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Abstract—The transmission of video content accounts for a
large share of today’s Internet traffic. While Video-on-Demand
(VoD) substantially contributes to this, live streaming events
such as video broadcasts from the Olympic Games can cause
very high traffic volumes in the short term as well. Such peaks
along with high fluctuations triggered by sudden changes in the
behavior of users make the design of live streaming systems
particularly challenging. Peer-to-Peer (P2P) has proven to be a
scalable approach for disseminating content to a large number
of users. Accordingly, the body of research offers numerous P2P
live streaming approaches tailored towards specific scenarios and
assumptions. However, no single approach is able to perform well
under all possible conditions. Keeping up a high performance
when conditions are changing is a challenge, since topology man-
agement and scheduling mechanisms cannot be exchanged easily.
Therefore, this paper proposes TRANSIT, a new approach going
beyond existing works in that it supports transitions between
different live streaming mechanisms. TRANSIT makes different
configurations of such mechanisms seamlessly exchangeable to
enable the optimal choice of configurations for a wide range
of live streaming scenarios. The approach is evaluated using
measurement- and trace-based workloads. The results show
that TRANSIT is able to maintain a high performance at a
low overhead in highly fluctuating environments, whereas static
configurations show serious performance degradations.

I. INTRODUCTION

The delivery of video content is the predominant traffic
source on today’s Internet and forecasts imply a further
increase of video traffic for the coming years [5], [18]. The
reasons are manifold: consumer devices such as smartphones
and tablets have been broadly adopted and are used increas-
ingly to access content over the Internet [18]. Additionally,
more and more TV sets and set-top-boxes allow easy access
to online services.

Besides VoD services like YouTube and Netflix, the stream-
ing of live events such as the Soccer World Cup, the Olympic
Games, or the Red Bull Stratos event play an increasingly im-
portant role. The design and operation of live video streaming
mechanisms for such events is extremely challenging, mainly
due to the unpredictable behavior of users, inducing high
dynamics that those mechanisms have to account for. Starting
from a small number of users, a stream may suddenly become
popular, requiring the streaming mechanisms to rapidly scale
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to millions of users. In [18] such effects are documented for
the Olympic Games 2012, accounting in peak times for almost
22% of the overall Internet traffic in the US and showing a high
fluctuation in the number of viewers over the entire games.

In order to deal with such peaks and fluctuations, commer-
cial streaming providers today typically build on expensive
large-scale server infrastructures, often in combination with
content delivery networks (CDNs). At the same time, P2P
streaming systems such as PPLive2 and the recently released
BitTorrent Live3 have emerged as an alternative approach. By
leveraging idle client resources (primarily bandwidth), those
systems are able to scale well with the number of participating
users, while reducing the costs for the streaming provider.

Existing P2P streaming systems can be decomposed into a
number of basic building blocks (mechanisms, see Section II),
which are optimized for specific scenarios and operating
ranges. Those mechanisms typically perform well as long as
the operating conditions do not change. However, no single
mechanism exists which is able to maintain a high streaming
performance over the entire range of operating conditions for a
large-scale live event, while keeping the costs for the provider
low. The reason for this is that in highly dynamic scenarios
like large-scale live events, where conditions (e.g., in terms
of number of viewers) can change rapidly, maintaining a high
performance is very challenging, since topology management
and scheduling mechanisms cannot be changed easily.

A. Goal and Contribution

To tackle those challenges, this paper proposes a new
approach going beyond existing P2P live streaming approaches
by enabling transitions between different mechanisms and
configurations. A transition is defined as the switch from one
mechanism configuration to another one in order to maintain or
improve the streaming performance under changing operating
conditions. In this context, a mechanism configuration can
refer to a single mechanism implementation or a combination
of different ones.

The concept of transitions is understood as a fundamental
design principle as presented in [17]. It goes beyond the notion
of traditional adaptive streaming mechanisms in that it allows
for the integration and use of arbitrary streaming mechanism

2http://www.pptv.com/ [Accessed October 7, 2013]
3http://live.bittorrent.com/ [Accessed October 20, 2013]ISBN 978-3-901882-58-6 c© 2014 IFIP
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implementations. Therefore, two key mechanisms for P2P-
based video streaming systems are examined in this paper:
the topology management mechanism and the data scheduling
mechanism (see Section III).

