
Hartmut Wittig, Lars C. Wolf, Carsten Vogt:

CPU Utilization of Multimedia Processes: The Heidelberq Predictor of Execution

Times (HeiPOET) Measurement Tool. In: 2nd International Workshop on
[WWV94] Advanced Teleservices and High-Speed Communication Architectures (IWACA),

Heidelberg, Germany, p. 92--103, Springer-Verlag, Sep tember 1994.

ftp://ftp.kom.e-technik.tu-darmstadt.de/pub/papers/ibm-enc/iwaca94-

heipoet.ps.az.

CPU Utilization of Multimedia Processes:
HeiPOET - The Heidelberg Predictor of Execution Times

Measurement Tool

Hartmut Wittig
Lars C. Wolf
Carsten Vogt

IBM European Networking Center, Vangerowstraße 18, D-69115 Heidelberg
Mail: { wittig, lwolf }@net.ibm.com, vogt@€h-koeln.de

Abstract: Due to the time characteristics of audio and video data, the processing
of multimedia applications has to be done using real-time mechanisms. Schedu-
ling algorithms used within such systems require information about the proces-
sing time requirements, the CPU utilization of the applications, to perform
schedulability tests. Since multimedia applications are often constmcted by
combining processing modules (often called stream handlers), processing time
determination for these modules is required. The multitude of these rnodules and
the large variety of computer systems calls for a measurement tool. In this paper
we define the term CPU utilization for multirnedia p r m i n g and describe the
CPU utilization measurement tool HeiPOET. The presented measurements show
that the tool provides measurement results with good accuracy.

1 Introduction

Multimedia applications have characteristic quality-of-service (QoS) requirements that
must be satisfied by the underlying computer System, i.e., its local atid its network
resources. The CPU, being the principal local resource to be managed, requires func-
tions for workioad policing, capacity reservation, and process scheduling to enable the
processing of real-time multimedia data. In general, application generated CPU work-
loads can be distinguished into the following service classes:

non real-time processes
control processes handling real-time and non-real-time tasks
real-time processes with soft deadlines
real-time processes with hard deadlines

The first class contains processes without deadlines, for example a compiler process.
Because these applications have no real-time requirements they may run with the low-
est priority among these classes. In most CPU reservation and scheduling schemes, at
least a small amount of CPU capacity will be reserved for such applications to avoid
starvation. This part of CPU capacity can be managed using classical strategies such as
round robin or multi-level feedback.

Control processes regulate tlie access to certaiii resources. For exainple, an impor-
taiit control process for the CPU is the scheduler. A coritrol process caii also be used to

reserve iietwork resources in the setup phase of inultiinedia communication. 0ii the
other band tlie saine control process can be iiivolved in the transmission of real-time
messages, e.g., acknowledgment messages to trigger retransmissions of lost or cor-
rupted data uiiits [6]. The coiitrol processes should be handled in a determiiustic man-
ner with high priority.

Real-time applications with hard deadlines (e.g., manufacturing control systems)
are processed in dedicated systems. For these systems exists a great variety of schedul-
ing and reservation mechanisms ([SI). Though it is difficult to integrate hard real-time
systems with multimedia applications, it can be done in principle ([13]).

Most multimedia processes can be considered as soft-real-time processes. If a data
unit is too late or lost, this is not necessarily noticed by the human viewer. To avoid
dismptions a characteristic quality of the media presentation is required. To describe
these processing requirements of multimedia applications, a characteristic QoS param-
eter Set must be defined. For example, the playback of a video stream requires a picture
loss rate below a certain percentage, and it is necessary that each logical data unit (e.g.,
video frame) is displayed at a certain poiiit in tiine. In a multimedia system resource
reservation mechaiusms arid QoS enforcement strategies are used to guarantee QoS
requirements of multirnedia applications. This paper focuses on multimedia applica-
tioiis which process continuous media with soft deadlines.

