p, processing-time, period); 
... 
while (TRUE) { 

schedule-me ( ) ; 
/ *  the actual computation * /  
f 0 ;  

1 

The principal characteristics of this approach are the Same as of the periodic thread 
model, and differences are mostly related to operating system abstractions. 

Note that the function schedule-me can be easily implemented using the 
delay-until primitive. However, with schedule-me the programmer need not care 
about the calculation of times; this is done by the operating system. 

Evaluation 
As the Summary in Table I illustrates, the first three methods do not support a separ- 

ation of temporal and functional specification and place burden on the application pro- 

Table I. Methods to express time 

Scheme Functional and temporal Applicability of real-time 
specification separated methods 

Hidden timing 
Adapter-based timing 
Loopldelay 
Asynchronous events J 
Periodic threads J J 
Periodic processes J J 

* It is. of coune. possible to use this approach with threads as well and may, therefore, be viewed more as an implementation 
than a modelling detail. Also, thread implementation techniques exist which reduce the cost for thread creation such as 
'reclaiming t h r e a d ~ ' . ~  
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grammer. Asynchronous events provide this separation, but the programming model is 
complicated. The weakest point of these models is that they do not provide any infor- 
mation about timing and requested resource usage to the system scheduler. This means 
that no real-time scheduling mechanisms can be applied. For instance, no schedulability 
tests can be performed to check whether the system is able to support all requests, and, 
thus, overload situations may occur leading to unacceptable QoS. Therefore, these mod- 
els can be seen as simple ad hoc methods but are not applicable in general multimedia 
systems where mechanisms for reliable QoS provision have to be available. 

As a result, only the last two methods, i.e. periodic threads and tasks, are general 
enough to be used in multimedia systems supporting reliable QoS. In particular, they 
provide timing information about the tasks to the system scheduler by their initialization 
calls. This information enables the scheduler to check the schedulability of the tasks 
and schedule them accordingly so that their QoS can be guaranteed. Methods for sched- 
uling periodic tasks have been devised and implemented within the realm of real-time 
systems as discussed in the subsequent chapter. 

The second advantage of periodic threads and processes is that their functionality is 
not limited as is the case with asynchronous event handlers. Hence, they can execute 
all the functions required to process a multimedia stream. 

Aside from research operating systems, most commercially available systems do not 
offer the needed periodic thread or process model, but only provide basic real-time 
mechanisms to implement these models. The Posix threads extension: for example, 
provides the possibility to associate scheduling attributes with each thread defining the 
scheduling policy and the thread's fixed priority, e.g. priorities assigned based on rate 
monotonic scheduling. The timing of the thread's operations, e.g. suspending a ready 
thread till its next period, has to be implemented by the programmer. The timer oper- 
ations offered by the Posix real time extension" can be used for that purpose, in a 
similar way as is done in the rest of this Paper. SunOS 5.0" offers the ability to preempt 
a thread after its time quantum has expired, but the preempted thread is put back on 
the dispatch queue. Therefore this approach implements some kind of round-robin 
scheduling but no real-time scheduling. Since the preempted thread has missed its dead- 
line, rather some exceptional operations should be performed. 

SCHEDULING ALGORITHM 

As the discussion in the previous section illustrated, mechanisms to express periodicity 
in the multimedia systems require real-time CPU scheduling mechanisms in form of 
periodic threads or processes. These have to be provided by the operating system. This 
section discusses the model used in HeiTS to specify the system workload of periodic 
data streams, shows how the various processes are prioritized and describes the schedul- 
ing algorithm used. 

QoS and workload model 
QoS management in multimedia systems is based on two models. The workload 

model is used to describe the load an application will place onto the system. The QoS 
model is used by an application to define its performance requirements and by the 
system to return corresponding performance guarantees. Of Course, the workload model 
can be regarded as being a Part of the QoS model since one important QoS requirement 
of applications is that the system is able to process their workloads. 
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The QoS model used in HeiTS has three Parts: 

1. The throughput part describes the bandwidth required for or granted to a multime- 
dia connection. It consists of the three parameters of the workload model 
described below. 

2. The delay part defines the maximum delay a multimedia packet can experience 
on its way from the source to the sink of the connection. 

3. The reliability part describes how packet losses and bit errors within packets are 
handled. They can be ignored, indicated or corrected. 

The workload for multimedia systems is periodic by nature+onsider for instance an 
application presenting audio or video data where data packets must be transmitted at 
certain instants. To describe the load induced into the System, HeiTS uses the linear 
bounded arrival process (LBAP)12 as its workload model. The LBAP model assumes 
data to be processed as a stream of discrete units (packets) characterized by three para- 
meters: S, the maximum packet size, R, the maximum packet rate, i.e. the maximum 
number of packets per time unit, and W, the maximum workahead. 

