
SQUAD: A Spectrum-based Quality Adaptation for
Dynamic Adaptive Streaming over HTTP

Cong Wang and Amr Rizk∗
University of Massachusetts Amherst

{cwang1,arizk}@umass.edu

Michael Zink
University of Massachusetts Amherst &

Technische Universität Darmstadt
zink@ecs.umass.edu

ABSTRACT
The dynamics of the application-layer based control loop
of dynamic adaptive streaming over HTTP (DASH) make
video bitrate selection for DASH a difficult problem. In
this work we provide a DASH quality adaptation algorithm,
named SQUAD, that is specifically tailored to provide high
quality of experience (QoE). First, we review and provide
new insights into why DASH rate estimation is hard. In
a nutshell, in addition to the On-OFF behavior of DASH
clients, there exists a discrepancy in the time scales that
form the basis of the rate estimates across (i) different video
segments, (ii) the rate control loops of DASH and TCP.
With these observations in mind, we design SQUAD using
with the objective of maximizing the average quality bitrate
while minimizing the quality variations. We test our imple-
mentation of SQUAD together with a number of different
quality adaptation algorithms of different methodologies un-
der various conditions in the GENI testbed, as well as, in
a cross-Atlantic measurement campaign. The measurement
results show, that by sacrificing little to none in average
quality bitrate SQUAD provides significantly better QoE in
terms of quality switching and magnitude.

1. INTRODUCTION
Video Streaming is the most popular application in to-

day’s Internet. According to the latest Sandvine report [3]
67% of the downstream Internet traffic at peak hours in the
US is real time entertainment such as live streaming and
video on demand. Such high demand for video content re-
quires approaches to efficiently transport the data from the
content providers to the customer while providing the viewer
a satisfying Quality of Experience (QoE).

To achieve this goal, virtually all video content providers
have switched to the available bitrate streaming (ABR) mech-
anism. With ABR, the streaming rate, and thus the re-
sulting quality of a video, can be adapted to the available
bandwidth between the video server and the client. One
of the most popular realizations of ABR streaming is the
MPEG’s Dynamic Streaming over HTTP (DASH) standard.
Its popularity can mostly be attributed to the facts that
i) DASH-format videos can be streamed from any kind of
HTTP server; ii) adaptation logic resides in the client, which
makes DASH highly scalable; and iii) it is an open standard.
In addition to DASH, there exist proprietary ABR imple-
mentations like Microsoft’s SmoothStreaming [4] , Apple’s
HTTP Live Streaming (HLS) [2], and Adobe’s HDS [1].

∗This work was funded in part by a DAAD exchange grant.

All of these ABR approaches use HTTP and the benefits
of the underlying TCP protocol, which include standard-
ized transport, firewall penetration, and adaptation to band-
width changes. Unfortunately, the use of TCP also brings
a set of difficulties which we identify and investigate in this
paper. Examples of such challenges are, the dual control-
loop (one for DASH and one for TCP as already identified
by Huang et al. [13]), the impact of video segment size, and
the impact of dead times on congestion window size.

An additional challenge for ABR video streaming is to pro-
vide a high QoE to the viewer. From the onset, DASH has
been designed with the goal to prevent re-buffering events,
which have the most serious impact on QoE, as shown by
Krishnan and Sitaraman [17]. In addition to re-buffering
events, frequent changes in quality have also been identified
as detrimental to QoE by viewers, e.g., in Zink et al. [31].

These insights motivated us to design a new DASH adap-
tation algorithm that aims at achieving the highest possible
quality (in terms of bitrate) while minimizing the number
of quality changes, since we believe that most existing ap-
proaches only focus on the former and, thus, do not always
result in a satisfying QoE. In this paper, we make the fol-
lowing contributions:

• Critical Observations. We perform a detailed anal-
ysis of the interplay between the DASH adaptation
mechanism and underlying TCP. Through this analysis
we identify several issues that contribute to the prob-
lem of optimizing the DASH streaming performance.
Most notably, we identify i) the substantial impact of
segment size on the download rate; ii) impact of dead
time on the congestion window; and iii) the inaccuracy
of segment-based available bandwidth estimation.

• SQUAD.We develop a new DASH rata adaption al-
gorithm that has the goal to maximize the quality of
experience of users watching video by addressing many
of our critical observations. To achieve this goal, we
consider two metrics that describe QoE and combine
these in an online optimization algorithm.

• Evaluation. We present results from an extensive
evaluation of the SQUAD algorithm. We perform a se-
ries of experiments in a controlled environment (GENI
testbed) and in the wild (public Internet) and compare
SQUAD with other, existing DASH algorithms.

The reminder of the paper is structured as follows. We
describe the basic architecture and adaptation mechanisms
in Sec. 2. In Sec. 3, we analyze the issues that arise from

rst
Textfeld
Cong Wang, Amr Rizk, Michael Zink:SQUAD: a spectrum-based quality adaptation for dynamic adaptive streaming over HTTP. In: ACM Multimedia Systems Conference MMSys, p. 1-12, May 2016.

rst
Textfeld
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

HTTP

TCP

server

quality

adaptation

rate

estimation

playout

buffer

cross

traffic

Figure 1: Coarse architecture of a DASH client. Buffer filling
and download rate estimates are fed to the quality adapta-
tion logic which decides on the quality of the next segment.
The stream encounters varying network conditions, for ex-
ample, due to contending cross traffic.

the interplay of DASH and TCP. Our SQUAD algorithm is
introduced in Sec. 4 and a detailed evaluation of the algo-
rithm is presented in Sec. 5. Section 6 presents related work
in the area of DASH adaptation algorithms and we conclude
the paper in Sec. 7.

2. DASH PLAYER ARCHITECTURE
In this section, we highlight the main components of a

general DASH player architecture as depicted in Fig. 1. We
divide the client block into the following logical components
with specific functionality: (i) playout buffer, (ii) rate esti-
mation / prediction and (iii) quality adaptation.

In the following, we will provide some definitions of im-
portant DASH parameters to lay the ground for subsequent
modeling. We denote the size of a DASH video segment (in
bits) of a certain quality as si,q, with the segment number
i ∈ {1, . . . , N} and the quality level q ∈ {1, . . . , Q}. Here,
q = 1 (q = Q) denotes the lowest (highest) quality with
respect to the video quality bitrate rq, i.e., rj < rj+1 for
j ∈ {1, Q− 1}. We denote the quality of a fetched segment
i by qi and its quality bitrate by rqi and drop the subscript
when it is obvious. We consider the case where all video seg-
ments have equal length in time, i.e., every segment carries
X seconds. The fetch time of segment number i in quality
level q is given as ti,q = si,q/Ri,q, where Ri,q is segment
download rate in bit/sec. In Sect. 3 we describe how the
segment download rate Ri,q depends on a combination of
multiple factors such as the network conditions, the TCP
state and even the size of the segment si,q.

The playout buffer B(i):. The purpose of the playout
buffer is to smooth short-term variations of the network con-
ditions. Specifically, temporary fluctuations in the segment
download rates R should be absorbed by the buffer resulting
in corresponding fluctuations in the buffer filling B(i) while
keeping the steady state playback quality q unchanged.

