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Abstract—Over the last years, natural disasters have shown to
impair and destroy communication infrastructure. This results
in an increased importance of infrastructure-independent ad hoc
communication systems, such as delay-tolerant networks (DTNs).
Research has shown that these networks are able to provide
basic communication functionality for civilians. However, they
are limited in their performance as the network topology is
highly intermittent due to the human nature of clustering around
important locations like shelters and moving in groups. Small
Unmanned Aerial Vehicles (UAVs) have proven to be efficient data
ferries between clusters due to their high mobility. This requires
up-to-date knowledge about cluster locations to determine UAV
flight paths. However, the shortest paths usually do not cover
disconnected network nodes in transit between clusters, that will
miss critical messages like evacuation notices or hazard warnings.

This paper provides two contributions for UAV-assisted post-
disaster DTN communication. First, we present a novel approach
to estimate dynamically changing cluster locations in a post-
disaster scenario. Second, we introduce a topology-aware path
planning approach for UAV data ferry flights, covering in-transit
nodes in-between clusters. Our evaluation highlights the require-
ments on network topology knowledge for an efficient application
of UAV data ferries. We furthermore demonstrate that our
approach significantly reduces the number of disconnected in-
transit nodes, which is especially important in the considered
post-disaster scenario.

Index Terms—post-disaster communication, ad hoc communi-
cation, unmanned aerial vehicles, data ferry, topology-aware path
planning

I. INTRODUCTION

In recent years, natural disasters like extreme weather
conditions were more frequent and their occurrence as well
as their devastation is expected to further increase in the
future [27], [29]. These events often impair information and
communication technologies (ICT) like the cellular grid, by
either significantly damaging or destroying ICT infrastructure
or by inhibiting critical infrastructure such as the power grid
on which ICT infrastructure is reliant on. However, effective
disaster relief efforts require communication especially for
the civilian population, for example to provide information
about save shelters or warnings of upcoming dangers. Thus,
unavailable ICT stands in direct contrast to the requirements
of disaster relief [13], [27].

In areas where the ICT infrastructure is unavailable,
Disruption- or Delay-Tolerant Networks (DTNs) based on

everyday smart mobile devices such as smartphones are
capable of providing basic, fast-deployable communication
functionality for civilians [2], [11], [17]. In contrast to classical
mobile ad hoc networks (MANET), DTNs use the store-
carry-forward principle to cope with network partitions and
constantly changing network topologies due to high device
mobility in combination with short communication ranges of
these devices. Especially as people in post-disaster scenarios
tend to form groups and cluster around certain points-of-
interest like shelters [2], applied DTNs are typically heavily
intermittent with functional intra-cluster connectivity, but very
sparse and infrequent inter-cluster communication. If inter-
cluster distances—and therefore travel times—become too
large in combination with certain message lifetimes after
which they are dropped to ease the network load, communi-
cation among partitioned network clusters will eventually be
impossible.

In this case, Aerial Post-Disaster Communication Assistance
Systems (ALPACAS) comprising of one or more Unmanned
Aerial Vehicles (UAV) are able to support inter-cluster commu-
nication by applying UAVs as quick and terrain-independent
data ferries between network clusters [11], [19], [32] as
depicted in Figure 1. Most notably, inexpensive commercial
off-the-shelf UAVs are sufficient to be used for straightforward

Fig. 1: Data ferry UAV connecting three clusters. Not all
in-transit nodes are covered.



data ferry jobs [11]. However, the application of ALPACAS
is especially challenging, as the network topology and cluster
locations are usually unknown and also unsteady in disaster
scenarios, in contrast to, e.g., static sensors in a wireless sensor
network (WSN) [15]. Moreover, if topology information is
available from the disaster area, data may be simplistic, error-
prone, inaccurate, or incomplete. It is therefore of outmost
interest to acquire knowledge on or estimate the locations
of network clusters. Furthermore, people in transit between
clusters are disconnected from the communication network
during most of their transit time. Only a few disconnected
devices may be tolerable, but with longer distances and more
devices disconnected for longer times, the negative impact on
the network communication performance could outgrow the
costs of covering these devices. Especially when considering
critical messages for civilians in the disaster area, like evac-
uation notices or hazard warnings, a thorough dissemination
of these messages may be more important than disseminating
less important messages.

In this paper, we approach the problem of estimating
cluster locations within an unknown disaster scenario based
on simplistic topology data and, if possible, adapt data ferry
UAV flights to cover in-transit DTN nodes on the ground.
Our approach enables a considerably higher coverage of
DTN nodes with reasonable cost increase in terms of UAV
flight time. In contrast to most approaches of related work,
and current networking challenges in general, the presented
approach considers the dynamicity of post-disaster DTNs and
the special routing requirements of data ferry networks at the
same time.

Specifically, we make the following contributions:

• We provide a concept to store and assess simplistic topol-
ogy data for the estimation of partitioned DTN clusters
in disaster scenarios. With a long-term assessment of the
topology data, we are able to react to changing cluster
locations as well as the formation and disbanding of
clusters.