The workahead Parameter W allows for short-term violations of the rate R: According 
to the LBAP definition in any time interval of duration t at most W + tR packets may 
arrive. This is necessary to model input devices that generate short bursts of packets, 
e.g. disk blocks that contain several continuous-media data frames. Furthermore, the 
notion of workahead is needed to account for any clustenng of packets during the 
various processing stages before they are finally presented to the User. A useful concept 
of the LBAP is that of the logical arrival time l(m,), which is defined as: 

l ( q )  = a, = actual arrival time of the first packet 
l(mi+,) = max {ai+,, l(m,) + IIR} 

The concept of logical arrival time essentially acts as a smoothing filter for the traffic 
streams. It ensures that no particular stream hogs a resource at the expense of other 
streams given their declared workload characteristics. A packet whose logical arrival 
time has passed is called critical, otherwise it is referred to as workahead. 

The output stream of a resource or the processing Stage serving an input LBAP, e.g. 
CPU or intermediate network, is itself an LBAP. Its parameters depend on the para- 
meters of the input LBAP and the maximum and minimum delay within the resource. 
Their computation has been described in Reference 13. For an end-to-end connection 
passing a periodic stream through various processing stages, e.g. input device -, CPU 
on sending host -+ intermediate network -, . . ., this enables one to 'push' the LBAP 
workload model from the origin to the destination through all stages. 

In addition to the three LBAP parameters defined above, the User must also specify 
for each resource the maximum processing time per packet to ensure that resource 
capacities can be correspondingly reserved. 

The QoS and workload models described above were chosen because they are con- 
ceptually simple, though they describe the requirements of a multimedia stream in suf- 
ficient detail, and can be directly used as a basis for QoS management. However, 
research has brought up a number of other QoS models that can be used in multimedia 
and real-time processing and communication systems. Examples for alternative models 
can be found in References 14, 15, 16 or 17. Some of them define the workload by 
stochastic processes rather than by processes with fixed periods. This is done to reflect 



382 L. C. WOLF, W. BURKE AND C. VOGT 

the requirements of streams with a variable bit-rate; although these can also be handled 
in a periodic framework, as shown in Reference 18. Some models account for the packet 
loss rate and others quantify the jitter of a stream, i.e. the variance of the interamival 
times of the stream packets. 

Ordering of priorities 

Not all users need the same degree of QoS. For some users it is important to get the 
specified quality all of the time without any degradation, others may accept some tem- 
porary quality degradation, especially if the cost for using this service decreases accord- 
ingly. The first degree of QoS ('guaranteed' QoS) is necessary for production-level 
applications, e.g. in a movie studio. The second degree of QoS ('statistical' QoS) is 
especially useful for playback consumer applications or video conferences, provided 
that degradations do not occur too often. Based on these QoS classes, different methods 
for resource reservation can be used. 

For guaranteed QoS pessimistic resource reservation has to be done. The resource 
capacities reserved are those needed in the worst possible case, and the QoS require- 
ments will be satisfied under all circumstances. Reserving such large amounts of 
resources, however, can be rather costly. A cheaper alternative is statistical QoS using 
an optimistic approach. Here, less resources are reserved, for example those needed in 
the average case. This implies that the QoS requirements will be met in general, but 
temporary QoS violations may occur. Figure 2 illustrates these different approaches. 

In addition to the differentiation between processes sewing applications with guaran- 
teed and statistical QoS, Reference 19 suggests a method of deadline-workahead sched- 
uling which dynamically classifies messages with respect to whether they are currently 
critical or workahead. Within the workahead class guaranteed and statistical streams 
may be separated, however, for simplicity they are combined into one class. This yields 
the following multi-level priority scheduling scheme: 

1. Critical guaranteed processes. 
2. Critical statistical processes. 
3. Processes not performing multimedia operations (e.g. application processes). 

guaranteed 
QoS: reserved for 

application 1 

reserved for 
application 2 

+ time 

statistical 
QoS: 

reserved for 
application 1 

resewed for 
application 2 

Figure 2. Guaranteed vs. sratistical QoS 
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4. Workahead processes (both guaranteed and statistical). 
The scheduling within these priority classes is (preemptive) deadline based (except for 
class 3 where any strategy can be used). The logical arrival time of a packet plus the 
guaranteed (or statistical) delay bound calculated for this connection serves as its dead- 
line. A process moves from priority class 4 to 1 or 2, respectively, as soon as it becomes 
critical, which possibly entails the preemption of the currently executing process. 