In this work, we define B(i) as the cumulative number of
video seconds contained in the playout buffer after fetching
segment i. Note that B(i) is defined over i ∈ {0, . . . , N} and
that by convention B(0) = 0. We define the event {B(i) =
0} as the rebuffering event. For any practical application,
the playout buffer is set to a finite size Bmax. For B(i−1) <

Bmax we write down the buffer recurrence as

B(i) = max {0, B(i− 1) +X − ti} , (1)

where ti is the fetch time of segment i. For B(i) = Bmax

we have B(i+ 1) = Bmax − ti+1 since the player idles for X
seconds when the buffer is full.

Rate estimation:. One basic client-side download rate es-
timation logic in DASH simply divides the segment size si,q
over the segment fetch time ti. Here, the fetch time is given
by the time difference between the timestamps of the HTTP
GET request and the segment being delivered to the playout
buffer, i.e.,

di,q =
si,q

tdeliveredi − tGETi
(2)

Note thate the rate estimate di,q is smeared by the one-way
delay of the GET request. This error diminishes with increas-
ing segment size si,q. Rate estimation methods that calcu-
late the download rate over multiple concatenated segments
extend (2) to

di,j,q =

∑j
k=i sk,q

tdeliveredj − tGETi
(3)

for segment indexes j ≥ i. In Sect. 3, we provide a critical
evaluation of the foundations of the DASH rate estimates.

Quality adaptation:. Next, we review basic concepts for
the segment based quality adaptation logic shown in Fig. 1.
DASH clients first fetch media presentation description
(MPD) files that contain information on the content to
be streamed such as server IPs, bitrates of different qual-
ity levels and the URIs to the segments of different qual-
ities [24]. Basically, quality adaptation algorithms have
two sources of information, i.e., the status of the playout
buffer filling and the download rate of previous segments
provided by the rate estimation logic. Buffer based qual-
ity adaptation takes, in general, the current buffer filling
B(i) and in some cases also the change of the buffer fill-
ing (B(j)−B(i)) /

(
tdeliveredj − tdeliveredi

)
for segments j ≥ i,

into account when deciding on the quality of the next seg-
ment to be fetched. The change of the buffer filling is an in-
dicator for a mismatch of the segment download rate, which
is an estimate of the available bandwidth, and the playout
rate. In DASH, there exists a subtle difference between the
change of buffer filling metric and the averaged download
rate since DASH introduces inter-request time gaps. We
will provide a detailed analysis of this issue in Sect. 3.

Quality adaptation mechanisms that additionally take the
rate estimate into account aim to match the segment down-
load rate to the playout rate by choosing segment qualities
that have bitrates lower than the estimated available band-
width. The estimation of the available bandwidth for the
next segment(s) given the download rate history can rely, for
example, on network active probing techniques [15] or simply
on time series analysis. Further, the rate based adaptation
component bears the risk that the chosen segment qualities
oscillate in accordance to the available bandwidth. From
a streaming point of view, it is well known that frequent
video quality oscillations are detrimental to the quality of
experience (QoE) perceived by the users.

In the following sections, we will refer to the basic DASH
player architecture and describe the details of the modifica-
tions introduced by our adaptation algorithm SQUAD. In
the next section, we provide some critical observations on
DASH that sparked some of the specifications of SQUAD.

10 100 1000

20

40

60

80

100

time scale [# of packets × transmission time]

es
tim

at
ed

 r
at

e
[M

bp
s]

TSO on
TSO off

(a)

0 0.5 1 1.5 2
0

2

4

6

8

10

12

14

segment size [MB]

es
tim

at
ed

 r
at

e
[M

bp
s]

(b)

Figure 2: User space rate estimates in DASH: (a) Impact
of NIC segmentation offloading on rate estimation in user
space. (b) User space rate estimates in DASH become more
accurate for longer segments.

3. CRITICAL OBSERVATIONS IN DASH
In the following, we review fundamental observations in

Dynamic adaptive streaming over HTTP that make the
problem of optimizing DASH performance a hard one.

3.1 DASH estimates are in user space
DASH clients usually estimate the segment download rate

from segment timestamps in user space. Depending on the
hardware environment and its configuration these estimates
may vary significantly. Trivially, estimates made in virtu-
alized environments may be highly varying, because of VM
scheduling [28]. However, we first look at a non-virtualized
bare-metal topology and show the impact of different set-
tings of the network interface card (NIC), at the example
of segmentation offloading (SO), on the DASH segment
rate estimates. To this end, we use the Emulab testbed [27]
to build a butterfly topology as depicted in Fig. 10 with
M = 1 nodes on each side, where we use bare metal ma-
chines connected via 100 Mbps links. In this case we do
not generate any cross traffic. In the first experiment, we
emulate a persistent HTTP DASH flow through a long run-
ning greedy TCP flow and consider the segment download
rate estimates obtained for different segment lengths. Fig-
ure 2a shows the rate estimates over increasing estimation
time scales. We normalize the x-axis, i.e., the time scale, to
the number of packets that fit into one time slot at line rate.
From Fig. 2a we deduce that the user space rate estimate
is indeed affected by the segmentation offloading for small
DASH segments, i.e., in the order of 10’s to few hundreds of
packets. On the other hand, larger time scales, i.e., equiv-
alently larger DASH segments, allow some averaging such
that the impact of SO is negligible.

To get a better understanding of the DASH user space
segment download rate estimates we rerun the experiment
with the Python DASH player from [16]. We modified the
player to continuously measure the download rate during
segment download by taking one measurement point every
50 packets. A one-minute video is streamed in the topology
in Fig. 10 with link capacities of 10Mbps, one DASH flow
and no cross traffic. The video segment length is 2 sec. We
measure the rate estimates for segments of different sizes as
shown in Fig. 2b, which depicts averages and 0.95 confidence
intervals. Here too, we observe that the inaccuracy of the
rate estimates is highest when the segments are small.

3.2 DASH runs over TCP
In the following, we discuss specific characteristics of

long lived
TCP

DASH

capacity

Figure 3: DASH abstraction as source of TCP mice flows.

DASH that arise due to the fact that DASH utilizes TCP.

Dual control loop

The design choice of DASH to utilize HTTP for adaptive
bitrate streaming brings numerous advantages such as stan-
dardized transport, firewall penetration, adaptation to the
bandwidth changes and all the advantages of TCP. However,
since the DASH player needs to specify the quality bitrate
of the segments to be fetched, it may be regarded as an
outer control loop, while TCP running as an inner control
loop that prevents congestion. While TCP aims for the fair
share on a packet level time scale, DASH aims for the sus-
tainable quality bitrate, i.e., essentially the fair share, on a
segment level. The problem exacerbates since the control
loop of DASH runs on a per segment basis. Since the seg-
ments are of different sizes, the time scale on which DASH
tries to find the fairs share is continuously changing. Fig-
ure 4 shows empirical segment download rates for different
segment sizes from testbed measurements with one DASH
flow using the topology shown in Fig. 10 without cross traf-
fic. We vary the segment lengths (in seconds), the link ca-
pacities and use DASH with persistent and non-persistent
HTTP. Figure 4 clearly shows the impact of the DASH seg-
ment size on the download rate for both HTTP connection
types. The empirical download rate may be much lower for
small sized segments.

