
wo981 L. Wo% Chapter 1234 Resource Management in Multimedia Systems; Handbook
of Multimedia Computing, CRC Press, Boca Ration FL., USA, 1998

To appear in
Borko Furht (Ed.): "Handbook of Multimedia Computing", CRC Press, Boca Raton, FL, USA, 1998

Chapter 1234

RESOURCE MANAGEMENT IN
MULTIMEDIA SYSTEMS

Lars C. Wolf

Darmstadt University of Technology
Dept. of Electrical Engineering & Information Technology

Industrial Process und System Communications
Merckstl: 25 0-64283 Darmstadt Germany

Abstract: Multimedia systems must be able to Support a certain Quality of Service (QoS) to
satisfy the stringent real-time performance requirements of their applications. Resource man-
agement systems contain mechanisms to administer and schedule System resources to give
time-critical multimedia applications access to all necessary resources when needed so that
their QoS requirements can be met. Static resource management systems use and extend tech-
niques developed in thc field of real-time systems. They perform QoS calculation and
resource reservation based on the requirement specifications given by applications during
their setup, and schedule the resources in such a way that processing deadlines are met. While
this approach can offer strong guarantees for the application's performance, it has the draw-
back that it is difficult to deterinine the amount of resources needed in advance and that it can-
not easily cope with a change in the set of running applications during the run-time of an
application. Dynamic schemes, also called adaptive resource management, extend the static
approach by methods for resource usage monitoring and renegotiation. They gain more flexi-
bility in exchange to the firmness of the reachable QoS. In this chapter we describe the pur-
pose of resource management systems and give an overview about the principles.

1. INTRODUCTION

Multimedia applications integrating audio and video data into distributed computer
systems have become possible due to the advances in computer and communication technol-
ogy such as increased processing speed, network bandwidth, and Storage size.

In comparison to media traditionally handled in Computers, e.g., text and graphics,
audio and video have different characteristics. Humans perceive audio and video as continu-
ously changing, therefore, they are also called continuous media, this contrasts with discrete
media such as text and graphics. Since audiovisual information is time critical, the processing
requirements of such continuous-media data are different from discrete-media data because
the volue of the applications processing depends not only on the accurateness of the computa-
tions but also on the time when this proccssing has finished. In addition to the time criticality,
the processing demands of digital audio and video data are typically large. The treatment and
finally the display of audiovisual data must be done with a certain quality in order to provide
for a satisfying overall presentation.

Chapter 1234

An application must operate with a certain Quality of Service (QoS) to fulfill its task.
The required QoS depends o n various issues, for example, the used rnedia (video, audio, etc.),
the coding format used to encode the data, the application and the type of the application. For
instance, the QoS of a video conference is different from that of a video retrieval application,
since the dialogue-mode communication of a conference requires a short delay which is not as
important for playback applications.

Processing within multimedia systems is performed in various layers: in application-
layer code, in the operating system, in the communication system, etc. And each of these lay-
ers can be constructed by layering. In each of these several layers, a different notion of QoS
exists, e.g., QoS at the application layer is usually described at a higher level than QoS at the
network layer of a communication system and different terms are used. However, the QoS
parameters, bandwidth, delay, and loss are used in all layers, sometimes in conjunction with
other parameters. The applications specify their requirements in higher-layer QoS terms,
these are potentially translated in several steps towards more systein-oriented parameters,
which are used to control the system parameters.

A resource management system (e.g., [17]) provides the means to offer QoS to multi-
media applications, e.g., so that the participants in a video conference do not experience large
delays or low video frame rates during their interaction. These mechanisms administer and
schedule system resources to give time-critical multimedia applications access to all neces-
sary resources when needed so that their QoS requirements can be met. These mechanisms
must address the following issues:

QoS calculation - to check whether the QoS demands of an application can be satisfied.
Resource reservation - to reserve an amount of resources according to the given QoS guar-
antee.
Resource scheduling - to enforce that the given QoS guarantees are satisfied by appropri-
ate scheduling of resource access.

In addition to such static functionality, adaptive resource management systems (such
as, e.g., [7]) offer also mechanisms which help the applications to adapt their behavior and
their resource demands in case the available resource capacity changes or the reserved
resources are insufficient. The former case can occur if the User decides to execute an addi-
tional application, the latter case can be due to an incorrect specification of resource require-
ments. We will discuss adaptive resource management in Section 5.

Multimedia applications have to deal with the processing of time-critical, large vol-
ume, audiovisual data on one hand, and on the other hand they have to provide a nice looking,
easy to use interface to the User. To ease the task of application programmers, the processinp
of the continuous-media streams can be encapsulated in specific software modules, as has
been proposed by several research groups (e.g., [5] , [6]). This allows for code reuse and sim-
plified application development. Examples for such building blocks are modules for decom-
pression, for mixing streams, etc. An application specifies which modules arc needed and how
they have to be connected, forming a directed (not necessarily linear) graph of modules. As an
example, Figure 1 shows an application consisting of three modules. If such an approach is
used, the resource management must be devised for such a module-bascd system.

Figure 1 : Application containing three modules

RESOURCE MANAGEMENT IN MULTJMEDIA SYSTEMS

2. RESOURCES AND RESOURCE MANAGEMENT

2.1 RESOURCES

Resources are all the entities which participate in the overall task of the application,
i.e., all parts which are required for processing, for transmitting, and for presenting the data.
This comprises resources on the path from source(s) via networks including routers and
switches to sink(s), both in the local systems and the network.

Resources can be classified whether they are (1) active or passive, e.g., CPU vs.
memory, (2) exclusive or shared by several processes at a time, and (3) single or multiple,
e.g., how many instance of a resourcc are available in the system.

Each resource has a certain capacity which can be used by applications to perform
their task. The capacity of a resource is administered by the resource management system.

A resource management system manages all the resources which are critical for the
execution of the continuous-media data processing of an application, e.g., CPU time, network
bandwidth, and memory. This comprises all resources which are involved in the overall task
of the application, i.e., those used by the application for local processing, those to move the
data to or from the transport system interface and those needed by the transport system to
transfer the messages across the network (illustrated in Figure 2). This, therefore, includes all
the limited system resources through which a media stream passes which are

bus (resp. switch) bandwidth, e.g., for the movement of data from memory to network
adapter,
110 devices, e.g., special (de-)compression boards,
external Storage, e.g., hard disks, with file systems,
network adapters and network resources to transfer packets from one node to another,
processors to execute application and system software,
main mernory to hold the application and system Code and buffer spacc for the data.

sending receiving
application local resources application

t r

network resources

Figure 2: Resources to be managed.