Because guaranteed processes are in priority class 1 and statistical processes in class 
2, this scheme has the drawback that it prefers a guaranteed connection over a statistical 
connection even if the statistical connection has a closer deadline than the guaranteed 
connection. Hence, even a statistical connection that does not exceed the specified work- 
load bounds might experience delays larger than those calculated by the QoS optimiz- 
ation f u n ~ t i o n . ~ ~  Although the notion of statistical connections allows such a behavior- 
because they may temporarily suffer from QoS violations-it is questionable whether 
this distinction is fair. To avoid this problern, a variant of the algorithm could be con- 
sidered where priority classes 1 and 2 are combined and a new priority class for statisti- 
cal processes, which have consumed their specified processing time, is introduced. This 
leads to the following priority scheme: 

1. Critical processes (guaranteed and statistical). 
2. Critical processes that have used up their processing times as specified by their 

workload descnptions, but require further processing. 
3. Processes not performing multimedia-operations. 
4. Workahead processes. 

Within this scheme, a statistical process executes in priority class 1 until it has con- 
sumed its specified processing time. Then it is moved to priority class 2, which may 
lead to a preemption in favor of a different process from class 1. The detection that a 
process has consumed its processing time requires the supervision of execution times, 
which is not possible in the chosen operating System (AIX). An efficient implementation 
of such a mechanism would require a kernel modification which is not possible by the 
kernel modification facilities in AIX. Additionally, assume the case of communication 
processing where packets of one connection may be served by different processes. In 
this case, the above scheme would require special attention on proper sequencing of 
packets, i.e. a newly arriving packet is not allowed to be processed in priority class 1 
while an older packet of the same stream is waiting in class 2. Owing to these reasons 
the first priority scheme is used, despite its described drawback. 

Another item is the trade-off between the gain of processing workahead packets pnor 
to their logical arrival times and the overhead of changing the priorities between critical 
and workahead Status. Since this overhead can be significant, the 'standard' version of 
the scheduler used in HeiTS does not perform processing of workahead packets but 
leaves workahead packets unprocessed till their logical arrival time; yet, it is possible 
to compile a version including workahead processing. 

Note that the scheduling approach described here is rather simple: The partitioning 
of priorities into a four-level scheme could be regarded as somewhat rigid. Also, more 
sophisticated approaches to support the scheduling of aperiodic requests, e.g. data 
stream management and non-multimedia computations, are possible. There exist sol- 
utions to reserve a specified capacity of the bandwith to those aperiodic tasks, e.g. the 
sporadic server2' or the slack stealing a l g ~ r i t h m . ~ ~  

However, an efficient implementation of such schemes requires a modification of 
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kerne1 data structures and the ability to supervise and stop the execution of a process. 
See, for instance, the implementation of the sporadic Server in Reference 23. As our 
intention was to build a scheduler on top of a general-purpose operating system, we 
had to refrain from using those elaborate approaches. 

Schedulability test and priority assignment scheme 
The target operating system for the implementation is A N ,  IBM's UNIX derivate. 

In addition to the well-known multi-le~el-feedback~~ (MLFB) scheduling it provides a 
set of fied priorities at the highest priority levels (priorities 0-15), which are even 
higher than the AIX scheduler's priority. Unlike the other (MLFB) priorities these pri- 
orities are not modified by the AIX scheduler and can be used for real-time processing. 

Assigning priorities to processes produces a considerable overhead that cannot be 
neglected. Therefore, we do not use a dynamic scheme such as earliest deadline first 
(EDF) but use a static priority assignment scheme according to the rate monotonic 
(RM) a l g ~ r i t h m ~ ~  where a process with a short period (i.e. a high rate) receives a high 
priority. Priorities are computed at application establishment time and are not changed 
dynamically during application lifetime. Only when a newly established application 
needs a priority level that is already in use are the existing priorities shifted to make 
room for the new application handling process. With the priority scheme described in 
the previous section, the priorities are ordered in such a way that guaranteed processes 
possess the highest priorities and statistical processes use the lower part of the real- 
time priorities. All processes not subject to real-time constraints are handled by the 
AIX system scheduler and use priorities below the real-time priorities. 

RA4 scheduling has also the advantage that a simple schedulability test exists. A set 
of real-time applications can be accepted with respect to the CPU load, i.e. no overload 
condition occurs, if the following inequality holdx2" 

n 

~ R , P ,  5 U,, = n(2Ifn - 1) 
i= 1 

The Parameters of this inequality and their meanings are as follows: index i mns through 
all n real-time application handling processes [T„ . . . ,Tn], R, denotes the maximum rate 
of T,, and P, specifies the processing time per packet of T,. U,, is a non-negative real 
number of value at most ln(2) ( ~ 0 . 6 9 )  for RM scheduling of processes with arbitrary 
rates. The limit of U,, (for n approaching infinity) is U = ln(2) (=0.69). 