Our algorithm (SQUAD) which we present in Sect. 4 takes
into account this discrepancy of the rate estimation time
scales and provides DASH with (available) download rate
information on the appropriate time scale.

DASH is TCP submissive

Although DASH utilizes HTTP over TCP/IP to retrieve
segments, we argue that it does not necessarily receive its
fair bandwidth share when competing with other long-lived
TCP cross traffic. The reason for this behavior is that a
DASH video stream does not constitute a long-lived TCP
flow from the server to the client. Figure 3 shows a sketch
of this behavior for one hypothetical case of one DASH flow
competing with one long-lived TCP flow.

Reasons for this discontinuous traffic behavior lie in the
nature of DASH streaming. First, assume a persistent
HTTP connection, since in case of DASH over non-persistent
HTTP it is simple to show that the continuous TCP cross
traffic receives more than the fair bandwidth share. In gen-
eral, there exist dead times of no DASH transmission that
result from the DASH adaptation algorithm itself, i.e., de-
pending on how often the DASH adaptation logic fetches a
new segment and the corresponding buffer filling. Figure 5d
shows the CDF of the dead times between receiving the last
packet of one DASH segment and sending out the HTTP
GET request for the next one. Clearly, there is silence time
of multiple hundred milliseconds in the median case. This
is sketched in Fig. 3 as gaps between the DASH segments.

In Fig. 5 we show the results for the experiment of compet-
ing DASH and a long-lived TCP flow as sketched in Fig. 3.

 1

 10

 100 1000 10000 100000

D
o
w

n
lo

a
d
in

g
 R

a
te

 (
M

b
p
s
)

Segment Size (kbit)

2-second: persistent
10-second: persistent

2-second: non-persistent
10-second: non-persistent

(a) 10 Mbps

 1

 10

 100

 100 1000 10000 100000

D
o
w

n
lo

a
d
in

g
 R

a
te

 (
M

b
p
s
)

Segment Size (kbit)

2-second: persistent
10-second: persistent

2-second: non-persistent
10-second: non-persistent

(b) 30 Mbps

 1

 10

 100

 100 1000 10000 100000

D
o
w

n
lo

a
d
in

g
 R

a
te

 (
M

b
p
s
)

Segment Size (kbit)

2-second: persistent
10-second: persistent

2-second: non-persistent
10-second: non-persistent

(c) 100 Mbps

Figure 4: DASH segment download rates for links of different capacity. The segment size has a substantial impact.

0 50 100 150 200 250 300
0

2

4

6

8

10

time [s]

ra
te

 [
M

bp
s]

seg. DL rate
quality bitrate
DASH traffic

(a) DASH throughput 2sec.

0 50 100 150 200 250 300
0

2

4

6

8

10

time [s]

ra
te

 [
M

bp
s]

seg. DL rate
quality bitrate
DASH traffic

(b) DASH throughput 10sec.

0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

time [s]

cw
nd

2sec
10sec

(c) DASH-TCP cwnd

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

time [s]

C
D

F

2sec
10sec

(d) Inter-GET times

Figure 5: DASH is TCP submissive. Impact of the segment length for one DASH flow competing with one TCP Reno flow.

We run this experiment with two different segment sizes, i.e.,
2 sec and 10 sec, a link capacity of 10 Mbps and a DASH
repository of the Big Buck Bunny dataset with quality bi-
trates ranging from 89 Kbps to 4.2 Mbps. We emphasize
that we do not aim to investigate ABR segment size opti-
mizations in this work, but merely show that different set-
tings of DASH parameters can lead to entirely different per-
formance. Our aim is to show the fundamental roots for this
varying behavior. Figure 5a shows the segment throughput
as measured by the client as well as a finer grained through-
put measurement that is done on the wire. For a segment
size of 2 sec the quality bitrate of the DASH stream is re-
markably low with respect to the fair share. The reason for
that can be inferred from Fig. 5c, where we observe that the
corresponding congestions window does not ramp up as the
segments are “small” in size. In contrast, for 10 sec segments
the congestion window in Fig. 5c is nearly an order of mag-
nitude higher and the quality bitrate shown in Fig. 5b stays
at the maximum available quality bitrate of 4.2 Mbps.

From a modeling perspective, the interrupted TCP stream
generated by DASH can be regarded as the output of an ON-
OFF source that generates TCP mice flows (although techni-
cally imprecise because of the persistent HTTP connection).
Hence, it is known that competing long-lived (elephant) and
mice flows suffer from fairness disparities [12].

4. SPECTRUM-BASED QUALITY
ADAPTATION FOR DASH

In this section, we describe a DASH quality adaptation
algorithm that addresses many of the critical points raised
in Sect. 3. The aim of this algorithm is to maximize the
quality of experience associated with DASH streaming ses-
sion in a quantitative manner. We consider two metrics that
describe QoE and connect these into an online optimization
algorithm in a novel manner. Given a DASH streaming ses-
sion of N segments each of length X seconds, the first met-
ric we consider is the average video bitrate, i.e., the average

video quality, which we express as

r̄ =
1

N

N∑
i=1

rqi . (4)

Recall that rqi is the quality bitrate of segment i at qual-
ity level q ∈ {1, . . . , Q}. Formula (4) does not consider the
detrimental impact of rebuffering on the average video qual-
ity. One method to capture rebuffering in (4) is to substitute
N by N ′ which equals the number of segments N in addi-
tion to the number of segments that can be fitted in the
rebuffering time as dtrebuf/Xe. Trivially, the corresponding
rates rqi are set to zero.

The second metric that we consider is a centralized mea-
sure for the variation of the video quality around the average
quality which is is denoted as “spectrum” in [31]. We adapt
the spectrum definition to DASH streaming to express the
video bitrate variation around the average bitrate given N
segments as

H(N) =

N∑
i=1

zi

(
rqi −

∑N
j=1 zjrqj∑N
j=1 zj

)2

(5)

where zi = 1{rqi 6=rqi−1
}. In the following, we describe our

DASH quality adaptation algorithm that has the objective
of maximizing (4) while minimizing the spectrum (5). From
a classification point of view, the algorithm can be regarded
as a rate and buffer based algorithm since it takes the infor-
mation on the buffer filling as well as the historical download
rates to decide on the quality of the next segment.