CPU scheduling of multimedia processes is based on the classical real-time sched-
uling algorithms, Rate Monotonic (RM) [l l] and Earliest Deadline First (EDF) [l l] .
RM scheduling is a static scheme which is defined in a context of tasks that require
periodic CPU processing. Therefore, RM scheduling is well-suited for applications
processing continuous media. According to their processing periods, processes have
different, fixed priorities. Processes with small periods are executed with the highest
priority. Low priorities are assigned to processes with large periods. At any time, the
dispatcher of the CPU chooses the highest-pnority process to run next. EDF schedul-
ing is a dynamic real-time scheduling algorithm. The task with the earliest deadline
has the highest priority. Because the tiining constraints of all processes change, the pri-
orities of tasks are dynamically adapted. To test whether a new task can be scheduled
usiiig RM or EDF schediiliiig, the following condition must be met:

Index i runs through set of all multimedia tasks, Ri denotes the maximum processing
rate of task i, Pi is the processing time per-period, and B is the schedulability bound.
For RM scheduliiig the schedulability bound is determined by B = ln(2) - 0.69. The
schedulability bouiid of EDF scheduling is B = 1.

Each multimedia application has to specify the workload it will generate. This
workload specification consists of the processiiig rate R and execution tirne per period
P. The resource inaiiagemeiit system performs tlie schedulability test to decide whether
this new applicatioii can be accepted. If enough CPU capacity is available to execute
the new applicatioii witlioiit dishirbiiig existiiig applications, tlie schedulability test
returiis successfully. As seeii froiii the above forinula, the processing tirne is an iinpor-
tant Parameter for tlie scliedulability test. However, the determination of tliese values is

still a largely unresolved issue in the area of CPU scheduling. The main problems inea-
suring CPU utilization of multimedia applications are:

Great variety of multimedia applications and interfaces
Exact definition of the term "CPU utilization" of multimedia applications
Handling of Variable-Bit-Rate Streams

This paper focuses on the problem of how to determine CPU utilization of multimedia
applications. The HeiPOET (Heidelberg Predictor of Exemtion Times) measurement
tool provides a computer-based prediction of CPU utilization and a refinement of mea-
sured values during the execution time of multimedia applications. The highlights of
the HeiPOET tool are:

Automation of CPU utilization measurements
Specification language for the description of various parameters
High precision of measurement results by eliminating operating system interrup-
tions
Computation of statistical metrics to check the reliability of ineasureinents
Re-usability of measurement results by storing measurements in a database

In the next section, we describe the model chosen for CPU utilization. Then design
principles of HeiPOET are explained. Measurements presented in Section 4 show the
validity of the architecture before we give our conclusions.

2 CPU Utilization of Multimedia Processes

In this section a definition of the term "CPU utilization" of multimedia processes and a
characterization of stream handlers as the heart of multimedia applications are given.

We define the CPU utilization of an application process as follows:

Tl= CPU utilization of an application process is tlte overall dirrntion in
which the CPU is occupied in order toperform this application task.

\ I
W

n Processing Time
-

lcPu - tcpu,..~uration of i-th processing cycle 2 lcp" ',PU.. Overall CPU utilization of the multimedia module i - 0
Fig. 1. Definition of CPU utilization

In Figure 1 it can be Seen that CPU utilization consists of two different Paris. In the
first place, it includes the pure application code execution time on the CPU. Addition-

ally, there are operating system activities to make the execution of multimedia applica-
tions possible, e.g., context switches, initialization and termination of 110 operations.
An example is a multimedia application which plays an MPEG video stream coming
from the hard disk. Most parts of the CPU are utilized for the Software decompression
algorithm, yet the read operation also needs CPU time, at least to Set up an asynchm-
nous disk 110 operation to read the multimedia data.

The operatirig system activities are characterized by the multimedia application
process model (see Figure 2) derived from the classical UNIX process model (121). To
determine the CPU utilization of a periodic multimedia application, three states are of
specific interest: the states "Running", "Asleep" and "Ready to Run". If a process is in
the state "Running" its machine code will be executed. The time an application is in
this state is the prominent part of its CPU utilization. The transitions between these
states represent the operating system activities which also require CPU capacity. Thus,
initialization, termination, context switch, wakeup and sleep operations (@B) are the
operating system parts in the definition of the CPU utilization of a multimedia applica-
tion. In the life cycle of process initialization (0) and termination (63) operations are
system activities which are performed only one time, namely at the beginning and the
end of the multimedia processing. Because the initialization and the termination of a
multimedia application are not time-critical, and periodic scheduling algorithms do not
consider aperiodic parts in the schedulability test. Iii the context of this Paper, these
operations are of no interest for the measurement of CPU utilization.

Fig.