If the sum on the left hand side, i.e. the load generated by all real-time processes, 
does not exceed U, the processing of all packets is guaranteed to terminate within their 
respective deadlines UR,. If the sum is greater, this may still be the case, but no guaran- 
tees can be given with this test. 

The processing times Pi include the scheduling overhead, i.e. the overhead for 
inserting, choosing and removing a process from the run queue, and the overhead for 
blocking and awakening a workahead packet. A t o 0 1 ~ ~  has been developed to measure 
these times. The total of the overheads can be incorporated into the processing time Pi 
in a similar way as is described in Reference 27. 

Of the described time handling methods, only the last two, periodic threads or pro- 
cesses, can provide the necessary information to the scheduler. Thus, the other methods 
are not usable if timing guarantees have to be given. 
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It should be noticed here that the schedulability boundary U can be relaxed in certain 
cases. If the periods of the processes have a certain ratio, U can be larger than ln(2). 
For instance, if the periods are (integer) multiples of the smallest period in the process 
set, then U = 1 can be chosen. Also, Reference 28 showed that the maximum CPU 
load which can be accepted for RM scheduling is, in the average case, notably larger 
than ln(2). 

However, the restriction of the maximum CPU utilization U for multimedia pro- 
cessing to a value smaller than 1 is not such a strong limitation as it might seem. In 
any case, some CPU capacity has to be reserved to processes other than multimedia 
related processes. Owing to this reason and the simplicity and efficiency of the 
Liukayland schedulability test we do not use the more advanced analysis from Refer- 
ence 28. Although the latter would enable the system to accept a greater number of real- 
time applications simultaneously, the LiuJLayland scheduling bound usually suffices for 
our purposes. 

The Liukayland schedulability test can be applied not only to a static task Set but 
also to dynamically arriving tasks, as was shown in Reference 29. More advanced tests, 
for instance those as described in Reference 30, are not used due to the above reasons. 

Buffer space 

One issue that has to be considered in multimedia QoS management is the reservation 
of buffer space for the packets waiting to be processed. The longer packets must wait 
for a resource, the more memory space must be available to avoid losses. A detailed 
discussion of this problem is beyond the scope of this Paper. For a stream defined by 
the LBAP model, the amount of buffer space to be reserved on a node can be calculated 
from the LBAP parameters and the maximum delay of packets on the node, for details 
see Reference 3 1. Reference 18 shows that even the requirements of VBR streams can 
be satisfied with a moderate amount of Storage space, because the maximum delay 
bound to be enforced for multimedia streams is rather small. 

IMPLEMENTATION 

The functionality of the real-time CPU scheduler in HeiTS consists mainly of two 
Parts, the management of the information needed for proper scheduling and the actual 
scheduling of processes. 

Management of scheduling information 

A 'scheduling cache' is used to Store all information needed for scheduling the pro- 
cessing of the individual streams." Several functions for management of cache entries 
are provided. During the creation of an application the information which characterizes 
the stream is inserted in the scheduling cache by means of the function 
rms-cpu-create-entry and can be freed during connection release by the function 
rms-cpu-release-entry. Since QoS parameters may be changed dunng the life- 
time of an application, e.g. the rate is lowered, there must be a possibility to report this 

* Each entry in ihis cache is associated with one process and can be compared to the attributes object associated with a 
thread in the Posix threads exten~ion.~ 
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change to the scheduler. This can be achieved by calling the function 
nns-cpu-change-entry. 

Scheduling of processes 

The actual scheduling is performed through a set of kerne1 functions (AIX provides 
mechanisms for adding such system calls) that must be called by the process that wants 
to be scheduled. This is more efficient than implementing the scheduler as a separate 
process (like the AIX system scheduler) because it saves the context switch between 
the process to be scheduled and the scheduler process itself. 

Requiring that the process calls the scheduler function explicitly leads to 'voluntary 
scheduling' and may seem dangerous. However, all code allowed to run in an environ- 
ment where it is possible to use real-time priorities has to be established by an author- 
ized User. Thus, only approved code will be subject to real-time scheduling and, there- 
fore, especially with reflection on the performance gain, this approach can be regarded 
as secure. 

Process structure 

To achieve proper scheduling of real-time processes some assumptions about the 
structure of the processes have to be made. As shown in Figure 3, it is assumed that 
after creating an application the process responsible for handling the data of this appli- 
cation is performing a program loop and processes one data packet (e.g. a video frame) 
in every iteration. This continues until the application is finished and the process is not 
subject to real-time scheduling any more. 