Smooth and reliable rate estimation

Given our observation in Sect. 3 that the measured segment
download rate varies with the segment size and the current
state of the server TCP state machine, we introduce two
key ideas to provide smooth and reliable estimates of the
download rate of the next segment to be fetched.
Smooth sub-segment rate estimates: Looking at the
download rate estimation methods from Sect. 3 we observe

empirical download rate

download size

 [Mb]

1 ssi js

d̂

(b)

...

time

cumulative

data

s

tc tc ts1 2

...

c
1

c
2

c
j

tcj

d
2

^
d

j

^

d
s

^

(a)

Figure 6: (a) Sub-segment rate estimates. (b) Empirical
downloading rate vs. segment download size.

that the estimates are usually calculated upon the arrival of
a video segment. Since segments vary in size, the different
estimates correspond to different time scales. Hence, given
the knowledge of the time scale dependence of the behavior
of network protocols (such as TCP fairness) and thus the
available bandwidth, we decide to take running estimates of
the download rate vs. the downloaded data amount. Start-
ing from the request time tGETn for segment n we calculate the
running download rate estimate as

d̂s =
s

t
cj,delivered
n − tGETn

(6)

where t
cj,delivered
n is the time required to download cj bits

of segment n in quality q, where cj ≤ sn,q. Figure 6a de-

picts this procedure. In the following, we calculate d̂s from
(6) using the granularity of cj+1 − cj = 50 IP packets, i.e.,
roughly 75kB.
Reliable rate estimates: One important contributor to
the efficiency of any quality adaptation algorithm for DASH
is the accuracy of the download rate estimate. However, in
Sect. 3 we showed that the segment download rate in case
of DASH depends on the segments size as well as the TCP
state. Practical approaches to predict the TCP transmission
rate that are based, e.g., on machine learning techniques
have been considered in [25]. In contrast, in this work we
assume a thin client that keeps track of the segment down-
load history, however, we do not aim to predict the TCP
transmission rate in such manner. Instead, we collect the
download rates d̂s similar to Fig. 4 and deduce an empirical
lower bound on the download rate for the next segment n+1
of size sn+1,q from the percentile of the empirical distribu-
tion as

P
[
rn+1,q ≤ d̂ εsn+1,q

]
≤ ε, (7)

where ε is a conservatism parameter. The smaller we set
ε the more conservative is the lower bound d̂ εsn+1,q

for the
download rate of the next segment. We sketch this proce-
dure in Fig. 6b.

4.1 Init: A Slow Start of Segment Quality
Initially, we start the streaming session by retrieving the

corresponding MPD file which we modified to include the
segments sizes (in kB). Modifying the MPD to include seg-
ment size was first proposed by [16]. Since we do not assume
any prior information on the available bandwidth along the
path between the client and the streaming server we stream
the first segment with the lowest possible quality. Instead
of streaming only the first segment in the lowest quality we
may stream a consecutive train of the first W1 segments in
the lowest quality. This conservative choice provides the

possibility to estimate the download rate of higher quality
segments that are usually larger in size. However, the larger
W1 the longer the player is stuck with the lowest quality,
which increases the risk of video abandonment. In the se-
quel, we set W1 = 5 if not stated otherwise.

The segment quality slow start behavior follows starting
from segment W1 + 1. Here, with every segment we double
the quality level requested until we reach the highest pos-
sible quality. We conclude the initial phase and go to the
next phase, that we denote the steady state, either when
the quality slow start is finished or when the download time
of the last fetched segment is longer than double the seg-
ment length X. We choose this empirical break condition
to minimize the risk of rebuffering in the initial phase.

4.2 Steady state
In the following, we describe how the player decides on

the quality of the next segment based on the algorithm we
denote spectrum based quality adaptation.

4.2.1 Spectrum-based adaptation
After the initial phase, i.e., W1 + blog(Q)c segments, the

player decides for the rest of the video stream on the segment
qualities based on the spectrum H given in (5). Given the
trace of quality levels downloaded so far, the player aims
at minimizing (5) for all possible quality levels for the next
segment. However, this strategy leads to preferring segment
qualities near to the running average quality bitrate and
may not necessarily have a drift towards higher qualities.
Since we described the aim of this adaptation algorithm to
maximize the average bitrate (4) subject to minimizing the
variations around the mean (5) we modify the adaptation
algorithm as follows.

First, we order the qualities according to their calculated
spectrum H where we mark the qualities either as “sustain-
able” or “unsustainable” according to their estimated fetch
time t̂. We denote a quality sustainable if its fetch time t̂
is less or equal to the X seconds of video contained in a
segment. Considering the playout buffer evolution (1) this
is equivalent to imposing a buffer constraint such that we
do not fetch qualities that lead to buffer drain. In the se-
quel we will relax this constraint. This ordering operation
is depicted in Fig. 7 and it provides the player with a first
reference for choosing the quality of the next segment. We
conjecture that, in general, movie consumers do not recall
the movie quality after a few minutes such that the current
QoE is function of the segment qualities over a window v
of past segments. For example, it seems reasonable that
during the course of a movie the viewers will less likely re-
member the quality of a scene after few minutes. Hence, as
depicted in Fig. 7, given n downloaded segments with qual-
ities qCi with i ∈ {1, . . . , n}, we calculate the ordered quality
lists Ln+1(v) for segment n + 1 for multiple backward win-
dow lengths v ∈ V , where V denotes the set of window
lengths used to calculate the spectrum. To include the drift
to higher qualities we multiply the values of Ln+1(v) each
with a corresponding quality weight

α(q) =

(
r1
rQ

) 1
Q−q+1

. (8)

Note that the bitrate ratio r1/rQ is less than one and that
the weighting function α(q) is concave in Q− q.

We combine the weighted quality lists Lαn+1(v), i.e., the

get sustainable quality
qs

n+1

qc

n-1
qc

n
{ , … , , }qc

1
+MPD

^

1 ssi j

d

s

for dsn+1

-

dsn+1

e

or

estimate fetch time

X
d

s

ns

n

1

ˆ
1

d̂
1ns

d̂
1ns

t̂

no

unsustainable
qs

n+1

yes

calculate spectrum

H(n+1) over

windows v V

n+1n+1

apply weight

a(q)

for drift

calculate ordered

quality list

maximizing the average

of over V

choose qs

n+1

L
a

n+1
(v)

L
a

n+1
(v)

qs

n+1 1,...,Q

:=

:=

Figure 7: Spectrum based sustainable quality identification.

element wise product of the two vectors α and Ln+1(v), and
calculate the average of Lαn+1(v) over multiple v. The basic
adaptation algorithm sets the so-called chosen quality for
the next segment qCn+1 equal to the sustainable quality qsn+1

which minimizes the average∑
v∈V

1

|V |L
α
n+1(v), (9)

where |V | denotes the cardinality of V . In the following, we
use V = {4, 8, 16} segments if not stated otherwise.

4.2.2 Buffer guidance - latent fallback
Now we turn our attention to relax the restrictive buffer

constraint from above that we do not fetch qualities that
lead to buffer drain. In general, our aim is to stream a movie
in highest sustainable quality while minimizing the quality
variations. Conceptually, a quality adaptation strategy that
tries to keep the buffer filling fixed will eventually follow
the variations of the available bandwidth. Hence, we use a
buffer guidance approach to complement the spectrum based
adaptation from Sect. 4.2.1. Here, we allow the playout
buffer B to drain at most by a certain amount whenever the
available bandwidth decreases and the current quality level
becomes unsustainable. This latent fallback strategy allows
the player to sacrifice buffer filling to maintain unsustainable
but spectrum minimizing quality levels for short periods of
time to be able overcome temporary available bandwidth
fluctuations. This, however, is only possible when the buffer
filling is high enough to minimize the risk of rebuffering. In
the following we describe the details of this algorithm.