In order to study the impact of transitions under varying
operating conditions, the sudden appearance of a large number
of users (flash crowd) is the focus of this work. For addressing
this specific aspect of large-scale live streaming scenarios, two
hypotheses are defined:

1) A quantifiable difference between alternative streaming
mechanism configurations exists during a flash-crowd
scenario that justifies a transition between them.

2) Transitions between mechanism configurations allow
for a high and stable streaming performance with low
overhead and costs for the content provider.

To prove these hypotheses, this paper contributes TRANSIT,
a highly flexible approach that on one hand can be used
to extensively study quantitative trade-offs between different
streaming mechanism configurations and, on the other hand,
allows to systematically design transitions between these con-
figurations. In particular, transitions of topology (multi-tree
and mesh-based topology), and scheduling (push-based and
pull-based scheduling) at runtime are investigated. These tran-
sitions are triggered in order to maintain a high performance
under changing conditions faced by the system. To this end,
TRANSIT provides a fully-fledged P2P live streaming system
supporting transitions between different topology management
and scheduling mechanisms. At the same time, the approach
provides means to fix mechanisms to a certain state to study
the impact of transitions as well as the benefits and drawbacks
of individual mechanisms.

The remainder of this paper is structured as follows: Sec-
tion II introduces streaming mechanisms that were identi-
fied in the related work and further motivates the concept
of transitions. Based on this discussion, requirements for a
transition-enabled streaming approach are derived and the
design of TRANSIT is presented (Section III). Section IV
evaluates the transition-enabled approach by comparing it
against several fixed mechanism configurations in order to
prove the constructed hypotheses. In Section V, conclusions
are drawn and further directions for the application of the
transition paradigm are discussed.

II. BACKGROUND AND RELATED WORK

Existing approaches in P2P video streaming can be classi-
fied according to the applied topology, which is usually either
single-tree-, multi-tree-, mesh-based, or hybrid.

Single-tree-based systems form a virtual overlay tree origi-
nating from a streaming source towards all clients. The topol-
ogy allows to perform a push-based delivery by initiating all
packet transfers on the sender side. However, as these systems
(e.g., OVERCAST [8]) have problems to cope with high churn,
multi-tree-based systems were developed. Multi-tree-based
systems often come in conjunction with a coding scheme such
as Multiple Description Coding or Scalable Video Coding,
which allow to split the stream into substreams that can be

decoded independently to some degree (SPLITSTREAM [4],
COOPNET [13], [14]). Each substream is fed into a subtree,
where all peers participate in all subtrees, but at different
positions to mitigate the effect of peer failures. In a mesh-
based system (PRIME [10], CHAMELEON [11]), peers usually
form a random mesh topology. Missing data is requested
based on frequently exchanged information on available video
data (pull-based scheduling). Due to a higher redundancy of
connections, mesh-based systems are inherently more robust
to churn than tree-based systems. The increased robustness
comes at the price of higher overhead for the management
of connections. In contrast to meshes, tree-based overlays are
efficient in terms of overhead. However, peer churn has a
higher impact on the performance of those systems [9], [20].

Hybrid systems try to find a good compromise between
single topology management and scheduling mechanism con-
figurations as discussed above. The authors of TOMO [3]
propose a mesh-over-tree approach, where the overlay is multi-
tree-based and stable peers form an additional mesh. The ex-
plicit assignment of peer types and topologies as proposed for
this system seems counter-intuitive, as a tree-based approach
exposes its strengths mostly in stable environments. The
MTREEBONE [24] streaming system maintains a single-tree-
based overlay based on stable peers to support data delivery
with low latency. To increase robustness, a mesh overlay is
formed to aid in maintenance and packet delivery. The primary
method of scheduling is the push-based delivery via the single-
tree, while pull-based requests are sent to the mesh as a
fallback in case of packet loss. While MTREEBONE [24] forms
a stable backbone by distilling reliable peers, LIVESKY [26]
deploys a CDN to provide reliable delivery to the edges
of the network. To lower the load, peers connected to the
CDN additionally form a hybrid P2P system, using a multi-
tree approach supported by a mesh for receiving packets that
cannot be retrieved otherwise.