, 1 - -  User level priority processing 
i stari of real-time scheduling j 
: L------------------+-----------.--...., rms-cpu-create-entryo j 

I 

real-time priority processing 

...------.----.-... J-:55555555555555555, 

User level priority processing 

Figure 3. Processing structure 
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Enforcing LBA P properiy 
Before processing a newly arrived data packet the scheduler must check whether 

accepting this packet would violate the LBAP characteristic (i.e. the workload 
specification) of the data stream. This check can be done in a blocking or a non-blocking 
way. The blocking test is performed by the function LBAP-enf orce and enforces the 
observance of the LBAP property of the data stream: the process is left in a wait state 
until the logical arrival time of the packet is reached." 

In the non-blocking test implemented in the function LBAP-pol1 the scheduler sim- 
ply returns the calculated logical arrival time of the data packet and the inforrnation 
whether accepting this packet violates the LBAP properties of the data stream or not.? 
For all non-blocking tests of the LBAP property, it is the process' responsibility to take 
proper action if the packet violates the LBAP properties of the application (one possi- 
bility would be to call LBAP-enforce). 

Non-blocking functions are provided to support the usage of monotonic computations 
where the quality of intermediate results does not decrease as it executes longer, e.g. 
compression algorithms as JPEG32 or MPEG-II.33 Such algorithms produce a prelimi- 
nary result after a certain time which can be improved through further computations. 
Therefore, after an intermediate result has been reached, it has to be checked in a non- 
blocking way whether there is enough time left for further operations. If there is time 
available, the result will be improved othenvise the current result wiil be used, e.g. 
transferred to the consumer. 

This is comparable to the milestone method mentioned in Reference 34. It should 
be noted that the used schedulability test further supports this type of algorithms since 
it leaves a portion of the processor capacity that can be used for the improvement of 
intermediate results. 

The watchdog mechanism of the scheduler is especially useful for program develop- 
ment. It provides a method to get the system under control if some real-time process 
hangs in an endless loop. The watchdog also checks whether a process does not call 
the scheduling functions. Calling with a higher rate than specified is not possible since 
the scheduler code blocks the process until the logical arrival time. Calling never or 
with a much lower rate than specified is an indication that either the specification was 
substantially wrong (and should be changed, e.g. via rms-cpu-change-entry)  or 
the process does not behave correctly and some management action has to be taken. 

EVALUATION 

To show the effect of using the scheduler for different multimedia applications a series 
of measurements were performed. They should answer the following question: in which 
way does the use of the scheduler influence the behavior of the application and the 
system as a whole, i.e. are deadline violations indeed avoided and to what extent? 
Qualitative aspects such as expressing time characteristics are not considered in this 
section since they have been discussed already before. 

* This is true for the standard version where the scheduler does not process workahead packets. If workahead is allowed 
the process is blocked till it can accept another workahead packet. i.e. the time till the logical amval time is equal to or less 
than the time needed to process the maximum allowed workahead minus one period (needed to process this newly arrived 
data packct). 

? If workahead packets are not processed the priority i s  left unchanged because it is the goal to avoid the overhead of 
priority changes. If workahead processing is perfomed the priority of the process is set to the workahead priority until the 
logical arrival time of the packet is reached. 
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Measurement setup 
The CPU scheduler function LBAP-enforce was instrumented in such a way that 

i t  generates events describing the laxity of the calling process, i.e. the time until the 
process reaches its deadline. Positive values indicate that the process still has time 
before the deadline is reached; therefore, it is operating correctly. Negative values indi- 
cate that the process violated its deadline; it is not able to perform its function in time. 

In those cases where several real-time processes were running concurrently the events 
are given in generation-time order, i.e. they are not ordered by processes unless other- 
wise stated. The charts shown in Figures 4-9 below are extracts from much longer 
measurement series to increase readability. Each of them shows 200 values which have 
been taken from the middle of the sequence of values, the generation of measurement 
values having started later than the processes under consideration to reduce start-up 
effects. Each point in a graph represents a single event. The measurement values are 
given in seconds. 

All measurements were performed on a mostly idle workstation, an IBM RISC 
System/6000, Model 360 with AIX 3.2.4, which was not modified during the measure- 
ments, e.g. simple applications such as mail, etc. were running as usual. However, none 
of these programs used much CPU processing time. These types of applications are 
running during normal workstation operation periods as well, thus, disabling them dur- 
ing the measurements might lead to slightly more regular measurement results but not 
to results which are better applicable to real-world scenarios. 

The measurements were performed with a varying system load. The system load 
was generated artificially by synthetic, non real-time, computation processes performing 
simple integer calculations. Hence, in principle these processes were always ready to 
run, which also led to low prionty due to UNIX scheduler characteri~tics.~~ Therefore, 
normal, user-created system load might be even harder than this synthetic load. 0, 1, 
2 , 3 , 4 ,  or 16 of these load processes have been used dunng the measurements. Running 
16 processes leads to a heavily loaded system, the other loads resemble loads easily 
created during normal workstation operation. 