Most work deals with the management of the processors, the network resoiirces, and
the file systems, only few work has been done on the management of the bus bandwidth.
Within this chapter we will illustrate general methods of resource management and discuss
mechanisms for processors and the main memory as examples for resource managers which
administer a particular resource.

4 Chapter 1234

2.2 RESOURCE CAPACITY

To deliver a particular level of QoS to an application, the system must posscss
resource capacities which are at least as large as the requireinents. In addition to the overall
available capacity, these resources miist be scheduled in such a way that they are available for
the application when needed. Many of today's communication and computer systems offer
sufficient resources to handle some continuous-media streams, but the quantity and quality of
such streams is still limited since the resources are limited. The "window of scarcity" postu-
lated by Anderson et al. in [I] illustrates this (Figure 3 shows an adapted version).

requirements

insufficient
high-quality resources scarce resources
video

low-quality
video

low-quality
audio hardware

resources
) in year X

1990 1995 2000

undant
iources

Fig~ire 3: "Window of Scarcity" (adapted from [I]) .

The available resources are insiificient to provide acceptable service at a specific
time and for certain application types (left side Figure 3). Due to ongoing improvements in
technology, system resources become sufficient for new applications, however, the available
resources are scarce, i.e., they must be administrated and scheduled carefully to offer ~ h e
desired QoS (middle part of Figure 3). After further tcchnology advances, resources are abun-
dant with respect to a particular application, i.e., the service can be offered without specific
management mechanisms (right side of Figure 3).

Depending on the particular notion of 'quality', the number of concurrent users and
the number of concurrent continuous-media streams of one user, ihe areas are reached at a dif-
ferent point in time. Nevertheless, at least in the near future, distributed computer systems will
have only sufficient but scarce system resources available for, e.g., the processing of multiple
continuous-media streams. Due to increased user expectations, e.g., larger video frame sizes,
etc., it takes more time until the region of abundant resources is reached, if ever. Furthermore,
also in the future, when large system resources might be available for processing and trans-
mitting of data, a time-critical application must be 'shielded' against non-real-time and other
real-time applications so that they cannot inhibit its real-time processing. And for shared sys-
tems offering services to several users simultaneously, e.g., video-on-demand Servers, means
to manage the available system resources are needed in future as well because providers of
such systems Want as efficient resource use as possible, i.e., to serve as many clients using as
few systems as possible.

The mechanisms for QoS calculation, resource reservation and scheduling rely on
the knowledge of the amount of resources required for ihe execution of a particular multime-
dia application. Therefore, methods to determine the resource requirements are needed to suc-
cessfully apply the resource management mechanisms mentioned above. Because resource
requirements depend on the particular computer system and its configuration, the techniques
to find out the resource demands of an application must allow for flexible and automatic mea-

RESOURCE MANAGEMENT IN MULTIMEDIA SYSTEMS

surements, e.g., at installation time or even at run-time but without delaying the application
start-up which would be annoying to rnost Users. If the application has been constructed using
a rnodule-based system as rnentioned above, its resource requirernents consist of the require-
rnents of each single rnodule. These dernands must be collected and cornbined by according
mechanisrns.

2.3 RESOURCE MANAGEMENT FUNCTIONALITY

A rnultirnedia application which desires to get Support from the resource manage-
rnent system specifies the overall QoS dernands it has which in turn results in requirements on
the various resources. The resource rnanagement system, for instance HeiRAT (Heidelberg
Resource Administration Technique) [15], [16], checks whether this additional workload can
be handled and what kind of service it can offer. Furthermore, it reserves the required
resources and schedules incorning processing requests accordingly. After the handling of the
workload has ended, the reserved resources are released. Hence, it offers the following func-
tionality for both active and passive resources:

Adnzission test: When a new rnultimedia strearn shall be established, it is checked whether
enough free resource capacity is available to handle it. This decision is influenced by the
QoS guarantees already given to other strearns; with static resource rnanagement these
guarantees must not be violated by adding the new stream.
QoS calculation: Every resource computes the QoS it can provide for the new strearn.
Reso~lrce reservation: The resource capacity is reserved that is required to provide the
QoS guarantee.
Resource sched~rling: Resource access is coordinated so that the respective QoS guaran-
tees of all strearns are satisfied.
Resource deallocation: The reserved resources are released.

phase
/

* rejection

I
phase 2: \ I

, \
' data arrival ' QoS cnforceineiit

on strearns ,, \ ' - - --_ - _ by resource scheduling

\

phase 3:

* - - - - - - - - - - - - -
\ !' rnonitoring and

adaptation notification ,'
renegotiation\ - - - - - - - - - - - - - -

\ '
\

time

Figure 4: Resource management phascs.

Chapter 1234

As illustrated in Figure 4, these functions can be grouped into three phases. The first
three functions belong to the Set-up or QoS negotiation phase. In that phase, applications
specify their QoS requirements which are used for the admission test (e.g., the schedulability
test for the CPU) and the QoS calculation. This results either in a resource reservation or in
the rejection of the request in case that the QoS cannot be met. The second phase is the trans-
mission or QoS enforcement phase. In this phase, after the successful establishment of a
stream, the resources are scheduled with respect to the given QoS guarantees. The usage of
the resources is monitored and, if necessary, the necessity to change the behavior is indicated
to the applications. In order to perform these last two steps, functions are necessary during the
processing of a stream for

Resource rnonitoring: observe the resource usage of the applications, and monitor the
overall load put onto the resource;
Adaptation: inform applications that their resource usage must change and that they
should renegotiate their resource reservations.

These functions are especially needed if an adaptive resource management system is
used. Finally, in the deallocation phase, the reserved resources are released.

In the Set-up phase, resource management Systems typically offer several options by
which applications can specify their QoS requirements. For instance, QoS values can be given
in terms of maximum end-to-end delay, minimum throughput needed, and reliability class
defining how the loss of data shall be treated. An application can select one of the QoS param-
eters for optimization by specifying an interval from desired to worst-acceptahle values. For
example, a video application might request a throughput between 15 and 30 video frames per
second, indicating that video quality would not be acceptable with less than 15 frames, but
that more than 30 frames are never needed. The resource manapement system will then return
the best QoS it can guarantee within this interval and make the corresponding reservation. If
even the lower bound cannot be supported, the request is rejected in a static resource manage-
ment system. In an adaptive system, the rcsource management may ask already running appli-
cations to reduce their resource requirements and reservations to provide sufficient spare
capacity to serve this additional, new application.