The CPU utilization of an application is not fixed. Tlie following formulae gives an
abstract description of factors which influence the CPU utilization:

t„ = f(Sys, In , Dyn)

CPU utilization depends on the type and performance of the CPU in a computer sys-
tem (parametersys). The greater the performance the lower is the CPU utilization of a
specific multimedia application. It also depends on the kind of data flowiiig iiito the
multimedia application, e.g., control information like the pichire rate of an MPEG
stream, or the compressed data stream containing the MPEG video (parameter In). A
third iiiflueiice to the CPU utilization are dynamic properties of tlie operating system,
e.g., the sclieduliiig algorithm and liming (parameter Dyn). For example, using pre-
emptive scheduliiig algorithms causes more context switches than non-preempiive
scheduliiig algoritliins.

Ofteii inultimedia systeins are structured iii inodules, objects or devices (e.g.,

[9],[3],[1],[14]). Each module is responsible for a logical operation on the continuous-
media stream, e.g., read operation from a multimedia file System, mixing of audio and
video streams. These modules are called stream handlers (SH) (e.g., [9],[14]). In gen-
eral, an S H is a software entity processing continuous-media data streams. The general
structure of an S H is shown in Figure 3.

Endpoint I1

Endpoint I,
Endpoint O1

Fig. 3. Structure of SHs

An S H consists of a body and at least one endpoint. The S H body includes data struc-
tures for control information and the executable code. SHs transfer multimedia data
via endpointsl. Data flows unidirectional between SHs. Endpoints for sendiiig data are
called output endpoints, endpoints for receiving data are input endpoints.

A multimedia application can be modelled as an acyclic directed graph of SHs
beginning with source SHs and ending with sink SHs. The S H graph is constructed at
the application start-up time and can also be changed dynamically at application run
time.

The CPU utilization of a multimedia application consisting of SHs is the sum of the
CPU utilization of each S H in the S H graph. Hence, for the CPU utilization measure-
ment the application can be divided into its basic Parts, the SHs, which are then mea-
sured individually. The advantage of this approach is its modularity, which reduces the
measurement effort. SHs are well structured and easy to handle for measurements.
Measuring the CPU utilization based on SHs allows to handle dynamic changes in the
multimedia application. E.g., if a new SH is added to the existing graph at application
run time, the CPU utilization of the new S H can obviously be added to the CPU utili-
zation of the S H graph.

3 Design Principles and Architecture

HeiPOET is a measurement tool for CPU utilization of multimedia SHs. The architec-
ture of HeiPOET is based on related work in the field of measuring response times in
hard real-time systems (see [7,8, 10]), however, since response time is not of primary
interest for multimedia applications, the results of this work from hard real-time sys-
tems is not usable in multimedia systems. The design of the HeiPOET measurement
tool is shown in Figure 4.

1. An exception are source and sink SI-1s: the source SI1 receives data from device
drivers and the sink SH sends data to device drivers.

Specification U
S H W - I Compiler I

CPU Utilization

HeiPOET-Database

Fig. 4. Design of the HeiPOET measurement tool

I HeiPOET is structured in10 three major Parts:

SH specification language and compiler: A language describes a set of S H initial-
ization values to measure the S H under various input parameters and conditions.
All control attributes of SHs can be modified using this specification language.
Thereby, the SHs can be adjusted on the fly and CPU utilization can be measured
using various Parameter settings of the SH. A description of the SH specification
language is given in Appendix A.
Measurement stream handlers: Specific SHs to send/receive test data tolfrom the
stream handler under test (SHUT) are called measurement stream handlers
(MSH). They are used to form the environment in which the SHUT is embedded
in the measurement phase. Because of the variety of SHUT the MSHs must be
flexible. According to the elemeiits in the specification language the SHUTs, the
iiiput MSH and tlie output MSH are adjusted. Major parameters to be adapted are
the number of input aiid output eridpoints of the SHUT, the iiurnber of iiicoiniiig
aiid outgoirig packets of each eiidpoiiit per processing period, aiid the size of
iiicoming packets.
Aiialyzer: The aiialyzer reads the recorded measurements, analyzes tlie ineasure-

ments, computes statistical metrics, and stores the results in the HeiPOET data-
base.

The HeiPOET tool works as follows: HeiPOET reads a SH specification file con-
taining the description of a set of SH initialization values (see Appendix B). The
MSHs and the SHUT are initialized with the first set of specified initialization values.
The sequence of operations in the HeiPOET measurement phase is shown in Figure 5.