The measurements were performed with programs using the CPU scheduler's real- 
time characteristics followed by measurements with the Same programs without per- 
forming real-time scheduling using the time provision mechanisms of the scheduler, 
i.e. executing with the specified rate. The load generated by the programs is the Same 
in both cases-since the static RM scheduling algorithm without workahead scheduling 
is used, no additional costs for the real-time processes during run time occur. 

Considered scenarios 
Two basic application scenarios with different setups were investigated: 

1. an endsystem application, 
2. a video-on-demand Server application. 

In the first scenario, usually relatively few processes are running, performing operations 
such as software compression and decompression. For instance, in a video conference, 
one participant has to compress its own image before this is transmitted to the peers 
and it has to decompress the images received from the other peers. Hence, for a confer- 
ence with n participants n processes for software compression and decompression exist 
on each workstation. Since compression algorithms for video conferencing such as 
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H.2613' usually possess symmetric processing requirements, in the following it is not 
distinguished between compression and decompression processes. Another example of 
the endsystem scenario is a playback application presenting a video decompressed in 
software to the user; there only one process exists. 

Within the second scenario, a video-on-demand server, several processes are active 
in the system, one for each data stream served. However, the processing requirement 
of such a process is lower than for a software decompression process. 

In the following the results for the endsystem scenario are described first, then the 
measurements for the video-on-demand server scenario are discussed. 

End-system scenario 

For the end-system scenario, a video playback program and a synthetic program have 
been examined. The video playback program reads compressed video data, decom- 
presses the data in software, and presents the video frames via the X server to the user. 
The synthetic program performs simple calculations and data movements on arrays to 
resemble a playback program. The reason for using the synthetic program is that this 
has a more repeatable characteristic and allows for arbitrary modifications of processing 
time requirements. Hence, it provides a more stable environment and a broader range 
to study the behavior of the scheduler. 

Video playback 

The video playback program uses one process for its operations, i.e. n = 1. The 
chosen video consists of 15 framests, i.e. 66.6 mstframe, which was also Set as the 
processing rate of the program. The processing time needed per period is on the average 
approximately 28 ms, which results in a total CPU usage of about 0.42. 

The compressed data read by the program was stored in a local file which was cached 
into main memory by running the program first without measuring it. The file was 
small enough to fit into the cache. 

Figure 4 shows the results for measurements with varying loads. If no load except 
the measured process exists in the system, no deadline violations occur even without 
using real-time scheduling. 

If a load of medium size, i.e. three or more processes, is introduced into the system, 
the considered application is not able to provide acceptable service to the user. The last 
graph in the Figure illustrates that by using real-time scheduling, the application does 
not suffer from any deadline violations, even if a high load-up to 16 processes-has 
been introduced into the system. 

Synthetic end-system program-one process 

The synthetic program operates with the Same rate of 15 11s as the video playback 
program; its processing time requirement of about 21 ms per iteration is lower than 
that of the video playback program. The reason is that the generated load of 
2 1 ms X 15 11s = 0.3 15 is lower and allows more concurrent processes to be measured, 
thus creating a heavier load. 

The different CPU requirements have no major impact on the results, since the CPU 
utilization of the video playback program could be lowered to that of the synthetic 
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Figure 4. Video playback application 

program, e.g. by reducing the frame size or using a different compression algorithm. To 
reduce the influence of other programs and system components the program performs no 
VO. The synthetic program has been used since it has a more regular CPU utilization 
per iteration which increases the comparability of the values. 

The achieved results are similar to the results for the video playback measurements 
as can be seen in Figure 5 .  The workstation can cope with the non-real-time program 
if the system is otherwise idle. Introducing an artificial load of three or more processes 
leads to deadline violations. The real-time program mns without any problem for all 
system loads; the laxity varies within tight bounds, all values except one are contained 
in an interval with a width of about 1 ms, the Single value is outside of this interval 
by about 1 ms. 

Reasons for the variations include intempts and functions inside the operating system 
kerne1 which block timer intempts leading to a delayed switch to the real-time process. 
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Figure 5. Synthetic 'decompression' program, one process 

Sampling complete system traces including kerne1 functions introduces too much over- 
head for the measurements and modifies the behavior. Thus, we cannot give a complete 
explanation for the measured deviation. Many aspects in a general purpose Computer 
system are difficult to ~redict;  for instance, context switches influence cache perform- 
a n ~ e . ~ ~  However isider the reached accuracy as fully sufficient, for instance the 
synchronization ient for audio and video, e.g. lipsynch, has been found to be 
80 ms.37 

', we cor 
requiren 

Synthetic end-system program-two and three processes 

Multimedia applications may use more than one decompression process, e.g. in a 
video conference between two persons one compression and one decompression process 
is running per system; for a conference with three participants on each system already 
a total of three (de)compression processes are running. Therefore, measurements for a 
system running two or three concurrent processes have been performed, each executing 
the synthetic program descnbed above running with a rate of 15 11s and a CPU utiliz- 
ation of about 0.315. The results are shown in Figures 6 and 7; since the processes are 
running at the same rate, the maximum acceptable CPU load under RM scheduling is 1.  