As depicted in Fig. 8, we divide the playout buffer into
three areas, “low”, “medium” and “high”. Similar divisions
have been introduced in [16] and VLC [21]. In our case, we
only allow latent fallback when the buffer is in the “high”
region. We mark the buffer division by cutoff percentages cl
and ch where the subscripts stand for the lowest and highest
area. When the buffer filling is above ch we calculate the
ordered quality lists Lαn+1(v) as in Sect. 4.2.1 but we only
mark qualities as unsustainable, that lead to a buffer drain
below cl. In other words, we mark qualities q as unsustain-
able only when

B̂(n+ 1) := B(n)− δ̂(n+ 1, q) < cl, (10)

where δ̂(n+ 1, q) := t̂n+1,q−X is the estimated buffer drain
due to fetching segment n + 1 in quality level q. We keep

...

buffer fill B

segment #n-1 n n+1

c
l

c
h

using estimate)1(ˆ nB

1

ˆ
nsd

admissible quality

admissible quality

non-admissible quality

s

nq 1

s

nq 1

s

nq 1

high

med

low

max

Figure 8: Estimated buffer drain δ̂(n+1, q) = B(n)− B̂(n+
1) determines the admissibility of a proposed quality qsn+1.
Latent fallback is viable only if the buffer filling is above ch.

applying the latent fallback algorithm as long as the buffer
filling is above ch. As soon as the buffer filling is equal or
below ch we return to the buffer constraint from Sect. 4.2.1.

4.2.3 Player states
In steady state we differentiate between three states in

which the player can be, which we denote as (i) decreas-
ing , (ii) steady, (iii) increasing. These states simply
describe the relation between the current chosen segment
quality qCn and the sustainable quality level that is calcu-
lated for the next segment to be fetched qsn+1. Based on
its state the player decides on the chosen segment quality
for the next segment, i.e., qCn+1. In the following, we de-
scribe the steps that are common to all states before delving
into the particular details of every state. Fig. 9 shows an
overview of the entire algorithm.

Before fetching a new segment we always calculate the
corresponding sustainable quality level qsn+1 as described in
Sect. 4.2.1. In particular, qsn+1 is calculated as the quality
which minimizes the spectrum, technically (9), while meet-
ing the stringent buffer constraint t̂n+1 ≤ X from Sect. 4.2.1.
To this end, we first calculate the estimated fetch time for
segment n+ 1 in quality q for q ∈ {1, . . . , Q} as

t̂n+1,q =
sn+1,q

d̄sn+1,q

(11)

where d̄sn+1,q denotes the average download rate estimated
empirically from Fig. 6b (similar to Fig. 4) given the size
of the next segment sn+1,q. Hence, as stated above we find
qsn+1 that minimizes (9) and compare it to qCn to detect the
current player state. In the following, we describe the steps
carried out when the different player states are detected:
Decreasing: In the decreasing state we detect that the sus-
tainable quality level is less than the current chosen quality,
qsn+1 < qCn . Here we first invoke the latent fallback technique
that is described in Sect. 4.2.2 to avoid rapid quality changes
in exchange for buffer filling. To this end, we recalculate the
sustainable quality qsn+1 that minimizes (9), however, using

the ε percentile d̂ εsn+1,q
from (7). In the following, we set the

percentile ε = 0.2 to strike a balance between smoothness
and responsiveness. Next, we consider the buffer filling as in
Sect. 4.2.2. If the buffer filling is higher than ch, i.e., we have
enough segments buffered, we may sacrifice buffer filling for
holding the quality level qn. Hence, as long as the estimated
buffer underflow probability after fetching the next segment
is less than ε, i.e.,

get sustainable

quality usingqs

n+1
dsn+1

-

get sustainable

quality usingqs

n+1

get sustainable

quality usingqs

n+1

?

seg #

quality

n+1

dsn+1

e
dsn+1

e

qc

n
qs

n+1>

qc

n+1
qs

n+1
:=

qc

n+1
qs

n+1
:=

qc

n
qs

n+1< qc

n
qs

n+1=

qc

n
qs

n+1=

decr flag ?

set decr flag = 0

set decr flag = 0

10

:=

set decr flag = 1

{ } and { }B(n) > c
^

h
P[B(n+1) < c] < e

^

l

buffer check

qc

n+1
qs

n+1
:=

no

set decr flag = 0

yes

qc

n+1

qc

n
qs

n+1

2
+ qc

n+1
qc

n
:=

qc

n-1
qc

n
{ , … , , }qc

1
+MPD

Figure 9: High-level sketch of the SQUAD algorithm. The
calculation block to get the sustainable quality is given in
Fig. 7. The buffer drain consideration in the decreasing
player state is given in Fig. 8.

P
[
B̂(n+ 1) < cl

]
≤ ε, (12)

we set the chosen quality for the next segment as the aver-
age qCn+1 := (qCn + qsn+1)/2 with qsn+1 calculated using the

percentile d̂ εsn+1,q
. Note that we do not perform this averag-

ing procedure more than once during one decreasing period,
since the idea here is to hold a moderate quality level as long
as the buffer filling permits. As described in Sect. 4.2.2, as
soon as the current buffer filling qCn falls below ch we set
the chose quality level as qCn+1 := qsn+1. This procedure is
depicted in Fig. 9.
Increasing: In the increasing state we observe that qsn+1 >
qCn through the use of the average download rate d̄sn+1,q .
The increasing state denotes that the player has room for
increasing the segment quality. In this case we set the chosen
quality as qCn+1 := qsn+1.
Steady: In the steady case we detect no change in the cal-
culated sustainable quality level with respect to the previ-
ously fetched segment, i.e., qsn+1 = qCn . In this case, we de-
cide to be cautious and recalculate qsn+1 using the percentile

d̂ εsn+1,q
. If qsn+1 stays unchanged then we set the quality as

qCn+1 := qsn+1 if we detect qsn+1 < qCn then we undergo the
same procedure as in the decreasing state.

5. EXPERIMENTAL EVALUATION
In the following, we conduct a number of experiments in

a controlled testbed, the GENI testbed, as well as in the
public Internet to evaluate the performance of SQUAD.

For all experiments we make use of an excerpt of the
BigBuckBunny dataset [18] that comprises a video that is
300 seconds long and an MPD that describes attributes of
the video. We extended the MPD file by providing the
size of each segment in each of the available quality lev-
els. The quality bitrates available in this MPD are the
following {0.09, 0.13, 0.18, 0.22, 0.26, 0.33, 0.59,

0.79, 1.03, 1.24, 1.54, 2.48, 3.52, 4.21} Mbps.
For better judgement of the performance of SQUAD we

Flow #M

Flow #1

Flow #2

server 1

..
.