Hybrid systems contribute ideas to the design of a transition-
enabled streaming system. However, the concept of transitions
as applied in TRANSIT differs from the concept of hybrid
overlays. Hybrid overlays aim to find a good compromise
between a fixed number of mechanism configurations to op-
timize the delivery process for specific scenarios, whereas
the idea of transitions is to freely switch between mechanism
configurations in order to support an open range of scenarios
and operating conditions. Such a transition could, for example,
be the switch from a tree-based topology management mech-
anism as used by OVERCAST [8] to a mesh-based topology
management mechanism resembling PRIME [10].

The choice of the scheduling and topology management
mechanism determines the performance of a P2P streaming
system under various operating conditions. For the above
approaches, those mechanisms are fixed. TRANSIT, how-
ever, uses fine-grained combinations of push- and pull-based
scheduling as well as topologies in between mesh and multi-
tree, depending on the operating conditions. Moreover, if
required by the conditions, TRANSIT is also able to apply
a full-blown mesh or multi-tree topology.



III. TRANSITIONS IN P2P LIVE STREAMING

In order to investigate the benefits of transitions, TRANSIT
has been designed with the following requirements in mind:

Transition of Topology and Scheduling Mechanisms: The
system has to support transitions between pure mesh-based,
hybrid, and pure multi-tree topology management mecha-
nisms. Topology management transitions imply transitions
of the scheduling mechanism. Therefore the system has to
support different scheduling mechanisms such as pull, push
and any hybrid combination.

Seamlessness: All of the aforementioned transitions are
to be executed seamlessly, that is, the requirements for live
streaming have to hold before, during, and after a transition.

Decentralized Control: Transitions are executed by peers
without any central management and control. Therefore, peers
have to evaluate their environment and initialize a transition
based on their local knowledge. This requires the system to
tolerate transitions to be executed by only a subset of peers,
implying the concurrent application of several mechanisms.

System Convergence: The system has to converge to a stable
state if the operating conditions do not change significantly.
Particularly, oscillations, i.e., transitions at a high frequency
caused by slight variations of the environment have to be
avoided in order to keep the overhead low.

The discussed requirements are specific to transitions and
affect the user only indirectly during playback. As the envi-
ronment may change over time or even differ depending on a
peer’s location, mechanisms have to be switched during oper-
ation without affecting the overall Quality-of-Service (QoS).
Therefore, besides the above transition-specific requirements,
the following application-level requirements are to be fulfilled:

Low Startup Delay: A user wants to experience low startup
delay when joining a stream. The startup delay is affected by
the size of the buffer that needs to be filled before playback
starts and the effectiveness of the joining process.

Continuous Playback: Once the stream starts playing, it
should not be interrupted due to missing packets or an empty
buffer. The number and length of such interruptions affects the
overall perceived QoS.

A. TRANSIT Design

A multitude of mechanisms need to coexist and communi-
cate with each other in a transition-enabled system. Due to
the asynchronous nature of the system, different peers in the
system can be in a different state of a transition. Transitions are
not triggered by a central entity but are based on local knowl-
edge of each individual peer. Thus, the state of a peer and its
currently applied mechanisms might differ from the states of
its neighbors. TRANSIT distinguishes between mechanisms on
two functional layers, as shown in Figure 1. Mechanisms on
the topology management layer ensure connectivity with other
peers, while mechanisms on the scheduling layer ensure the
delivery of the video stream. Mechanisms communicate with
each other by using a unified protocol.

The concept of connections is used to provide a well-
defined service interface between the scheduling layer and the

Fig. 1. System overview of TRANSIT.

topology management layer. Those connections are formed by
the mechanisms on the topology management layer. Once a
connection is established, it can be used by the scheduling
layer for the transmission of video data. Unused connections
are closed after a given time and replaced with new ones.
Therefore, the scheduling layer and its utilization of connec-
tions directly determine the applied topology.

TRANSIT’s foremost goal is providing a constantly high
QoS by varying mechanisms. The system converges towards a
mesh-/pull-based system in highly fluctuating environments to
maintain playback at higher overhead, whereas stable scenar-
ios result in a multi-tree-/push-based configuration to prevent
waste of bandwidth. This flexibility is achieved by introducing
the concept of flows and requests, which allows to apply any
scheduling approach in the range between push and pull.