In the transmission phase, data are processcd and transmitted according to their
urgency. Schedulers handle time-critical multimedia streams prior to time-independent data.
They exploit properties of the underlying resources, for example, they are based on the operat-
ing system priority scheme for CPU scheduling or the MAC priority scheme of the network.

In the deallocation phase, after the transmission has finished, the allocated resources
such as CPU or buffer space must be released. This can be initiated by the application which
perforrned the reservation or by the system, e.g., due to a system failure or a permanent mis-
rnatch between negotiated and delivered QoS or resource usage.

The reservation can be made in different ways. One possibility is to distinguish
between a pessimistic and an optimistic manner. With the pessimistic approach, the resourcc
capacities are reserved for the worst case, i.e., the maximum demand a stream may have dur-
ing its lifetime. The advantage of this scheme is that it avoids conflicts and offers determinis-
tic guarantees. However, reserving extensive amounts of capacities for such peak
requirements can be rather costly and leads to the underutilization of resources if there is a
significant difference between peak and average data rate of a stream. A cheaper alternative is
followed by the optimistic approach where resources are reserved on average workload, i.e.,
they can be slightly overbooked. This implies that while QoS requirements will be met most
of the time, occasional QoS violations may occur. Applications which perform optimistic res-
ervations must be aware of temporary resource conflicts, hence, they must be ready to cope
with them. This can, therefore, already be considered as a (simple) adaptive scheme.

RESOURCE MANAGEMENT IN MULTIMEDIA SYSTEMS

2.4 RESOURCE RESERVATION PROTOCOLS

In distributed multimedia Systems, continuous-media streams are transmitted across
a multi-hop network. On their way they are handled by multiple system resources. To obtain
an end-to-end QoS guarantee, from source to destination, reservations on all the individual
resources handling the stream must be made and the according guarantees must be aggre-
gated. This requires a resolirce reservation protocol such as RSVP [3] to exchange and nego-
tiate QoS requirements across system boundaries. The fact that the network is one of the
resources to be managed makes it necessary to integrate the resource reservation protocol with
the network layer of the transport system; higher layers have no information about the differ-
ent resources in the network.

Source Intermediate Node

eservation
m Protocol

\ /

Destination

Local

m
U
0

(local
processin

eservation
Protocol

Figure 5: Distributed resource reservation.

Depending on the reservation protocol, the reservation can be made in a receiver- or
a sender-oriented way. In both cases, several entities participate in the end-to-end QoS negoti-
ation: sending and receiving applications, agents executing the resource reservation protocol,
and local resource managers (Figure 5).

Applications specify their QoS requirements which are possibly mapped by the
transport layer on a QoS request in terms of network layer units due to packet segmentation.
This request becomes part of a reservation message. Each local resource manager on the path
receiving the message checks whether its available resource capacities can serve this request
and reserve the resource capacities needed.

2.5 RESOURCE MANAGEMENT SYSTEM STRUCTURE

The resource management contains components used in the enforcement phase, i.e.,
to schedule the acccss to the system resources and to monitor their usage, and modules needed
in the negotiation phase, i.e., to perform the throughput test, the QoS computation, and thc
resource reservation. To be able to perform the scheduling, the enforcement components must
be located near to the affected resources. The components used during the negotiation must be
structured in such a way that the data structures of the resource management System are pro-
tected all of the time. To avoid any inconsistencies due to malfunctioning prograrns, the
resource management system must be structured as a daemon which offers the management
functions via an IPC interface.

Chapier 1234

Using IPC mechanisms which can handle rernote IPC as well, clients may also reserve
resources at a non-local resource management agent, either for all resources or for specified
resources only while other resources are reserved at the local agent. It can be useful to reserve
all resources of one kind at one agent because this leads to better system knowledge and there-
fore to better resource allocation decisions. For instance, Systems on a shared medium net-
work such as Token Ring can use their local agent to reserve the local resources (CPU and
memory) but reserve network bandwidth for the Token Ring only at one central agent which
leads to global knowledge at that agent. Drawbacks of this centralized approach are that it is
not scalable and that it represents a single point of failure.

I Applications I
I System Resource Manager I

I Resource I I Resource I ... Resource I Manager I 1 Manager I I Manager 1

Resour
I N - - - -

Scheduler /'W
Figure 6: Resource Manager.

The overall resource management consists of a 'System Resource Manager' which
controls the single 'Resource Managers' for the various resources within the particular system
(Figure 6). It contains algorithms for admission control and policy control - to ensure that suf-
ficient resources are available to handle the data stream and that the particular data stream
(and the User associated with this) is permitted to use the resources, respectively. Each
resource manager keeps information about the characteristics of the resource and its actual
reservations. The scheduler selects which packet gets access to the resource. The monitor
observes the resource usage by the applications and the overall load of the resource.

At least parts of a resource manager are either directly located inside the operating
system or interact tightly with it . For instance, the CPU resource manager cooperates closely
with the CPU scheduler of the operating system, e.g., by using the real-time priorities the lat-
ter may offer.

3. PROCESSOR MANAGEMENT

To ensure that applications are indeed served with the promised QoS, it must be con-
trolled which work item is processed by a certain resource at a given time. Otherwise it cannot
be guaranteed that deadlines can be met. Using resource management techniques, scheduling
mechanisms are applied which ensure that an application task gets access to the resource
when needed. In case that not all applications can be served, decisions based on importance or
criticality are inade.

RESOURCE MANAGEMENT IN MULTIMEDIA SYSTEMS

3.1 REQUIREMENTS

The processing of audio and video data is usually performed in a periodical manner
due to the periodicity of these continuous-media data. These operations must be finished
within certain deadlines to serve the real-time characteristics of these media. Sometimes, mul-
timedia systems for single-user (and especially for single-tasking) machines providc only
simple mechanisms to provide time-based operations, e.g., for delaying program execution,
but no real-time support. For these systems, it is often argued that this is sufficient since the
CPU is used mostly for the multimedia application during its run time and if the user has
another time-consuming application running, it is easy for the User to abandon that applica-
tion. This approach is not satisfying even for single-user systems and falls short for multi-user
and server systems such as video-on-demand servers. For such systems, the assumption that
bothering applications can simply be stopped is already not valid. Other user applications can
disturb multimedia applications in such a way that the QoS falls below an acceptable level.

Real-time CPU scheduling techniques which serve multimedia application process-
ing with respect to their time-criticality provide a solution to these problems. However, the
purpose of multimedia systems is the integration of continuous-media und discrete-media
data into Computer systems, hence, multimedia applications rely as much on the processing of
media like text and graphics as on that of audio and video. Thus, operations on continuous-
media data should not lead to a starvation of the processing of discrete media. Neither should
priority inversion occur, i.e., where the handling of discrete-media data disturbs the process-
ing of continuous-media data (in a more general way: a low-priority application should not
block a high-priority task).