As Figure 6 shows, the workstation can handle two non-real-time (de)compression 
processes as long as either no load is introduced or only one other process is running. 
With only two load generating processes, the non-real-time decompression processes 
are no longer able to keep within their deadlines. As can be seen in Figure 6 the real- 
time processes perform their operations in time even for medium and high loads. 

The reason for the regular patterns is that the plots show the laxity of all processes 
ordered by generation time. This way, events of processes with large laxity and with 
small laxity are mixed and, since the execution of the processes is ordered, the lines 
connecting single points lead to the patterns; See also the discussion for Figure 7, below, 
of the measurement of three processes. 

If three non-real-time (de)compression processes are executed, already one load-gen- 
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Figure 6.  Synthetic 'decompression' program, two processes 

erating process is sufficient that the System cannot provide its Service in time, as can 
be seen in Figure 7. Since starting a process is a common operation in UNIX worksta- 
tions it cannot be assumed to be avoidable, hence, it can be expected that Users would 
not accept the offered presentation because deadline violations occur which lower the 
overall quality. Again, using real-time processes, the workstation provides correct ser- 
vice even for high loads. 

The plot of the measurements for the three real-time processes running during 
medium and high additional workstation load without lines connecting the points in 
Figure 7 on the left side, bottom row, shows that the laxity of the processes is either 45.6 
ms, 24.5 ms or 3-5 ms. The reason is that the real-time processes execute alternately and 
without intemption by each other. This is illustrated by Figure 7 on the right side, 
bottom row where the measurement for high load is plotted using a different Pattern 
for each process. 

From this graph it can be Seen that in each iteration, the laxity of the first process 
is about 45.5 ms and those of the second and third processes are 24.5 ms and 3.5 ms, 



EVALUATION OF A CPU SCHEDULING MECHANISM 393 

0 Load Processes 
without real-time scheduling V . . . .  

with real-time scheduling - 
I Load Process 

without real-time scheduling .- e... 
with real-time scheduling + 

0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200 
+event number +event number 

4 and 16 Load Processes 16 Load Processes 

with real-time scheduling - 4 load processes 
with real-time scheduling - 16 load processes . 

O.ool 0 
0 20 40 60 80 100 120 140 160 180 200 

+event number 

with real-time scheduling - prooess 1 ....... 
with real-time scheduling - process 2 c 
with real-time scheduling - process 3 .+.... 

20 40 60 80 100 120 140 160 180 200 
+event numher 

Figure 7. Synthetic 'decompres.sion ' program, three processes 

respectively. The last 'Segment' of 3.5 ms is not used by any real-time process, which 
means that 3-5 ms X 15 l/s = 0.0525 CPU time has been left. 

This is in accordance with a per process CPU utilization of 0.315, which yields a 
total CPU utilization of 0.945. If the laxity of a process would alternate, the plot lines 
would Cross the graph and yield a Pattern as, for instance in the first graph Seen on the 
left side, upper row. 

Server scenario 

In a video-on-demand scenario two different interest areas exist. The client, typically 
using the system for playback, wants a reliable service from the server just as in the 
end-system scenario described above. The service provider, i.e. the owner of the server, 
wants to be able to serve as many streams as possible from one system without degra- 
dation of QoS since othenvise customers will be dissatisfied. 
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The measurements presented in the following show that using real-time processes 
instead of non-real-time processes enables a guaranteed service and a larger number of 
concurrent streams and, hence, lowers the costs per stream. 

Slow sewer 

First, a scenario where a single stream used up about 0-05 of the total CPU time has 
been examined. Each stream was served by a process operating with a rate of 30 11s. 
Hence, at most 19 streams can be running, which means that the CPU utilization is 
19 X 0.05 = 0.95. With 20 streams the system is overloaded and cannot provide any 
timely service. For the measurements a synthetic program similar to the one described 
above has been used. 

As the graphs in Figure 8 demonstrate, with non-real-time processes the system can- 
not serve 17 streams. Using real-time processes, all 19 streams can be served even if 
high additional load is introduced into the system.* 

Fast server 

Finally, the behavior of a server which is able to serve more streams, i.e. with a 
lower CPU utilization per stream, has been studied. The Same workstation has been 
used for the measurements but the test program was changed to use less CPU time. 