Video blocks are either requested (pulled) or delivered
(pushed). The latter assumes a contract between the sender
and the receiver. If the contract is not fulfilled anymore, it
has to be renegotiated, possibly with a new counterpart. In a
multi-tree-based system, this is done by determining a new
parent peer for the given stream. With increasing churn rates,
the reliability of negotiated contracts declines. In an extreme
case, the contract has to be renegotiated for each block of the
transmission, resulting in a push-based system behaving like
a pull-based one, as each block is requested separately.

Fig. 2. Addressing scheme for flows and requests.

The main differences of flows and requests are illustrated in
Figure 2. TRANSIT uses the Scalable Video Codec (SVC) [19]
extension of the H.264/AVC [22] video standard, which was
shown to be beneficial for supporting peers with heterogeneous
resources in [1], [16]. SVC-encoded content can be decoded at
different quality layers, where only parts of the full bit stream
are needed to decode the video at a lower quality. Thus, the
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Fig. 3. Characteristics of the trace-based workload (Figures 3a and 3b) and the flash crowd workload (Figures 3c and 3d).

addressing scheme can be represented by a matrix, where the
vertical direction stands for increasing quality layers and the
horizontal direction shows the chronological order of chunks,
i.e., pieces of the video, as they are rendered. The atomic
unit in this scheme is a block, which represents a certain
quality layer of the respective chunk. The addressing scheme
for individual blocks is kept simple by assigning consecutive
numbers to each block. A flow represents the durable delivery
of the most recent blocks of X layers of a stream, e.g., blocks
{1, 2, 4, 5, 7, 8, ...} (equivalent to the first two layers of the
stream). Requests represent the delivery of arbitrary blocks,
such as blocks {1, 2, 4}.

The definition of flows and requests should not be mistaken
for the categorization into push- and pull-based scheduling.
As described above, a flow might ultimately lead to pure pull-
based scheduling if it is very short-lived, whereas a request
might easily contain hundreds of blocks that are delivered one
after the other in a pure push-based fashion. By using the
concept of flows and requests, arbitrary scheduling schemes
can be modeled. This allows seamless adaptation of the
scheduling mechanism to different operating conditions.

A lesson learnt from related work is the importance of fast
transmission of new chunks [10], [24]. Consequently, their
fast dissemination is defined as the first and foremost goal.
It does not matter if some packets get lost on the way, if a
request mechanism is provided that is able to retrieve missing
packets in time. This further motivates the concept of flows
and requests as defined above, with flows forwarding the most
recent blocks of a stream, regardless of currently missing
blocks in a peer’s buffer or its playback position.

Consequently, TRANSIT has a preference for flows, requests
are emitted in the case of failing flows only. As a newly
negotiated flow delivers only the most recent packets, the miss-
ing packets have to be requested. This simple priority forces
the topology into a mesh in highly fluctuating environments,
whereas stable scenarios form a multi-tree topology. Further
details about the design of TRANSIT are documented in [15].

IV. EVALUATION

The evaluation focuses on comparing the performance of
different scheduling mechanisms and topology management
mechanisms using trace-based workloads and workloads de-
rived from real-world measurements in order to create a
realistic setting.

This comparison can be done with TRANSIT, as it can be
configured as a pure mesh or a pure multi-tree based system, as
well as any combination of both. The goal of this evaluation
is to assess the performance of the underlying mechanisms,
for example pull- vs. push-based scheduling mechanisms.
The evaluation motivates the support for transitions between
mechanisms in a live streaming system by understanding when
such a transition is beneficial for the overall system.

In order to evaluate the impact of transitions on a stream-
ing system’s performance, the configurations mesh/pull, mesh
with newest-first scheduling/pull, multi-tree/push, and TRAN-
SIT are compared under varying workloads. The evaluations
were conducted using the simulation framework Peerfact-
Sim.KOM [21].

A. Simulation Setup

The evaluation of TRANSIT uses two workload models,
one based on measurement traces of PPLIVE and the other
being a workload derived from measurements of flash-crowd
scenarios.