If the real-time processing is achieved by the usage of preferred operating system
priorities, an incorrect implemented application may use 100% of the CPU and stop the sys-
tem from doing anything else. To avoid this, commercial workstation operating systems
which offer such priorities do not allow arbitrary users to run their applications with such a
priority. Instead, only a privileged system administrator is able to use them. In order to give
users the ability to execute continuous-media applications with appropriate processor schedul-
ing, specific real-time scheduling and monitoring servers can be implemented which control
the usage of these priorities by performing admission control, perhaps policy control, and by
checking that no process uses (substantially) more CPU than it has reserved.

Traditional real-time methods used in command and control systems in areas such as
factory automation, plant and aircraft control, etc. have often stringent demands, e.g., that
deadlines are met and that fault tolerante and security are ensured. For most multimedia sys-
tems (unless they are used in similar mission-critical scenarios), the requirements towards
these issues are less critical. For instance, for many multimedia applications it is not a severe
failure to miss a deadline as long as it does occur often. Therefore, multimedia systems are
often considered as soft real time.

3.2 COMMON METHODS

The processor scheduling mechanisms used for multimedia systems are often similar
to the methods derived within the real-time systems field, perhaps modified to provide for
adaptive behavior. Especially the well-known rate monotonic (RM) and earliest deadlinejrst
(EDF) algorithms [I I] are often used to schedule the processing of periodic, continuous-
media data.

EDF scheduling assumes each task to have a deadline at which its processing must
be finished. Thc task with the earliest deadline among the waiting tasks is executed first. RM
scheduling is defined in the context of tasks that require CPU processing periodically. Here,
the task with the highest rate (i.e. the smallest period) is given the highest priority.

RM is an optimal static technique. As a static scheme, it assigns the priorities to each
task of the considercd task set once at the begin of the processing of the set respectively at the

10 Chapter 1234

application establishment time. Priorities are not changed dynamically during application life-
time but only wlien the task Set changes, e.g., due to a newly arriving application with its asso-
ciated task(s). RM is optimal in the sense that if a task set can be scheduled by any static
algorithm, it can also be scheduled by RM.

EDF is an optimal, dynamic scheme. Dynamic means that it schedules every instance
of each incoming task independently according to its demands. Hence, the processing order
between the various tasks may change permanently during the lifetime of the tasks. If a sched-
uler, which follows the EDF scheme, is implemented by mapping deadlines on operating sys-
tem priorities, the task priorities may be rearranged frequently; inducing some additional load
into the System. EDF is optimal in that sense that if a set of tasks can be scheduled by any pri-
ority assignment scheme, it can also be scheduled by EDF.

For both schemes exist a simple schedulability test which decides whether a set of
tasks can be scheduled, i.e., whether the processing of these tasks can always finish within the
deadlines. As has been shown in the classical work from Liu and Layland [I I], a new task can
be accepted (i.e., no overload condition occurs) if the following inequality holds:

In this inequality, the index i runs through the task set {T,, . . ., T,) containing all
existing real-time tasks and also the new task. R; denotes the rate of task i, P; its processing
time per period, and U,, is a non-negative real number representing a schedulability bound.
The meaning is that if the sum on the left hand side, i.e., the load generated by all real-time
tasks, does not cxceed U„, the processing of all instances of all tasks is guaranteed to termi-
nate within their respective deadlines I/Ri. If the sum is greater, this may still be the case, but
no guarantees can be given with this test.

For EDF scheduling, the limit for U,, is I, i.e., as long as the total workload is less
than the overall capacity of the processor, i t can be guaranteed that all deadlines will be met.
For RM scheduling, the limit for U,, for any task set (with arbitrary rates) is

I / n U,, = n (2 - 1)

which approaches ln(2) (z 0.69). It should be noticed here that the schedulability
boundary U for RM scheduling can be relaxed in certain cases. If the periods of the tasks have
a certain ratio, U can be larger than ln(2): E.g., if the periods are (integer) multiples of the
smallest period in the task set, then U = I can be chosen. Also, i t has been shown in [91 that
the maximum CPU load which can be accepted for RM scheduling is in the average case nota-
bly larger than In(2).

However, the restriction of the maximum CPU utilization U for multimedia process-
ing scheduled by the RM algorithm to a value smaller than 1 is not such a strong limitation as
it might seem. It is a lirnit for the real-time task set only and not for the total CPU utilization
(as the surn of real-time and non-real-time processing). And in most cases, some CPU capac-
ity has to be left for tasks performing other than multimedia related processing anyway, e.g.,
for control operations, to avoid starvation of such non-real-time tasks. Thus, in general, also
for EDF it is advisable to restrict the utilization U to values smaller than 1 in order to provide
some residual CPU capacity to other non-multimedia tasks.

3.3 LIMITATIONS AND EXTENSIONS

The discussion above assumed that the processing of the tasks can be preempted, i.e.,
that the currently executed task is suspended i f a task with higher priority becomes 'ready to
run'. Nowadays, for most operating Systems this assumption is true for processor scheduling.
This is, however, not always the case for the scheduling of other resources, e.g., network

RESOURCE MANAGEMENT I N MULTIMEDIA SYSTEMS

access, because there the processing cannot be suspended for a while and resumed later with-
out changing the semantics of the operation. A non-preemptive scheduling algorithm can be
used in such a case, e.g., as discussed in [14]. But, unfortunately, the achieved processor utili-
zation is much lower i n comparison to a preemptive scheme.

The rates R; and the processing time requirements Pi are needed for the schedulabil-
ity test. While the rates can be usually derived directly from the properties of the application,
the processing times have to be measured. For a module-based application, the processing
requirements can be determined for any single software module and these values can be gath-
ered and combined to calculate the overall P; value [17]. For applications which are not built
in this way, the processing times can be measured by executing the application several times
with varying input data. The measurement of these processing times is not trivial because they
depend, e.g., on the used hardware platform, the installed system software, and the input data
- additionally, they are influenced by other concurrently executing applications. Moreover,
these times can vary significantly, e.g., consider the processing requirements for an MPEG
compression which encodes an I-frame in period k followed by an B-frame in period k + l
where significant time is needed for the determination of motion vectors.