..
.

server 2

server Mclient M

client 2

client 1

Figure 10: Butterfly evaluation topology.

compare its performance with the ones of three additional
algorithms, which we are denoted “VLC”, “SARA” and
“Buffer-based”. We briefly describe them in the following:
VLC: The first algorithm we decided to chose for compar-
ison is a basic quality adaptation algorithm from [21]. The
algorithm works as follows: The client takes a pair of infor-
mation into account when deciding on the quality of the next
segment to be fetched, i.e., (i) the current playout buffer
filling, and (ii) the empirical download rate of the previous
segment. If the current buffer filling is < 25% of the max-
imum buffer size then the client always fetches the lowest
quality. In case the buffer filling is > 25% the client greed-
ily downloads the next segment at the highest sustainable
quality. In case the buffer is full the client idles.
SARA: The second algorithm we use for comparison has
been proposed in [16] and coined segment aware rate adap-
tation (SARA). The algorithm predicts the time required for
fetching a segment based on its size and the available band-
width estimate through a weighted harmonic mean. Further,
SARA selects the bitrate depending on the current buffer
filling and drops to the lowest bitrate if the buffer filling
falls below a certain threshold. Note that the SARA imple-
mentation accompanying [16] uses non-persistent HTTP by
default.
SQUAD: Our proposed spectrum-based quality adaptation
algorithm is explained in detail in Sect. 4.
Buffer-based: This algorithm is denoted BBA-0 in [14] and
is implemented as part of the Python DASH client emula-
tor accompanying [16]. In a nutshell, the algorithm defines
a class of functions that map current buffer occupancy to
a quality bitrate (denoted rate map) to avoid unnecessary
rebuffering and maximize the average video rate. This algo-
rithm was part of a wide-scale Netflix experiment in [14].

5.1 GENI
The GENI (Global Environment for Networking Innova-

tion) testbed is a distributed virtual laboratory sponsored
by the U.S. National Science Foundation (NSF). It allows
researchers to obtain a virtualized and isolated slice of com-
pute, storage, and networking resources for the development
and validation of new approaches in networking and dis-
tributed systems [8, 9]. GENI allows the setup of larger and
potentially wide-area topologies.

For the evaluation in the GENI testbed we create a slice
that comprises a butterfly topology as shown in Fig. 10. In
the following experiments, we stream the DASH video from
server i to client i for i ∈ {1, 2, 3}. For the experiments with
one DASH flow we utilize server 1 and client 1 and for the
cross traffic flow we utilize server 2 and client 2. All links
possess a capacity of 10 Mbps.

We divide the GENI experiments into two categories: (i)
Single DASH algorithms vs. UDP cross traffic, (ii) concur-
rent DASH clients with no cross traffic. In the first set of

Algorithm
average quality bitrate [Mbps] # of quality switches spectrum H

VLC SARA SQUAD BBA VLC SARA SQUAD BBA VLC SARA SQUAD BBA

UDP-U 3.67 3.51 3.24 3.20 20 36 11 60 2277 3590 1031 6214
UDP-W 3.78 3.84 3.86 3.54 10 30 10 55 1216 3001 1053 6067

UDP-ONOFF 3.74 3.96 4.02 3.33 38 26 4 78 4691 2259 202 7652

Table 1: QoE metrics for the UDP experiments in Fig. 11 to 14. Higher average quality bitrate is better. Lower # of quality
switches and lower spectrum values are better.

experiments, i.e., in Fig. 11 to 14 we run (v) contiguous
UDP cross traffic of 8 Mbps for 2 minutes (available band-
width has U-shape), (vv) two-level UDP cross traffic of 8
and 5 Mbps (available bandwidth has W-shape) and (vvv)
alternating ON-OFF UDP cross traffic of 8 Mbps in the ON
state. Fig. 11 to 14 depict 5 minute sample runs for each of
the studied algorithms showing the following: 1) The empir-
ical segment download rate (denoted in figures as seg. DL
rate), 2) the quality bitrate (important QoE metric), 3) the
buffer filling over time, as well as, 4) instantaneous rate mea-
surements of the cross traffic (shown as crosses) and of the
DASH flow (shown as dots). In all following figures, the
y-axis denotes the rate in Mbps and for the buffer filling
curves it denotes the buffer length in segments. Note that
one segment is 2 seconds long in this dataset and that we set
the maximum buffer size to 30 seconds, i.e., 15 segments.

From Fig. 11 to 14 we deduce the following observations:
First, the VLC algorithm is highly aggressive in choosing
the quality bitrate which may substantially drain its play-
out buffer, enforcing it to significantly reduce the quality bi-
trate when the buffer reaches 25%. This leads to high quality
jump magnitudes which are detrimental to QoE. Secondly,
SARA introduces many oscillations of the fetched quality
bitrate around the available bandwidth which is harmful to
the QoE. On the contrary SQUAD performance is smooth:
With the latent fallback and the percentile, respectively, av-
erage rate estimation it holds the quality bitrate over tem-
porary available bandwidth fluctuation. The buffer-based
algorithm in Fig. 14 possesses many unnecessary quality
switches. The quantitative results of the average quality bi-
trate, the number of quality jumps, as well as, the spectrum
H are given in Tab. 1. These metrics show that SQUAD pro-
vides a significant QoE improvement as seen by the strong
reduction in the number of quality jumps [31] while sac-
rificing little or no average quality bitrate. SQUAD also
outperforms its competitors in minimizing the variation of
the quality bitrates (spectrum).

The second set of experiments shown in Fig. 15 to 17
depict the measurement results for 3 concurrent homoge-
neous clients without cross traffic. Fig. 18 shows measure-
ment results for 2 concurrent clients running the VLC and
SQUAD algorithms. Fig. 15 to 17 pictorially show that
clients running VLC or SQUAD fairly share the bottleneck
bandwidth. Concurrent SARA clients suffer from fairness
issues. This phenomenon can be directly explained know-
ing that SARA uses non-persistent HTTP by default. We
ran modified SARA measurements with persistent HTTP
connections, where the client suffered only from quality os-
cillations as shown in Fig. 11b. The comparison in Fig. 18
shows that VLC is more aggressive than SQUAD which uses
smooth rate estimates from Sect. 4.2. Observe that VLC

Algorithm
jump magni-
tude [Mbps]

of switches
quality
bitrate
[Mbps]

avg. CI avg. CI avg. CI

VLC 1.45 ± 0.05 34.9 ± 3.1 3.1 ±0.02
SARA 0.5 ± 0.04 67.6 ± 4.6 0.8 ± 0.03

SQUAD 0.58 ± 0.05 4.6 ± 0.5 2.3 ± 0.1

Table 2: QoE metrics for the streaming experiment US-
Germany. The table also includes 0.95-confidence intervals.

consistently overestimates the available bandwidth leading
to strong variations of the quality bitrate and quick buffer
depletion.

5.2 Internet
Besides evaluating SQUAD performance in controlled

testbeds, we are also interested in its performance in the
“wild”. We perform a series of experiments over the pub-
lic Internet, where we use a web server at a University in
Germany which hosts the DASH movie dataset described
in the beginning of the section. The client is located in a
residential home in the east coast region of the US and runs
the SQUAD algorithm amongst the other DASH algorithms
we described earlier in this section. Fig. 19 shows smooth
playback by SQUAD which selects the right quality bitrate.
Note that in this case a higher quality bitrate, that is chosen
by VLC, is unsustainable and leads to buffer depletion. VLC
overestimates the available bandwidth and suffers from se-
vere quality switches (see the average jump magnitude and
the number of quality switches in Tab. 1). The SARA algo-
rithm struggles due to non-persistence.1 Figure 19 clearly
demonstrates how SQUAD outperforms VLC and SARA in
a real-world environment.