Input MSH SHUT Output MSH

Fig. 5. HeiPOET measurement phase

Depending on the actual scenario, the input MSH sends a data frame to the SHUT.
When the control flow changes from the MSH to the SHUT, a timestamp is recorded
using a system trace mechanism (@), and the machine code of the SHUT is executed.
When the SHUT finishes the processing for the current data packet (i.e., the processed
packet is sent to the other MSH), a second timestamp is saved (@). The output MSH
receives the data and the control flow immediately returns to the SHUT. This is the
beginning of the next SHUT activation, a new timestamp is recorded (@). After send-
ing data packets throu h other endpoints to the output MSH and saving the timestamps 8 of these operations (4,@) the control flow returns from the SHUT to the input MSH
(G). The duration between the timestamps @ and @ is a complete processing period
of the SHUT. The SHUT is in the state "Running" between timestamps @ - 0, @ - @,
and @ - @. This time can directly be added to'the CPU utilization of the SHUT.

Interrupts and other system operations (e.g. sleeping, paging, swapping) in the exe-
cution phase of the SHUT are also recorded by the trace facility (the whole kerne1 of
the used AZX" operating system is instrumented with calls to trace functions).
Thereby, it is possible to detect, to measure, and to subtract all interruptions occurring
during the measurement phase of the SHUT (e.g., by higher priority processes or inter-
rupt handling routines). This technique guarantees measurement results with high
accuracy. Analyzing the resulting trace with the saved timestamps, HeiPOET can com-
Pute the CPU utilization of the SHUT. To increase the precision of the measurement,
the measurements are repeated for each Set of SHUT parameters for a certain number
of times. Statistical metrics, such as mean CPU utilization, standard deviation, and the
0.95 confidence interval, are computed to get information about the reliability of the
CPU utilization measurements.

These steps are repeated until the CPU utilization for each set of parameters in the
SH specification file has been measured. All results are saved in the HeiPOET data-
base.

Sirice the CPU utilization of a SH depeiids on the performance of a computer, it is
necessary to measure the CPU utilization on each computer system. E.g., the measure-

ments can be done at SH installation time and when the system configuration changes.
As part of the workload specification of an applications SH graph, the CPU utilization
values of the SHs are retrieved from the HeiPOET database.

4 Measurement Results

Using an implementation based on the described architecture, measurements have
been performed to validate the HeiPOET approach.

The first measurement object is a multicast SH. Multicast SHs can be used in mul-
timedia conferencing Systems to copy one incoming stream to many partners. A multi-
Cast SH has one input endpoint and many output endpoints. The number of output
endpoiiits can dynamically be changed, e.g., if partners join or leave a multimedia con-
ference. The first measurement is based on a multicast SH with two output endpoints.
In one processiiig period, the multicast SH duplicates a packet (10 KByte) coming
from the input MSH and forwards them through two output endpoints to the output
MSH. The CPU utilization measured with the HeiPOET too12 is shown in Figure 6.

Fig. 6. CPU utilization of a multicast SH with two endpoints

The diagram on the lefi side shows the measurement series. Though the test machine
was heavily loaded, it can be Seen that the CPU utilization is approximately constant.
The diagram on the right side of Figure 6 gives statistical metrics to quantify the confi-
dence of the measured results. The mean CPU utilization of the multicast SH is 3 1 0 ~ .
The standard deviation in the measurement series is 3ps, this means less than one per-
Cent of the mean CPU utilization. The 0.95 confidence interval is [301ps, 3 1 6 ~ ~ 1 .

Additional measurements on various Computer models are presented in Table 1.
These measurements are based on a mixer SH which mixes two incoming streams and
produces oiie outgoiiig stream (e.g., to mix digital audio streams coming from micro-
phones). It caii be Seen from Table 1 that the standard deviation is very small.

2. The measurements were performed on an IBM RlSC System/6000 Model 530"
running AIX 3; the system was used by other tasks and users during the rneasurement.

In all cases the standard deviation has never exceeded three percent of the mean
CPU utilization. It can be resumed that the HeiPOET tool works with a very high pre-
cision. In practice, HeiPOET is sufficient to measure the CPU utilization of SHs.