Algorithms such as RM need the time requirements Pi for the worst case to ensure
the schedulability. If the average execution time is significantly lower than the worst-case
time, the resulting CPU utilization is low. Furthermore, as said above, it is difficult to deter-
mine the processing times in general and the maximum of that in particular. Hence, it might
happen that more time is needed than specified. To handle such situations, extensions to this
algorithm have been developed. One approach is the division of the overall task into a manda-
tory part and an optional part [12]. After the processing of the mandatory part has been fin-
ished, an acceptable result has been gained which can be refined by processing the optional
part. The mandatory part can be scheduled by RM, various policies can be applied to the
scheduling of the optional part.

Real-time systems which contain not only periodic but also aperiodic tasks must be
able to schedule both types of tasks. One approach is to apply a spomdic server Tor the pro-
cessing of aperiodic requests. This server has a budget of computation time which is refreshed
a specified time after it has been exhausted. This budget is used to process aperiodic requests
with a certain, specified priority; if the budget is exhausted, the processing is done with a
background priority.

Nevertheless, the rate-monotonic algorithm is often used for the scheduling of multi-
media applications because it is a simple method, it avoids large administrative overheads,
and it provides a controlled system behavior in case of (unforeseen) overload, the tasks with
higher rates will be served first. Additionally, if rates are mapped to operating system priori-
ties, a classification method can be introduced which distinguishes the tasks not only with
respect to their rates but also among a further 'importance' scheme. Tasks which perform res-
ervations based on worst-case assumptions (needing deterministic guarantees) get a higher
priority than tasks with weaker reservations followed by non-time-critical tasks.

3.4 TASK DEPENDENCIES

It occurs often that a task which finishes its periodic processing of time-critical data
gives its results to another task to perform further operations on these data or that the task uses
the services provided by another task during its own processing of the data. This second task
can be an application specific task, e.g., the total application has been split into Parts, or a sys-
tem provided task. Problems can occur if no coordination among the priorities of the partici-
pating tasks is done, e.g., if the follow-on task is executed without an according priority, the
real-time characteristics of the first task are discarded. Such a situation can occur especially
within microkernel systems, but also with other systems, where much of the processing is per-
formed in user-level server tasks (e.g., a server to process incoming network packets).

Chapter 1234

One example is the X Windows System - here, the X server task displays the images
which it receives from a video playback application to present them to the user. Even if shared
memory between server and client is used, a non-real-time X server can introduce deadline
violations, especially, if i t is single threaded and several requests from other applications have
to be executed as well. For simple scenarios, tests showed that just increasing the priority of
the X server slightly (e.g., via UNIX 'nice' mechanism) can be sufficient. A better solution
would be the provision of a real-time X server which allows the specification of processing
requirements for requests.

For the problem of displaying video data via the X server, a special solution can be
devised. I.e., a mechanism which allows a User program to bypass the X server by writing
directly to a specific area on the screen (the display adapter memory). This could be imple-
mented in a way that the window manager allows the user program to write to the particular
memory area where its window is mapped by attaching the memory to the program's address
space via a special system call, other memory areas may still be protected. Any change in the
visibility, size, or location of the window is known inside the window manager which can
change or withdraw the memory from the program's address space accordingly.

A more general approach is the 'transfer' of a CPU reservation and the according pri-
ority to the server process as suggested in [13].

4. MEMORY MANAGEMENT

Memory has always been a scarce resource. Virtual memory mechanisms (swapping
and paging) have been applied successfully to give applications the illusion that they are
working in a world not constrained by memory sizes. These mechanisms swap parts of the
data (which has not been used for a while) from main memory to an external storage device,
typically a disk. Into this empty area other data, which has been requested by an application,
is swapped in from the external storage. If the data which has been swapped out is needed
again, the application which tried to access that data generates a 'page fault' and this data is
swapped in again. Nowadays, not only applications but also parts of the operating system ker-
nel can be swapped. Swapping operations take some time, depending on the used disks, inter-
faces, etc.; yet, this is acceptable for non-time-critical applications - their run time is
increased but their semantics are not changed.

Within multimedia systems, as in other systems as well, main memory is needed for
several purposes:

to store the code of the applications and the system components such as the operating sys-
tem kernel,
to store data structures used to hold, e.g., the state of this software,
to store the data on which the processing is done, e.g., a video frame.

In opposite to non-time-critical applications, swapping operations should not be
applied to memory areas used by continuous-media applications. If a Page fault occurs (due to
an application accessing a swapped out data area) it takes too much time to transfer this data
from an external storage device such as a disk to main memory. Furthennore, such delays
introduce large variations into the processing times of applications which must be avoided as
well. To avoid swapping operations on memory areas touched by the processing of continu-
ous-media data, these data areas can be locken or pinned into memory. A problem is that the
amount of memory which must be pinned can be quite large because not only the application
code performing, say, the video decompression, but the functions used by it inside libraries.
operating system kernel, etc. - everything which is used by that code - must be pinned as
well. This is not always possible and has also the drawback that pinning large memory areas

RESOURCE MANAGEMENT IN MULTIMEDIA SYSTEMS

reduces overall system performance. Further, it is also contrary to the trend in workstation
operating systems to provide for the swapping of kernel code.

Continuous-media data has typically large space requirements which also implies
large data movement costs. Therefore, it is important to handle continuous-media data care-
fully and avoid unnecessary physical data movements. Similar to protocol processing, where
headers are prepended by the scnder to the actual data before transmission which are removed
by the receiver, multimedia systems require operations for concatenation and segmentation of
data, etc. To handle the data efficiently, without copy operations, buffer management schemes
can be applied which use, e.g., scatterlgather techniques.

Such approaches have been developed already over a couple of years as Support
infrastructure for the implementation of communication systems. Examples are the mecha-
nisms used in the X-kerne1 and mbuf scheme used in BSD UNIX operating systems. The latter
is widely used in kernel space protocol implementations. Messages are stored in one or multi-
ple chained mbufs. Each mbuf consists of offset fields, pointers, and a small data area internal
to the mbuf. To store larger messages, a memory block of fixed size can be attached to the
mbuf. Additionally, mbufs can be chained together using another pointer. This way, headers
can be prepended to data without copying the data.

These management schemes have been designed for kernel level implementations
only. This means that data must be copied between kernel and User level to exchange the data
with applications. Alternatively, the memory areas holding the data areas may be remapped by
virtual memory operations, e.g., from the kernel into the applications address space. Another
issue is that such systems do not provide for the reservation of buffer space areas for certain
streams but serve all requests (non-real-time and real-time) from the same pool.