6. RELATED WORK
Due to its popularity, DASH has been extensively studied

in recent publications. The related work for DASH can be
coarsly divided into two categories, i.e., (i) large-scale mea-
surement studies showing real-world streaming behavior of
DASH, and (ii) studies that propose new quality adaptation
mechanisms to improve the DASH streaming performance.
In the following, we review related work that is most rel-
evant for this paper and highlight the differences to SQUAD.

Adaptive Video Streaming Measurements: Large-
scale studies of DASH performance have been conducted
in commercial video streaming platforms such as Hulu,

1We include further measurement results, e.g., with modi-
fied SARA, into the technical report submitted as auxiliary
material.

0 50 100 150 200 250 300
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
cross traffic
DASH traffic

(a) VLC.

0 50 100 150 200 250 300
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
cross traffic
DASH traffic

(b) SARA.

0 50 100 150 200 250 300
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
cross traffic
DASH traffic

(c) SQUAD.

Figure 11: Quality bitrate with UDP-U cross traffic.

0 50 100 150 200 250 300
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
cross traffic
DASH traffic

(a) VLC.

0 50 100 150 200 250 300
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
cross traffic
DASH traffic

(b) SARA.

0 50 100 150 200 250 300
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
cross traffic
DASH traffic

(c) SQUAD.

Figure 12: Quality bitrate with UDP-W cross traffic.

0 50 100 150 200 250 300
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
cross traffic
DASH traffic

(a) VLC.

0 50 100 150 200 250 300
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
cross traffic
DASH traffic

(b) SARA.

0 50 100 150 200 250 300
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
cross traffic
DASH traffic

(c) SQUAD.

Figure 13: Quality bitrate with UDP ON-OFF cross traffic.

0 50 100 150 200 250 300
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
cross traffic
DASH traffic

(a) UDP-U.

0 50 100 150 200 250 300
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
cross traffic
DASH traffic

(b) UDP-W.

0 50 100 150 200 250 300
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
cross traffic
DASH traffic

(c) UDP ON-OFF.

Figure 14: Quality bitrate with Buffer-based [14] algorithm. (Implementation accompanying [16].)

0 50 100 150 200 250 300 350 400
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
DASH traffic

(a) Client1

0 50 100 150 200 250 300 350 400
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
DASH traffic

(b) Client2

0 50 100 150 200 250 300 350 400
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
DASH traffic

(c) Client3

Figure 15: Concurrent VLC clients. Clients start with 60 sec relative delay.

0 50 100 150 200 250 300 350 400
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
DASH traffic

(a) Client1

0 50 100 150 200 250 300 350 400
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
DASH traffic

(b) Client2

0 50 100 150 200 250 300 350 400
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
DASH traffic

(c) Client3

Figure 16: Concurrent SARA clients. Clients start with 60 sec relative delay.

0 50 100 150 200 250 300 350 400
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
DASH traffic

(a) Client1

0 50 100 150 200 250 300 350 400
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
DASH traffic

(b) Client2

0 50 100 150 200 250 300 350 400
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
DASH traffic

(c) Client3

Figure 17: Concurrent SQUAD clients. Clients start with 60 sec relative delay.

0 50 100 150 200 250 300
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
cross traffic
DASH traffic

(a) VLC

0 50 100 150 200 250 300
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
cross traffic
DASH traffic

(b) SQUAD

Figure 18: Concurrent clients, VLC vs. SQUAD. When the cross traffic is on, VLC overestimates the available bandwidth
leading to oscillations, buffer depletion and high quality jump magnitudes. SQUAD playback is smooth with little variations.

0 50 100 150 200 250 300
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
DASH traffic

(a) VLC

0 50 100 150 200 250 300
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
DASH traffic

(b) SARA

0 50 100 150 200 250 300
0

5

10

15

time [s]

ra
te

 [
M

bp
s]

 o
r

bu
ff

er
 s

iz
e

[s
eg

]

seg. DL rate
quality bitrate
buffer fill
DASH traffic

(c) SQUAD

Figure 19: Quality bitrate for streaming scenario: US-Germany.

Netflix and Vudu [13, 7, 14]. Similar measurement studies
also covered aspects of the transmission behavior of video
clients [6], DASH network traffic characteristics [23], and
DASH QoE [11, 22]. These large-scale measurement studies
point out some of the real-world difficulties that face ABR
streaming such as the high variability of the end-to-end
throughput, the inaccuracy of client based rate estimation,
as well as, rebuffering risk due to non-preemptive segment
download. These factors make a purely rate-base quality
adaptation approach highly volatile.

Rate Selection Policies: As the DASH standard does
not specify how to perform rate adaptation, many research
groups studied the impact of different rate adaptation algo-
rithms on DASH performance. The existing body of work
on DASH quality adaptation has two sources of information,
i.e., the buffer fill and the available bandwidth estimate.
Proposed algorithms usually use one of these two sources as
a main information source and the other one to cover corner
cases. The work in [14] uses measurements from a commer-
cial video streaming platform to assert that it is sufficient to
mainly use the client buffer fill level to determine the qual-
ity of the next segment to download. Here, the authors find
that it is important to obtain available bandwidth estimates
only during the startup phase.

The authors of [26] propose a traffic shaping mechanism
to alter the packet interarrival times, hence, improve the ac-
curacy of available bandwidth estimates by reducing traffic
burstiness. The work in [25] proposed a PID controller for
rate adaptation which takes the buffer filling into account to
refine the available bandwidth estimates. Similarly, the au-
thors of [10] propose a control theoretic approach to stabilize
the buffer filling at certain level.

Studies that investigate the impact of different segments
sizes and lengths include [5, 16]. In Sect. 5 we provided a
brief sketch of the SARA algorithm from [16], which takes
into account that segment sizes (in bytes) may differ widely
even within the same quality level.

Closest to our work are two existing approaches that take
QoE into account when performing DASH rate adaption.
The first approach, that is denoted PANDA (for probe-and-
adapt) [19, 20], presents a buffer filling based adaptation al-
gorithm that solves the quality selection optimization prob-
lem with respect to an α-fairness objective using a dynamic
programming approach. The authors use peak signal-to-
noise ratio (PSNR) to capture QoE. Our work differs from
this approach as we do not only aim to maximize the aver-
age quality but also minimize the number of quality changes.

We use the variation of the quality bitrates, denoted as spec-
trum, as a metric to capture QoE, since it is known, for
example from [31] that it is superior to PSNR.

The second approach that is closely related to ours is given
in [30], where the authors propose a QoE metric that is a
weighted combination of the average video quality, the av-
erage quality variation, the rebuffering time and the startup
delay. The authors formulate the rate selection problem as
a stochastic optimal control problem. Assuming stability of
network conditions on known finite time horizons, the pro-
posed algorithm uses a model predictive control approach to
optimize the QoE metric mentioned above. The algorithm
in [30] is based on an offline section, which does offline op-
timization (using CPLEX) for different scenarios, and an
online section, which comprises table lookups of precalcu-
lated solutions. A similar approach has been leveraged in
[29] which formulates the rate selection problem as a Markov
decision process and uses dynamic programming to find an
optimal solution. For these methods to find the optimal rate
selection policy, strong assumptions have to be made on the
statistics and predictability of the network conditions.