One stream was served by a process which executed with a rate of 30 11s and required 
about 0.027 CPU time. The results are shown in Figure 9. During the tests, 30 streams 
were the maximum executable without deadline violations if real-time scheduling was 
not used. For 31 streams and more an increasing number of missed deadlines have been 
found even if the system was idle and no load was introduced. As the right side of 
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Figure 8. Synthetic 'server' program, I7 and 19 streams 

* The execution sequence of the processes is not ordered. since the 19 processes must be mapped to fewer priorities. 
leading to switches between processes. 



EVALUATION OF A CPU SCHEDULING MECHANISM 395 

0 Load Processes 
31 Streams 

without real-time scheduling - 31 streams + . 
without real-time scheduling - 32 streams r 

z 0.04 

-0.03 
0 20 40 60 80 100 120 140 160 180 200 

--+event number 

0,4, and 16 Load Processes 
36 Streams 

with real-time scheduling - 0 load processes c 
with real-time scheduling - 4 load processes t 

with real-time scheduling - 16 load processes - 
z0 .034 ,  . . . . . . . . . , 

0.0161'-  . ' -  - . . . 1 
0 20 40 60 B0 100 120 140 160 180200 

event number 

Figure 9. Syntheiic 'server' program on '$aster' server, 31, 32 und 36 streams 

Figure 9 demonstrates, using the real-time scheduler it was possible to execute 36 stre- 
ams, yielding a total CPU utilization introduced through these real-time processes of 
0.972, even if high load were introduced. 

RELATED WORK 

Real-time mechanisms for multimedia systems are provided by several research sys- 
tems. In most cases, these are based on a newly developed operating system kemel, 
and hence the problems of integrating the mechanisms into an existing kemel and the 
corresponding restrictions do not occur. 

DASHi9 uses a deadline driven scheduling algorithm. As described before, due to 
the period-based process dispatching and the considerable overhead for priority changes, 
this approach is not useful for our scenario. 

Sun's High Resolution Video (HRV) workstation project assumes that no determin- 
istic bounds can be provided; thus, no guaranteed processing is available." For several 
'production-level' applications, we consider guaranteed processing to be so important 
that neglecting them is not acceptable. 

In YARTOS (Yet Another Real-Time Operating Sy~tem)'"~' a new operating system 
kemel is designed. The task model is based on sporadic (instead of periodic) tasks. The 
schedulability test considers all accesses to shared resources, which are only available 
via kemel mechanisms, and avoids contention Situations. Hence, the mechanisms are 
not usable in conjunction with Standard kemels. 

Reference 41 describes a system similar to ours which yields comparable results. 
Their work is based on Real-Time Mach,42 hence, due to the micro-kerne1 their 
approach is not usable in our operating system environment. 

Other work from the field of real-time systems has already been quoted in the sections 
describing the scheduling algorithm and its implementation. 
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POSSIBLE CLIENT SYSTEM ENHANCEMENTS 

Using another process to present images to the User can lead to problems if this process 
is not under the control of the multimedia system. This is, for instance, the case in X 
Windows; here, the X server process displays the images. Even if shared memory 
between server and client is used, a non-real-time X server can introduce deadline 
violations, especially if it is Single threaded and several requests from other programs 
have to be executed. 

Increasing the pnority of the X server slightly, e.g. via UNIX 'nice' mechanism, was 
sufficient in the test Scenarios. Better solutions are either the provision of a real-time 
X server, which allows the specification of processing requirements or the 'transfer' of 
CPU reservation and the according priority to the server process as suggested in Refer- 
ence 41, or a mechanism which allows a user program to bypass the X server by writing 
directly to a specific area on the screen, i.e. the display adapter memory. 

For the latter, the window manager allows the user program to write to that area 
where its window is mapped by attaching the memory to the program's address space 
via a Special system call; other memory areas may still be protected. Any change in 
the visibility, size, or location of the window is known inside the window manager 
which can change or withdraw the memory from the program's address space accord- 
ingly. 

CONCLUSIONS 

The inherent periodicity of continuous-media data requires operating system provided 
mechanisms for timely operation. Simple methods, e.g. functions which only delay the 
execution of certain functions, are not suitable for general-purpose multimedia systems. 
Information about the programs' time characteristics are needed to apply real-time 
scheduling techniques which are a prerequisite for reliable QoS provision. 

This paper discussed several approaches for time handling and described a real-time 
scheduling method and its implementation for a standard operating system kernel. Sev- 
eral multimedia applications (e.g. a video server) have been implemented successfully 
using the described scheduler. 

The experimental evaluation shows that real-time scheduling is indeed necessary for 
end-system and video-on-demand server applications. The measurements demonstrate 
that the scheduler is able to provide QoS guarantees even for highly loaded systems. 
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