In traditional, discrete-media data processing applications, the application executes a
system call to read data, the kernel performs the actual steps to get the data from the device,
and copies (or remaps) the data to the application's address space; then the application oper-
ates on the data, and finally writes it via the kernel (potentially copying the data again) to the
output device. This structure applies for many multimedia applications which perform opera-
tions on the continuous-media data as well. However, for several multimedia systems, espe-
cially for video Servers, there are no data manipulation operations or other 'application' steps
perforrned on the audiovisual information. Instead of this, a more simplified model applies
where the application reads the data from one device, e.g., disk, and writes it to another
device, e.g., the network, without performing any modifications to the data - the application
adds no value. The performance of this continuous-media data stream and the system as a
whole is degraded due to the necessary context switches and the (potentially) needed copy
operations. Future systems will improve this by offering a different 'streaming mode', several
approaches have been suggested by researchers, See e.g., [4].

Hereby, the data Hows directly from the source device to the sink device in an appli-
cation specified manner. This can be achieved in two different ways. One approach is that new
system calls (r e a d - s t r e a m , w r i t e - s t r e a m) are used which read the data from a
device into a kernel buffer (and leave the data inside the kernel) and write it from that buffer to
a device respectively, the application is responsible for the timing of these V 0 operations. The
other approaeh, 'kernel streaming', is to create a new kernel thread per stream which perforrns
the read and write operations; the application specifies the timing of the stream and the thread
ensures that this is met. The role of the application is mainly to control the thread. Figure 7
illustrates the different styles.

Chapter 1234

Traditional Application Streaming Application

Device Inde endent Device lnde endent
Abstraction Layer(s) Abstraction Layer(s)

Device Driver Device Driver Device Driver Device Driver

Kernel-Streaming Applica tion-Streaming

Create
Stream - - - - - - - - - +

Device Independent
(V . -Abstraction Layer(s) ,+

red - - - +
IDevice Driver 1 Kerne1 I Device Driver 1

A +
I D e d I D C ~

Figure 7: Data movement styles.

Write
Stream

L
U

5. ADAPTIVE RESOURCE MANAGEMENT

- - - - - - - -
al C C
E Device Independent
Y" I . phstraction Layer(s) ,+ +

Device Driver Device Driver
A +

Read
Stream

Static resource managernent can provide reliable QoS in principle, i.e., it ensures that
all resource requirements of multimedia applications can be met. For this, information about
the resource demands of applications must be available and these requirements must bc rela-
tively constant. These two conditions can be satisfied for certain application classes, for
instance, for most video server architectures.

However, for several (endsystern) multimedia applications these dernands are not
known or they do not have this characteristic but require a varying amount of resources over
time. For exarnple, a video playback application which perforrns Software decompression of
the audiovisual data needs a varying number of CPU cycles over time, e.g., to decode the var-
ious types of MPEG frames and also due to scene changes.

With static resource management, a change in the set of running applications is only
possible if the total amount of required resources is less than the overall available capacities.
Hence, if the spare capacity is less than needed for an additional application, it can only be
started if another application is terminated. Yet, several scenarios exist in which a user would
like to start an additional application and keep all others running, perhaps with reduced qual-
ity. For instance, a User watches some news stories and receives a videophone call; she would
like to keep the news stories running (probably with a reduced video size and without audio)
and talk to the caller. Yet, the system resources are not sufficient to serve all these applications
with unchanged quality (e.g., there might be enough spare resources to serve the videophone
application with low quality). With static resource managernent the User may stop the news
story or accept the videophone connection with low quality - which is different or even oppo-
site to the intention of the user (low quality news, high quality videophone) because the video-
phone will receive most attention.

RESOURCE MANAGEMENT IN MULTIMEDIA SYSTEMS

Finally, distributed multimedia applications use several resources, e.g., CPU, mem-
ory and network. As we have seen in Section 3.4, to resolve access interdependencies among
them, the scheduling of these resources must be coordinated in order to achieve an overall sat-
isfying presentation quality. If this is not always possible, the result is a temporary unavail-
ability of required resources which potentially leads to a missed deadline.

Adaptive resource management address' these issues. The goals of adaptive resource
management systems are, e.g.,

Support of variable-bit rate streams which have dynamically varying resource require-
ments,
adaptation to changes in the set of applications to be served,
allowin; for a dynamic change in the relative priority of applications,
serving more applications concurrently as is possible with hard (worst-case assumptions)
based QoS provisioning,
handling of changes in resource availability.

As a drawback, due to the adaptation mechanisms, adaptive resource management
system are usually not able to provide guaranteed, constant QOS'. They typically assume that
multimedia applications are soft real-time and are tolerant to graceful adaptations, which is in
difference to traditional hard real-time applications. This assumption is usually acceptable for
desktop multimedia applications. However, for some recording and production scenarios and
special applications, used in, e.g., telesurgery or other mission-critical scenarios, this is, of
course, not the case.

While multimedia applications executing under a static resource management system
may assume that their resource requirements will be fulfilled all of the time and that they
always have access to the resources when needed, this is not the case with adaptive resource
management systems. Here, applications must be prepared that the amount of resources avail-
able for them varies over time, due to

changes in the size and mixture of the application set,
modifications in the priority among applications,
varying resource requirements because of inexact resource specifications.

To limit the changes in accessible resource capacities, the adaptive resource manage-
ment system can provide applications with the ability to specify their requirements as a range
[min. max], i.e., the minimum amount of resources needed for proper operation is rnin.

The basic scheme applied by adaptive resource management systems involves the
system resolrrce rrianager and resource monitor components and the applications (as illus-
trated in Figure 8).

The resource monitor is a part of the resource manager for a particular resource. It
observes the resource usage of applications and the overall load of the considered
resource. It delivers according state informations to the system resource manager.
The system resource manager gathers the state informations from the resource monitors.
This component is also responsible for the negotiations with the application (at the begin-
ning and during run-time for renegotiations), thus it has information about the QoS
requirements and resource demands of all applications. Based on this information about
system state and application characteristics, it can decide which application should adapt
its resource usage and to what extent.

1. Of course, mixtures of hoth approaches are possible. e.g.. serving only some applications
based on worst-case assumplions. The ability to reach the described goals are reduced in [hat
case nevertheless.

16 Chapter 1234

The applications receive adaptation notifications from the system resource manager. Based
on that, they decide how they change their behavior to adapt their resource demands.
Additionally, they monitor the QoS they can achieve, if this becomes too low or too high,
they start a QoS (and hence resource requirements) renegotiation with the system resource
manager.