7. CONCLUSIONS
Motivated by critical observations of operation character-

istics of dynamic adaptive streaming over HTTP (DASH) we
provide in this paper a QoE tailored quality adaptation al-
gorithm denoted SQUAD. SQUAD takes multiple QoE met-
rics into account, i.e., the average quality bitrate and most
importantly its variation. A quick dissection of the DASH
control loop over TCP shows the discrepancy of the avail-
able bandwidth estimation time scale between the quality
adaptation and the underlying transport protocol. Bearing
this in mind we construct SQUAD such that it uses rate esti-
mates on the appropriate time scales. We test our Player im-
plementation against multiple quality adaptation algorithms
of different objectives in a controlled network environment,
as well as, in a cross-Atlantic streaming experiment. The ex-
periments show that by sacrificing little or no average quality
bitrate, SQUAD provides significantly better QoE in terms
of quality switching frequency and magnitude.

8. REFERENCES
[1] Adobe HTTP Dynamic Streaming. http://www.

adobe.com/products/hds-dynamic-streaming.html.
Accessed: 2015-12-09.

[2] Apple HTTP Live Streaming. https:
//developer.apple.com/resources/http-streaming/.
Accessed: 2015-11-09.

[3] Global Internet phenomena report 2h 2014.
https://www.sandvine.com/downloads/general/
global-internet-phenomena/2014/
2h-2014-global-internet-phenomena-report.pdf.
Accessed: March, 30, 2015.

[4] Microsoft Smooth Streaming. http://www.iis.net/
downloads/microsoft/smooth-streaming. Accessed:
2015-11-09.

[5] Optimal segment length for adaptive streaming
formats like MPEG-DASH & HLS.
http://www.dash-player.com/blog/2015/04/
using-the-optimal-segment-length-for-adaptive-
streaming-formats-like-mpeg-dash-hls/. Accessed:
2015-10-14.

[6] S. Akhshabi, L. Anantakrishnan, A. C. Begen, and
C. Dovrolis. What happens when HTTP adaptive
streaming players compete for bandwidth? In
Proceedings of NOSSDAV, pages 9–14, 2012.

[7] S. Akhshabi, A. C. Begen, and C. Dovrolis. An
experimental evaluation of rate-adaptation algorithms
in adaptive streaming over HTTP. In Proceedings of
MMSys, pages 157–168, 2011.

[8] M. Berman, J. S. Chase, L. Landweber, A. Nakao,
M. Ott, D. Raychaudhuri, R. Ricci, and I. Seskar.
Geni: A federated testbed for innovative network
experiments. Computer Networks, 61(0):5 – 23, 2014.
Special issue on Future Internet Testbeds – Part I.

[9] M. Berman, P. Demeester, J. W. Lee, K. Nagaraja,
M. Zink, D. Colle, D. K. Krishnappa,
D. Raychaudhuri, H. Schulzrinne, I. Seskar, and
S. Sharma. Future Internets escape the simulator.
Commun. ACM, 58(6):78–89, May 2015.

[10] L. De Cicco, S. Mascolo, and V. Palmisano. Feedback
control for adaptive live video streaming. In
Proceedings of MMSys, pages 145–156, 2011.

[11] F. Fund, C. Wang, Y. Liu, T. Korakis, M. Zink, and
S. Panwar. Performance of DASH and WebRTC video
services for mobile users. In IEEE Packet Video
Workshop (PV), pages 1–8, Dec 2013.

[12] G. Giambene. Queuing Theory and
Telecommunications: Networks and Applications.
Springer US, 2005.

[13] T.-Y. Huang, N. Handigol, B. Heller, N. McKeown,
and R. Johari. Confused, timid, and unstable: Picking
a video streaming rate is hard. In Proceedings of IMC,
pages 225–238, 2012.

[14] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell,
and M. Watson. A buffer-based approach to rate
adaptation: Evidence from a large video streaming
service. In Proceedings of ACM SIGCOMM, pages
187–198, 2014.

[15] M. Jain and C. Dovrolis. End-to-end available
bandwidth: Measurement methodology, dynamics,
and relation with TCP throughput. IEEE/ACM
Transactions on Networking, 11(4):537–549, Aug.
2003.

[16] P. Juluri, V. Tamarapalli, and D. Medhi. Sara:
Segment-aware rate adaptation algorithm for dynamic

adaptive streaming over HTTP. In IEEE ICC QoE-FI
Workshop, June 2015.

[17] S. S. Krishnan and R. K. Sitaraman. Video stream
quality impacts viewer behavior: Inferring causality
using quasi-experimental designs. In Proceedings of
IMC, pages 211–224, 2012.

[18] S. Lederer, C. Müller, and C. Timmerer. Dynamic
adaptive streaming over HTTP dataset. In Proceedings
of MMSys, pages 89–94, 2012.

[19] Z. Li, A. C. Begen, J. Gahm, Y. Shan, B. Osler, and
D. Oran. Streaming video over HTTP with consistent
quality. In Proceedings of MMSys, pages 248–258,
2014.

[20] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. Begen, and
D. Oran. Probe and adapt: Rate adaptation for HTTP
video streaming at scale. IEEE Journal on Selected
Areas in Communications, 32(4):719–733, April 2014.

[21] C. Müller and C. Timmerer. A VLC media player
plugin enabling dynamic adaptive streaming over
HTTP. In Proceedings of the ACM Conference on
Multimedia, pages 723–726, 2011.

[22] O. Oyman and S. Singh. Quality of experience for
HTTP adaptive streaming services. IEEE
Communications Magazine, 50(4):20–27, April 2012.

[23] A. Rao, A. Legout, Y.-s. Lim, D. Towsley, C. Barakat,
and W. Dabbous. Network characteristics of video
streaming traffic. In Proceedings of CoNEXT, pages
25:1–25:12, 2011.

[24] I. Sodagar. The MPEG-DASH standard for
multimedia streaming over the Internet. IEEE
MultiMedia, 18(4):62–67, April 2011.

[25] G. Tian and Y. Liu. Towards agile and smooth video
adaptation in dynamic HTTP streaming. In
Proceedings of CoNEXT, pages 109–120, 2012.

[26] B. Villa and P. Heegaard. Group based traffic shaping
for adaptive HTTP video streaming by segment
duration control. In Proceedings of AINA, pages
830–837, March 2013.

[27] B. White, J. Lepreau, L. Stoller, R. Ricci,
S. Guruprasad, M. Newbold, M. Hibler, C. Barb, and
A. Joglekar. An integrated experimental environment
for distributed systems and networks. In Proceedings
of OSDI, pages 255–270, Dec. 2002.

[28] J. Whiteaker, F. Schneider, and R. Teixeira.
Explaining packet delays under virtualization.
SIGCOMM Computer Communication Review,
41(1):38–44, Jan. 2011.

[29] S. Xiang, L. Cai, and J. Pan. Adaptive scalable video
streaming in wireless networks. In Proceedings of
MMSys, pages 167–172, 2012.

[30] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli. A
control-theoretic approach for dynamic adaptive video
streaming over HTTP. In Proceedings of ACM
SIGCOMM, pages 325–338, 2015.

[31] M. Zink, J. Schmitt, and R. Steinmetz. Layer-encoded
video in scalable adaptive streaming. IEEE
Transactions on Multimedia, 7(1):75–84, Feb 2005.