1) Trace-based Workload: The traces used in this work
were collected by Vu et al. [23] in a measurement study of
PPLIVE and are provided in the P2P trace archive [27]. The
characteristics of the traces closely resemble traces used in
earlier studies by Hei et al. [6] and have also been the basis
of a recent study by Hu et al. [7]. Relying on publicly available
traces for the evaluation provides a good estimate of the system
behavior under real-world conditions.

Figure 3a shows the number of concurrently online peers,
while Figure 3b depicts the corresponding arrival rates. The
traces differ in the arrival rate, especially during the startup
phase where trace A exhibits an arrival rate of roughly 45
peers per minute. Later, both traces behave quite similar, with
an arrival rate of around 15 peers per minute and between 600
and 1000 concurrently online peers.

2) Flash-Crowd Workload: In this model, peers join the
system with an assigned session length until the threshold
|P̃ |max of concurrently online peers is reached. The distribu-
tion of session lengths is derived from the aforementioned
measurement trace [23]. After time tfc the number of online
peers is increased linearly up to mfc · |P̃ |max. This increase
happens during the flash-crowd interval dfc which is fixed to
ten minutes. By fixing the interval length and by varying the
target number of peers, different arrival rates can be modeled.



Peers that join during this interval are not replaced with new
peers if their session expires. Thus, the number of online
peers converges back to |P̃ |max as more and more sessions
end. Finally, if the number of online peers drops below
|P̃ |max, leaving peers are again replaced with new ones. The
resulting characteristics of the workload for different flash-
crowd intensities are shown in Figure 3c and Figure 3d.

The applied scenario consists of a massive join of peers
during the flash-crowd phase and a massive leave shortly
afterwards, as the session lengths are distributed exponentially.
Both situations occur in real-life systems as well, for example
on New Year’s Eve [6] or after unforeseen events such as
earthquakes [23], of course depending on the content the video
stream is offering. The flash-crowd workload captures these
extremes, thus providing a realistic scenario to evaluate the
benefits of a transition-enabled approach in such a situation.

A peer is assigned to one of the groups specified in
Table I based on the results described in [7], [12]. The group
determines the peer’s upload data rate R̂↑ and download data
rate R̂↓ as well as the bit rate of the quality layer rate(l) it
is interested in. Access link data rates are based on a study
conducted by the Organisation for Economic Co-operation and
Development (OECD) [12]. The table furthermore shows the
distribution of nodes to those groups according to the OECD
study. Each peer is assigned an SVC quality layer based on
its access link bandwidth. The data rates of those requested
SVC layers are derived from [7]. As the focus of this work is
not on quality adaptation, the requested layer does not change
during playback.

TABLE I
ACCESS LINK DATA RATES, FREQUENCY OF PEERS AND REQUESTED

VIDEO BIT RATES (DERIVED FROM [7], [12]).

Group R̂↑ (Mbit/s) R̂↓ (Mbit/s) Perc. rate(l) (kbit/s)

DSL 2.25 15.3 56% 503.0

Cable 3.15 42.0 30% 705.3

FTTH 52.67 96.4 14% 905.8

Sources 5.0 5.0 3 Sources –

B. Evaluation Metrics

The choice of metrics presented in this section is based on
the work of Zhang et al. [28], who defined a set of widely
applicable evaluation metrics for streaming systems.

Connection Frequency: The connection frequency fC is
defined as the number of incoming connections that were
newly formed during a fixed sampling interval ∆, indicating
how the topology management layer reacts to peer churn.

Protocol Overhead: Overhead is defined as the ratio be-
tween payload and additional protocol traffic. The overhead in
terms of messages being sent is termed O#, and the overhead
in transmitted bytes is termed Os. Duplicate video packets are
counted as part of the overhead.

Startup Delay: The startup delay dsu describes the time an
individual peer has to wait after he joined the system, until
the first chunk is played. It is determined by the time it takes

a peer to connect to the system and to receive enough chunks
for the player to start playback. This, in turn, is affected by
the buffer size that is configured in the system.