Instead of choosing just one application for adaptation, the system resource manager
can balance the need for adaptation over several or even all applications. This way, it can pro-
vide for fairness among the applications or it can ensure that applications which are critical
for the whole system or important for the User are preferred, i.e., they do not have to reduce
their resource requirements. In collaboration with the applications and their QoS require-
inents, the system resource manager can also perform a balancing among various resources,
e.g., trading network bandwidth vs. CPU.

Resource Usage lndication
QoS renegotiation request (system initiated)
QoS renegotiation request (application initiated)

Figure 8: Basic adaptation scheme.

Adaptations do not always have to be towards lower resource usage. For instance, if
an application finishes, the resources used by it so far are deallocated. Hence, they become
available for other applications, either for the running applications which can then execute
with better quality or for new applications which will be started in future. To support the
former case, the system resource manager can perform a QoS renegotiation with the applica-
tions (indicating the amount of resources available for them). Again, the adaptations can be
balanced, to increase the quality of all applications or only a subset.

Various architectures have been designed for adaptive resource management. One
example is AQUA (Adaptive Quality of service Architecture) [8].

A cooperative model of resource management is applied by AQUA where the appli-
cation and the resource management cooperate to manage the resources. For CPU scheduling,
AQUA uses a 'rate-based adjustable priority' policy. This extension of the simple rate-mono-
tonic scheduling method, accounts for unknown and varying compute times and global adap-
tation across many applications. An application which Starts its operations gives only a partial
specification of its resource requirements. For example, the application specifies the execution
rate but not the compute requirements. The resource manager allocates resources for this
application based on an estimate of the available capacity. A regulator ensures that a task does
not execute more often than specified by that initial rate.

R E S O U R C E M A N A G E M E N T IN MULTIMEDIA S Y S T E M S

During the execution of the application, the application estimates its resource
requirements and the QoS it receives. The resource management pcrforms similar operations,
monitoring is performed inside the system (by the scheduler) to detect the resource usage.
Based on the gained information about resource usage, the resource management potentially
requests a reduction of the execution rate from the application. Changes in the measured QoS
occur if the requirements of the application vary or if the resource availability alters. Then
renegotiations are performed between the application and the resource management; further,
according adaptations in the processing steps performed by the application are made to ensure
that a predictable service is provided.

6. FURTHER ISSUES

6.1 RESOURCE ACCOUNTING

Knowledge about resource usage is necessary for several issues. It is required for the
admission control, for instance, for the rate-monotonic schedulability test the processing
times and rates are needed. And it is needed to 'charge' the user for its consumption of
resources. Additionally, having exact information about current resource usage with fine gran-
ularity allows for better resource allocation and also scheduling decisions (mostly with adap-
tive schemes) and enables the resource management to detect miss behaving applications.
(i.e., which use much more resources than originally specified).

The determination of the requirements used for admission control can be performed
in advance, i.e., before the application is actually executed. Yet, the measurements must be
done on the system which will execute the application because the demands depend on several
issues such as hardware platform and operating system version. Such estimations may be per-
formed in an installation phase of the application. Nevertheless, bounding the application
requirements to a fixed measurement phase on each single Computer complicates the system
administration in large environments where many Computers share applications stored on cen-
tral file Servers.

To charge the user for resource consumption and especially to use resource usage
information for allocation, scheduling, and policing decisions, on-line measurements must be
made during the applications run-time. Since such a measurement influences the performance
of the system permanently, it must be possible with very low overhead. On the other hand, the
yielded values must also be of fine granularity. Current operating Systems do not provide suf-
ficient support for this purpose. At best it is possible to see when a particular task starten and
when it stopped its execution in a period (often with coarse granularity in the order of several
milliseconds only) but not how long it used the resource. These values can be quite different
because other tasks or system activities might have been executing in the meantime.

This could be simplified if the operating system would provide appropriate and better
support mechanisms. One relatively simple and cheap approach is to introduce a task state
variable D; which contains the run-time of the task i . It can be implemented in the following
way:

A system-wide variable E holds the time stamp of the last context switch or interrupt.
As part of the creation of a new task j the variable Dj is set to 0.
If the operating system dispatcher deactivates a task k and activates a task 1, thus, while
performing a context switch, the time elapsed since the last interrupt respectively context
switch is added to Dk and E i s set to current-time:

Dk t Dk + (current-time - E)

E t current-time

Chapter 1234

While such a method can help to determine the processing time requirements of
tasks and to check whether they stay (reasonable) within their specifications, it does not pro-
vide support to accumulate the resource amount used in Summary for a particular application.
For this, the resource usage of server tasks which are executing on behalf of this application
must also be taken into account (See also Section 3.4 where we noticed already that such a
system structure leads to difficulties due to task dependencies).

Suppori for the processing of time-critical multimedia applications in an existing
operating system is often restricted by the basic design and structure of that system. While
enhancements can be made, there are often limitations which cannot be relieved without
major changes in the base system. A more radical but also more general approach is to
develop a new operating system where support for continuous-media data is incorporated in
the design from the beginning.

6.2 RESOURCE MANAGEMENT IN FUTURE OPERATING SYSTEMS

With todays operating systems, resource management for multimedia processing is
mostly an add-on feature but not fully integrated. Therefore, several limitations exist with
respect to the ability to handle concurrently several high-performance, high-quality continu-
ous-media streams.

Future operating systems, where the requirements of multimedia applications are
taken into consideration already from the very beginning of the design, may offer enhanced
capabilities. With them, more efficient resource management support and, hence, simpler and
better handling of continuous-media data can be provided. And less limitations will exist for
the distributed multimedia systems based on them.

Such operating Systems and the according resource management mechanisms within
them will offer the ability to perform exact accounting of resource consumption, avoid depen-
dencies among tasks, and will be able to circumvent the interference between multimedia
applications.

Nemesis [I01 is an operating system which has been designed to support distributed
multimedia applications. Nemesis takes a revolutionary approach of starting the operating
system design from scratch and to not just make incremental changes. It offers facilities for
the dynamic allocation of resources to applications, it ensures that resource consumption is
accounted to the correct application, and it allows that applications avoid the use of shared
server tasks - as much processing as possible is done within the application itself, whereby
protection among appplications and security is nevertheless be given.

6.3 RESERVATION IN ADVANCE

For several application Scenarios, the model of 'immediate reservations' applied so
far is not fully appropriate. As in our daily lives, it must be possible to perform a reservation
in advance to ensure that our application can be executed with sufficient QoS. If there is a
noticeable blocking probability for immediate reservations, it must be possible to reservations
for in advance for a specified Start time and duration. This means that Resource Reservation in
Advance (ReRA) [I 81 mechanisms are needed, but by now, only preliminary results are avail-
able on this topic. There are subtle problems to be solved, besides a more complex resource
management, some of the problems occurring in ReRA systems are state maintenance and
failure handling.