Tabelle 1: CPU utilization of a mixer SH

Finally, a multicast S H has been measured with a varying number of output endpoints.
Using the S H specification language measurements are performed with a number from
two to ten output endpoints (see Appendix B for the SH specification file). Figure 7
shows the results. Each point in the diagram represents 1000 single measurements. It
can be seen that there is a linear relation between the number of output endpoints and
the CPU utilization of the multicast SH. Because of the complexity O(n) of the multi-
Cast operation (where n is the number of output endpoints), these measurements can be
taken as an additional proof for the correct work of the HeiPOET tool.

Computer
(RISC SystemJ6000)

Model 360

Model 340

Model 530

5 Conclusions

mean CPU utilization

[msl

8.0

12.2

16.1

Sm. (m.)

HeiPOET was developed to solve the problem of CPU utilization measurement of
multimedia applications. Based on the CPU scheduling algorithms and the SH model,
the architecture of HeiPOET was designed. Using the SH specification language,
HeiPOET is suitaMe to measure SHs with various numbers of inputand output end-
points. The modular SH model is used to split a multiinedia application into single
stream handlers, measure CPU utilization of each SH, aiid combiiie these measuremeiit
results to the overall CPU utilization of the multimedia application. The measurements

standard deviation

[msl

0.02

0.04

0.03

I .m

I .QI

am

0.a

0.4.2

0.20

BH IIdpm

Fig. 7. Multicast SH with two to ten endpoints

twmuloi
m a -

n ~ - d o u o o h .

,.-'

2

.,,.
,,-

.I'

0 . m - - -

4

.,-'

,
,,'

,,,-

U B ~ 0 -

have shown that the HeiPOET tool is able to produce results with sufficient precision;
mean CPU utilization aiid other statistical metrics show the trustworthiness of the mea-
surements. These values are stored in the HeiPOET database, and can be used by CPU
resource managers to test the schedulability o f the multimedia tasks.

Further measurement will focus o n SHs processing variable bit rate streams, like
MPEG encoding and decoding SHs.

References

[I] M. Altenhofen, J. Ditirich, R. Hammerschmidt, T. Käppner, C. Kruschel, A. Kückes, T.
Steinig: The BERKOM Multimedia Collaboration Service. Proceedings of the ACM
Multimedia '93 Conference, Anaheim, 1993.

[2] M J. Bach: The Design of the UNIX Operating System. Englewood Cliffs N.J., Prentice
Hall, 1986.

[3] G. Blair, G. Coulson, P. Auzimour, L. Hazard, F. Horn, J.B. Stefani: An Integrated Plat-
form und Computational M o k l for Open Disfributed Multimedia Applicatiom. Pro-
ceedings 3rd International Workshop on Network and Operating System Support for
Digital Audio and Video, San Diego, 1992.

[4] N. Chomsky, Syntactic Structures. Den Haag, Mouton, 1957.

[5] C.S. Cheng, J.A. Stankovic, K. Ramamritham, "Scheduling Algorithms for Hard Real-
Time Systems: A Brief Survey", IEEE Tutorial on Hard Real-Time Systems, Washington
D.C., Computer Society Press of the IEEE, S. 150-174,1988.

[6] L. Delgrossi, C. Halstrick, R.G. Herrtwich, F. Hoffmann, J. Sandvoss, B. Twachtmann:
Reliabiiity Issues in Multimedia Transpori. Proceedings of the Second Workshop on
High Performance Communication Subsystems (HPCS '93), Williamsburg, Sept. 1993.

[7j D. Ferrari, G. Serazzi, A. Zeigner: Measurement und Tuning of Computer Systems.
Englewood Clifk N.J.. Preniice Hall, 1983.

[SI P. Gopinath, T.Bihari, R. Gupta: Compiler Support for Object Oriented Real-Time Sop-
Ware. IEEE Software, Vol. 9, No. 5, September 1992.

[9] R.G. Herrtwich: Timed Data Streams in Continuous Media Sysfzms. TR-90-026, Interna-
tional Computer Science Institute Berkeley, May 1990.

[10] KIB. Kenny, K.J. Lin: Measuring und Analyzing Real-lime Performance. IEEE Soft-
ware, Vol. 8, No. 5. September 1991.

[ll] C.L. Liu, J.W. Layland: Scheduling Algorithms for Multiprogramming in a Hard Real-
Time Environment. Journal of ACM. Vol. 20, No. 1, January 1973.