Playback Smoothness: The playback smoothness describes
how often a video stream of a single peer is interrupted due
to missing chunks and how long these interruptions last. It is
derived from [2], where the authors present metrics to assess
a peer’s session quality. With the session length of a peer
denoted by δ and duration (s) returning the length of a stall
s ∈ S, with S being the set of all stalls of the peer, the
playback smoothness Ψ is defined as

Ψ = 1− 1

δ − dsu
·
∑
s∈S

duration (s) . (1)

Playback Performance: As the startup delay is not taken into
account when calculating the playback smoothness, a second
metric is defined that qualifies the whole session of a peer in
terms of video playback. Therefore, the playback performance
Υ of a peer is calculated as

Υ = 1− 1

δ
·

(
dsu +

∑
s∈S

duration (s)

)
. (2)

C. Evaluation of Transitions

In the following, all experiments are repeated five times with
different seeds for the random generator. Results are reported
with 95 % confidence intervals, if not stated otherwise.

1) Behavior under Trace-based Workload: The trace-based
workload model is used to emulate the different configurations
under real-world conditions. The performance of individual
mechanisms does not change significantly over time, as the
conditions given by the workload are rather stable. Figure 4a
shows the aggregated playback performance for both traces
and all systems, and Figure 4b shows the overhead that is
necessary to reach this performance. TRANSIT reaches the best
performance of more than 95 % at an overhead of below 1 % of
the total data being sent. The multi-tree configuration performs
comparably well and requires even less data overhead than
TRANSIT. Considering the mesh-based configurations, the
newest-first selection strategy exhibits superior performance
over the earliest-deadline-first strategy, resulting in an increase
of roughly 15 % in playback performance. Due to the more
efficient scheduling process, connections are not changed as
frequently, leading to a decrease in data overhead.

The connection frequency over time is presented in Fig-
ure 4c, showing a significantly lower connection frequency
for the newest-first mesh when compared to the other mesh
configuration. The solid line indicates the number of concur-
rently active peers in the system due to the workload. The
connection frequency for the multi-tree-based configuration
follows this line in that the frequency increases with the
number of online peers. The average connection frequency
of TRANSIT rises slightly during phases where peers leave
the system. This is an indicator of the efforts of the topology
management layer to maintain a set of connections for the
negotiation of flows and requests. Due to the newest-first
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Fig. 4. Performance and cost of the evaluated mechanisms for the trace-based workload.
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Fig. 5. Startup delay distribution in trace-based workload.

selection strategy, the respective mesh profits from nearly
every connection. Connections are not closed as long as they
are used for the transmission of payload, leading to low
connection frequencies. In contrast to that, the pure mesh
configuration changes neighborhoods frequently, as especially
peers that just joined the system have little chance of finding a
neighbor that can provide the newest blocks. The importance
of the packet scheduling strategy in a live streaming system
becomes clearly visible from these results.

The distribution of startup delays as shown in Figure 5
shows the advantage of TRANSIT over the mesh-based solu-
tions, as TRANSIT is able to achieve a much lower startup
delay. The multi-tree performs comparably well, but has
problems with a fraction of the peers that request the video at
a higher quality layer. Those peers need significant amounts of
time to find subtrees for each of their requested layers, leading
to high startup delays.

2) Behavior under Flash-Crowd Workload: For analyzing
each of the defined metrics, scatter plots of time series are
used for the flash-crowd workload. Each of these plots is
complemented by a whisker plot showing the performance
of the configuration under test in the three main phases of
the workload. The intervals are chosen as follows: startup
phase (60-120 min), flash-crowd phase (120-140 min), and
cool down phase (140-180 min). In these plots, the boxes
represent the first quartile q1 and the third quartile q3, while
the whiskers cover all values smaller than q3 +1.5(q3−q1) or
greater than q1− 1.5(q3− q1) of all samples of all simulation
runs.

Figure 6a (6b) shows the startup delay and Figure 7a (7b)
the playback smoothness at different times throughout the
experiment. Each depicted data point is an aggregation of all
values collected over one minute. The startup delay is plotted
in the interval in which the respective peer joined the system,
while the playback smoothness is averaged in each interval
over all currently online peers.