ReRA must be performed on an end-to-end basis. Appropriate resource requirement
information must be exchanged in advance among the participating systems by extending the
FlowSpecifications distributed via the reservation protocols. The resource managcmcnt on
each node needs extended admission control tests which check whether the required resources
can be provided during the requested time interval. And the data structures tised to store the
reservation information must contain time values (bcgin and duration of a reservation).

RESOURCE MANAGEMENT IN MULTIMEDIA SYSTEMS

The state associated with an advance reservation must be kept on all the participating
systems for a potentially long time. It must either be stored in non-volatile memory to survive
system failures and regular shutdowns, e.g., due to system maintenance, or a soft-state
approach must be used where the reservation is refreshed from time-to-time: the closer the
actual usage time Comes the higher the frequency of the refresh messages. The handling of
failures which occur between the reservation setup and its use must differ from the steps taken
to resolve errors of running applications. The reason is that the application which had lost its
reservation is not running. So, it is not immediately clear which entity is to be notified and by
which means. Further, potentially the failure situation can be cleared already before the
resources are needed.

7. SUMMARY

Multimedia applications need the integrated treatment of continuous-media and dis-
crete-media data in distributed computer systems. The handling of continuous-media data
such as audio and video places requirements on the multimedia computing and communica-
tion infrastructure which are uncommon for workstations and most other computer systems.
To deal with the timing demands of these applications, new mechanisms must be used.

Resource management has the goal to provide reliable QoS to distributed multimedia
applications. It uses admission control and scheduling mechanisms to manage the resources
needed during the processing and transmitting of the audiovisual data. For that, resource man-
agement has to interact in a tight manner with operating system and communication system
mechanisms to achieve its goals. Furthermore, according services must be available in the
endsystems and the networks.

Resource management has been an area of active research for several years and it is
still a field where research and development is proceeding. Various mechanisms have been
designed over the time, both for static and for adaptive resource management, and several
example systems have been designed, implemented, and evaluated.

Increased processing speeds, higher network bandwidth, larger memories, and other
hardware improvements might reduce the need for resource management techniques in future
systems. However, it is likely that application demands will increase as well. Additionally, for
systems and components shared by several users, resource management mcchanisms will be
an important piece of future multimedia infrastructures to provide a reliable QoS.

Resource management designed within the context of current operating systems is
somewhat limited in the functionality it can provide. Future operating systems which are
designed for the handling of multimedia applications will be able to relieve these limitations.

REFERENCES

1 Anderson, D. P., Tzou, S., Wahbe, R., Govindan, R., Andrews, M., "Support for Continuous
Media in the DASH Systein", Proceedings of the 10th ICDCS, Paris. France, May 1990.

2 Anderson, D. P., "Metascheduling for Continuous Media", ACM Transactions on Compurer Sys-
tems, Vol. 11, No. 3, 1993.

3 Braden, R., Zhang, L. Berson, S., Herzog, S., Jamin, S., "Resource Reservation Protocol (RSVP) -
Version 1 Functional Specification", RFC 2205, September 1997.

4 Fall. K., Pasquale, J., "lmproving Continuous-Media Playback Performance with In-Kcrnel Data
Paths", Proceedings of the IEEE ICMCS, Boston, MA, USA, May 1994.

5 Herrtwich, R. G., Wolf, L.C., "'A System Software Structure for Distributed Multimedia Systems",
Proceedings of the ACM SlGOPS Eiiropean Workshop, Le Mont Saint-Michel, France, Septem-
ber 1992.

20 Chapter 1234

Huang, J., Kenchammana-Hosekote, D., Agrawal, M., Richardson, J., "Presto - A System for
Mission-Critical Multimedia Applications", Jocrriinl of Real-Time Sysierns, July 1997.
Jones, M., ''Adaptive Real-Time Resource Management Supporting Modular Composition of Dig-
ital Multimedia Services", Proceedings of the NOSSDAV Workshop, Lancaster, UK, 1993.
Lakshman, K., Yavatkar, R., Finkel, R., "lntegrated CPU and Network-110 QoS Management in an
Endsystem", Proceedings of IWQoS, New York, NY, USA, May 1997.
Lehoczky, J., Sha, L., Ding, Y., "The Rate Monotonic Scheduling Algorithm: Exact Characteriza-
tion and Average Case Behavior", Proceedings of the lEEE Real-Time Systems Symposium,
Santa Monica, CA, USA, 1989.
Leslie, I., McAuley, D., Black, R., Roscoe, T., Barham, P., Evers, D., Fairbairns, R., Hyden, E.,
"The Design and Implementation of an Operating System to Support Distributed Multimedia
Applications", IEEE Journal on Selected Arens in Commitnications, Vol. 14, No. 7, September
1996.
Liu, C. L., Layland, J. W., "Scheduling Algorithms for Multiprogramming in a Hard Real-Time
Environment", Journal of the ACM, Vol. 20, No. 1 , 1973.
Liu, J. W. S., Lin, K.-J., Shih, W.-K., Yu, A. C., Chung, J.-Y., Zhao, W, "Algorithms for Schedul-
ing Imprecise Computations", IEEE Computer, Vol. 24, No. 5, May 1991.
Mercer, C. M., Savage, S., Tokuda, H., "Processor Capacity Reserves: Operating System Support
for Multimedia Applications", Proceedings of the IEEE ICMCS, Boston, MA, USA, May 1994.
Nagarajan, R., Vogt, C., "Guaranteed-Performance Transport of Multimedia Traffic over the
Token Ring", IBM Tech. Rep. No. 43.9201, IBM ENC, Heidelbeg, 1992.
Vogt, C., Herrtwich, R.G., Nagarajan, R., "HeiRAT: The Heidelberg Resource Administration
Technique - Design Philosophy and Goals", Proceedings of Kommunikation in Verteilten Syste-
men, Munich, Springer-Verlag. 1993.
Vogt, C., Wolf, L. C., Herrtwich, R.G., Wittig, H., "HeiRAT- Quality-of-Service Management for
Distributed Multimedia Systems", ACM Mirltimedia Systems Journal - Special Issue on QoS Sys-
tems, 1998.
Wolf, L.C., "Resource Management for Distributed Multimedia Systems", Kluwer, Boston, MA,
USA, 1996.
Wolf, L.C., Steinmetz, R., "Concepts for Resource Reservation in Advance", Mrrltiinedia Tools
und Applications, May 1997.