[12] S. Shenker, D.D. Clark, L.Zhang: A Scheduling Service Model und a Scheduling Archi-
tecfure for an Integrafed Services Packet Network. Internet Draft, 1993.

[13] L. Wolf, R.G. Herrhvich: The System Architecture of the Heidelberg Tramporf System.
ACM Operating Systems Review, Vo1.28, No. 2, April 1994.

Appendix A:
Syntax of the SHUT Specification Language

The Syntax of the SHUT specification language can be described with a context-free
grammar Gconsisting of set of terminal syrnbols T, non-terminal symhols N, transfor-
mation d e s R and a starting symbol s 141:

G = (T , N , R , s)

The SHUT specification language follows this grammar:
T = { IN, OUT, ATTRIBUTES, ENDPOINT, LOOP , ; , , , = , T0 , STEP

SUB ,0..9 , a-z . A-Z)
N = { SHWT-specification,

identification, input-descriptor, oulput-dwcriptor, attribure-descriptor.
SHUT-name, SHUT-type, endpoints, endpoind-.
attribute-list, simple-list, attributes, attributs, attnbutetype,
simple-type, enumeration-type, loop-type, comment }

s = SHiJT-specification

The rules R of the SHUT specification language are described in Backus-Naur form:
<SHUT-specification> ::=

<identifiation> <input-dexriptor> <output-desaiptor> <attribute-desaiptori
<identification> ::=

IDENT <SM-name> <SM-type>
<input-desaiptor> ::=

IN <endpoints>
<output-descripton ::=

OUT <endpoints>
cattribute-descriptor> ::=

ATTRIBUTES <attribute-list>
<SHUT-name> ::=

NAME = <string> ;
<SHUT-type> ::=

TYP = (SYNC I ASYNC <integer>) ;
<endpoints> ::=

e 1 Cendpoinh <endpoint-M>;
<endpointea> ::=

ENDPOINT <integer> = <integer>;
<attribute-list> ::=

<simple-list> 1 ettribute-lish <simple-list>)
<simple-list> ::=

e (LOOP { <attributes> }
<attributes> ::=

attribute I anributes anribute
<attribute> ::=

<integen SUB <integen = <attribute-type> ;
<attribute-type> ::=

<simple-type> I <enumeration-type> I <loop-type>
<simple-type> ::=

<integer> I <string>
<enumeration-type> ::=

<simple-type> (<enumeration-type> , <simple-type>
<loop-type> ::=

<integer> TO <integer> STEP <integer>

Comments are allowed to be inserted everywhere in10 the SHUT specification .
<comment> ::=

(# <string> \n) 1 (# <string> #)

Appendix B:
SHUT Specification of a Multicast Stream Handler

An example of a SHUT specification file of a multicast stream handler (MSH) is pre-
sented.

I N

ENDPOINT 1 = 1 # one incorning packet per processing period
for input endpoint 1 #

OUT

ENDPOINT 1 = 1 # one outgoing packet per processing period
for output endpoint 1 #

ENDPOINT 2 = 1 # one outgoing packet per processing period
for output endpoint 2 # . . .

ENDPOINT 10 = 1# one outgoing packet per processing period
for output endpoint 10 #

ATTRIBUTES

LOOP

1002 SUB 1 = 2 M 10 STEP 1
attribute 1002 of the MSH specifies the number

of M S H output endpoints (2 .. 10) #
1024 SUB 0 = 10

attribute 1024 of the MSH specifies the size
of incoming packets #

In the MSH specification there are three different descriptors: data input, data output,
and attribute descriptor.

The input characteristics of the MSH are described in the input descriptor. The
input descriptor contains the number of incoming packets in one processing period of
the MSH.

The output descriptor specifies the number of outgoing packets in one processing
period of the MSH. According to the multicast tree of the multimedia application, the
number of output endpoints varies. It is specified that there is one outgoing packet per
output endpoint in one processing period of the MSH.

One of the main goals of the HeiPOET tool is the automation of the CPU utiliza-
tion measurement of stream handlers with varying Parameters. In the attribute descrip-
tor various Parameter settings of the MSH can be described using the loop type (see
Appendix A). The loop type in the example specifies that the CPU utilization must be
measured for an MSH with 2 to 10 output endpoints. The size of the incoming data
packets is 10 KByte.