The high arrival rate of new peers during the flash-crowd
phase has severe impact on the startup delay in both mesh
configurations. This is due to the fact that with an increasing
number of peers more hops are needed to distribute new
packets from the source throughout the system. Therefore,
with each intermediate peer, the overall delay increases. As
new peers start their playback at the most recent chunk in the
system, they have to wait until those new packets reach one
of their neighbors. While the newest-first approach helps in
reducing this effect, it is still outperformed by TRANSIT and its
fast content dissemination through flows. The startup delay as
well as the playback smoothness in the multi-tree configuration
show high variation before and after the flash-crowd phase,
i.e., during a time where peers arrive at low rates. During the
flash-crowd phase, the multi-tree configuration shows rather
stable values and outperforms both mesh-based approaches.
This seems counterintuitive at first, given that mesh-based
systems are generally considered to be more robust against
churn than multi-tree-based systems [9]. However, this effect
is due to two important properties of a live streaming system.
First, all peers are interested in roughly the same chunks of
the video stream at the same time. As already mentioned, the
mesh suffers due to the increased number of requests needed
to distribute a new packet, even if newest-first is used as
scheduling strategy. The multi-tree is able to distribute new
packets very fast at least to a subset of all peers, as long
as parts of the subtrees remain intact. Second, the chance
of retrieving a missing block increases with the number of
neighbors. Each time a peer in the multi-tree configuration
leaves the system, missing flows on its children have to be
re-established and missing blocks have to be requested from
neighbors. During the flash crowd, the performance of the
request mechanism of the multi-tree configuration increases,
as the connection frequency and thereby the number of po-
tential sources for missing packets, increases as well. This is
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(b) Startup delay dsu within workload phases

Fig. 6. Startup delay for the individual mechanisms during the flash-crowd scenario over time. The whisker plot shows aggregated information during the
startup phase, flash-crowd phase, and cool down phase. The mesh-based mechanisms experience increased startup delay during the flash-crowd phase.
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(a) Playback smoothness Ψ over time
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(b) Playback smoothness Ψ within workload phases

Fig. 7. Playback smoothness for the individual mechanisms over time. The whisker plot shows aggregated information during the startup phase, flash-crowd
phase, and cool down phase. The multi-tree mechanism distributes the most recent blocks faster during the flash-crowd phase, leading to a better playback
smoothness compared to the mesh-based mechanisms.

observable in Figure 8a (8b), where the connection frequency
of all systems shows a peak during the flash-crowd phase.

One could argue that the mesh should perform better as
well, given that it consists solely of a request mechanism
that should profit from the increased connection frequency.
Nevertheless, compared to the multi-tree configuration, the
mesh is not able to distribute new packets fast enough to a
sufficiently large fraction of peers to support the high number
of new arrivals. This results in higher startup delays as well
as decreased playback smoothness of both mesh approaches
during the flash-crowd phase.

TRANSIT is able to maintain both, high playback smooth-
ness and low startup delay, even during the flash-crowd phase.
Figure 8a (8b) shows that the connection frequency of TRAN-
SIT follows the pattern of the multi-tree configuration, with
a much higher increase during the massive join phase. The
data indicates TRANSIT to be able to maintain ideal properties
for the request mechanism: a high number of neighbors and
frequent changes of those neighbors. At the same time, the
request mechanism benefits from the flow mechanism used in
TRANSIT, as new packets are distributed to a large fraction of
all peers very fast.

This becomes even clearer when expressing playback
smoothness and startup delay as playback performance (Fig-
ures 9a, 9b). Each marker in the plot shows the aggregated
playback performance for all peers that joined during the
respective one minute phase. Therefore, a marker during the
flash crowd is the average over a large number of peers that
joined during this phase, whereas the markers before and
after the flash-crowd phase stand for less peers. As shown
in Figure 9a (9b), the mesh with newest-first request strategy
exhibits a very high and, more important, consistent playback
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Fig. 10. Overhead during the flash-crowd scenario.
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(a) Connection frequency fC
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(b) Connection frequency fC within workload phases

Fig. 8. Connection frequency indicating the frequency of neighborhood changes. During the flash-crowd phase, the mesh-based mechanisms aggressively
establish new connections to maintain fluid playback and to distribute the newest video chunks.
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(a) Playback performance Υ
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(b) Playback Performance Υ within workload phases

Fig. 9. Combination of startup delay and playback smoothness into a single metric, highlighting the trade-off between tree-based and mesh-based mechanisms
during the flash-crowd phase.

performance for peers that joined before and after the flash
crowd. The multi-tree does not perform much worse, but its
performance is far more dependent on the initial neighbor-
hood selection and the failures of other peers, leading to
high variations. However, during the flash-crowd phase, the
conditions for the multi-tree benefit the playback smoothness
and the startup delay, resulting in superior and consistent
performance for peers that join during this phase. TRANSIT
combines the advantages of both mechanisms and achieves
consistently high performance, regardless of the time a peer
joins the system. The sharp decrease in playback performance
towards the end of the experiment is due to the fact that
the peers left the system after three hours. Peers that join
during this last phase of the experiment experience a startup
delay as illustrated in Figure 6a (6b), but their session time
is much shorter, resulting in shorter playback times. As the
playback performance combines startup delay and playback
phase weighted with their respective lengths, the startup delay
has a high impact on the calculation on these peers. The results
of the individual metrics reveal those peers to exhibit the same
high performance.

Figure 10 shows the overhead in terms of sent messages as
well and actual bytes transmitted on average as a fraction of
data being sent. Both mesh configurations show significantly

higher overhead due to the pull-based packet scheduling.
The overhead of all configurations increases slightly with the
intensity of the flash crowd, indicating additional control traffic
being exchanged due to connection maintenance. When con-
sidering the overhead in terms of actual data being transmitted,
this effect becomes far more significant for the mesh-based
configurations. Here, overhead accounts for roughly 4 % of
all transmitted data, whereas it stays below one percent for
TRANSIT and the multi-tree-based configuration. Still, with
only a fourth of the overhead introduced by the mesh-based
configuration, TRANSIT is able to provide superior playback
performance. Additional evaluation results under additional
workloads can be found in [15].

V. CONCLUSIONS AND FUTURE WORK

Based on related work, basic topologies and scheduling
mechanisms have been identified as being influential on the
performance of P2P live streaming systems. As most of the
existing approaches are using these mechanisms in a fixed
way and are thus tailored towards specific assumptions and
scenarios [20] [9], the following hypotheses were constructed:

1) A quantifiable difference between alternative streaming
mechanism configurations exists during a flash-crowd
scenario that justifies a transition between them.



2) Transitions between mechanism configurations allow
for a high and stable streaming performance with low
overhead and costs for the content provider.

In order to confirm these hypotheses, this paper presented
TRANSIT, a transition-enabled P2P streaming approach allow-
ing for the systematic evaluation and comparison of differ-
ent mechanisms for scheduling and neighborhood selection.
TRANSIT does not maintain a fixed topology or scheduling
mechanism configuration. Instead, the system has the ability
to perform fine-granular transitions between a mesh and multi-
tree topology as well as push- and pull-based scheduling
mechanism configurations according to current environmental
parameters (e.g. flash crowds). The system’s high adaptivity
is enabled by a clean separation of topology management and
scheduling mechanisms and the concept of flows and requests.

TRANSIT’s ability to resemble different system properties
was used to compare the performance of fixed mechanism
configurations and the transition-enabled system. Where a
fixed mechanism configuration such as the pure mesh config-
uration had obvious problems, optimizations such as newest-
first scheduling were introduced for a fair comparison.

The evaluation results indicate that TRANSIT offers very
good resilience in flash-crowd scenarios. The important user-
centric performance metrics such as startup delay and play-
back smoothness are nearly unaffected under massive churn,
whereas mesh and multi-tree configurations show serious
service degradation. TRANSIT reaches these results at the cost
of comparably low overhead: as expected, the system acts
slightly worse than the multi-tree configuration, but much
better than both mesh configurations. This, in turn, confirms
both hypotheses. Moreover, the presented results show that
the overall concept of transitions is beneficial with respect to
a broader range of potential mechanism configurations.

Further investigations are planned to improve existing mech-
anism implementations (e.g. by introducing more sophisticated
scheduling modes to reduce start up delay) and for including
additional mechanisms in the concept. A promising direction
for new mechanisms is the area of network coding. Network
coding techniques allow to save bandwidth at the cost of
computational overhead by aggregating messages as a com-
bination of the initial packets. By making the parameters of
the combination and the aggregated message known at the
receiver side, the packets can be decoded [25]. In future work,
it will be investigated how network coding can be used as a
further mechanism to allow for transitions to such schemes
when bandwidth gets scarce.
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