• Additionally, we provide an adaptive and topology-aware
path planning approach for data ferry UAVs for in-transit
coverage of DTN nodes based on available topology data.

• We evaluate the capabilities of our cluster estimation in
different post-disaster scenarios. Furthermore, we high-
light advantages and drawbacks as well as its influence
of our topology-aware path planning approach on DTN
communication performance in these scenarios.

The remainder of the paper is structured as follows. Related
work and similar approaches are presented in Section II.
Sections III provides a detailed description of our approach
for cluster estimation in dynamic post-disaster environments.
Topology-aware path planning for in-transit node coverage
is described in Section IV. In Section V, we evaluate our
approach and its impact on communication performance.
Eventually, Section VI concludes the paper.

II. RELATED WORK

Unmanned Aerial Vehicles (UAVs) are often deployed for
aerial monitoring or object identification due to their high
mobility and autonomy. This could, for example, include
search-and-rescue missions, in which UAVs identify victims
visually with their camera [12], [20], [25], or the fast local-
ization of forest fires [4]. However, visual UAV exploration
can be obstructed, e.g., by trees or may be impossible for
urban areas where nodes are inside of buildings, and have the
disadvantage of limited area coverage and additional weight of
cameras [20]. Thus, researchers have proposed to track radio
signals from devices, such as Wi-Fi communication or periodic
ad hoc protocol beacons, to identify device locations without
unobstructed line-of-sight and with larger tracking areas [20],
[23]. When searching large areas, for example to detect nodes
with Wi-Fi signals, the usage of UAV swarms was suggested
and successfully applied by multiple researchers [8], [24]. By
that, either the time for node recognition is decreased or larger
areas can be covered in the same time, compared to a single-
UAV system. Areas can be divided into smaller partitions,
e.g., into a grid, where each cell is completely monitored by
one or multiple UAVs in detail [8], or traversed by randomly
moving UAVs which allows for a faster but not guaranteed
identification of devices [24].

Utilizing the knowledge of the underlying topology, UAVs
can be deployed to support or completely facilitate commu-
nication, for example in disaster scenarios with damaged or
destroyed ICT infrastructure. In such cases, UAVs can be used
as static aerial LTE or Wi-Fi base stations to restore cellular
network coverage [22] or provide a Wi-Fi-based overlay mesh
network to the disaster-stricken area [22], respectively. UAV
positioning can, for example, be pre-computed to provide
fixed locations for each UAV [22], or decided on the fly
by a distributed swarm algorithm that optimizes static UAV
locations to fit the current situation [28]. However, these
approaches do not scale well for very large areas, as the
number of UAVs required to provide the service increases with
the area.

Nevertheless, UAVs can be applied as carriers or messen-
gers, often called data mules or message ferries, distributing
and collecting data between single devices or partitioned
subnetworks [31]. This approach is especially useful when
the number of available UAVs is not sufficient to maintain
static relay networks and can be easily applied in cases when
latencies in data distribution are manageable, such as in DTNs,
WSNs, or Internet of Things (IoT) applications. For example,
a single UAV can collect data from isolated communities to
areas where Internet access is available, and vice versa, giving
at least limited access to otherwise fully disconnected areas
in disaster areas [3]. Calculating and optimizing UAV flight
trajectories for data collection and distribution, however, is on
the one side very scenario-dependent and on the other side
often an even more complex variant of the NP-hard Traveling
Salesman Problem (TSP) [3], [15], [18], [19].

Trajectory optimization can, for example, focus on data



collection from static sensor nodes. With the correct placement
of UAVs, the lifetime of battery-powered IoT sensors can
be significantly increased by reducing the power required
to transmit data to the UAV [15]. On the other hand, cal-
culating more energy-efficient trajectories for the UAVs can
increase flight time, and therefore, result in higher coverage
or shorter service intervals, overall increasing the efficiency
of data distribution and collection [6], [15], [16], [30]. Similar
approaches for trajectory optimization were presented in the
context of wireless power transfer from UAVs to static sensor
nodes [7]. Furthermore, cooperative trajectory optimization
can be used to maximize the information gain of a multi-UAV
system [6], for example when collecting topology information.

Most approaches for trajectory optimization assume static
networks and often require perfect knowledge of the network
topology, which is then used to solve the underlying TSP
with different approaches like heuristics [19] or machine
learning [18]. Currently, there exists no approach that in-
cludes factors such as dynamic network topologies, updates of
available topology data, or adaptations to a changing network
topology during runtime. Additionally, most approaches may
not be suitable for scenarios with a mixture of static and
mobile devices, and will omit mobile nodes most possibly,
or they may not be suitable for large-scale scenarios. The
related work has, nevertheless, shown that it is possible to
detect mobile devices and gather topology data. However,
interpreting and especially handling changes in the data over
time is still an open issue.

Compared to these related approaches, our work focuses on
adaptive cluster detection in dynamically changing environ-
ments while also considering the coverage of mobile in-transit
devices when connecting network clusters.

III. CLUSTER DETECTION ON TOPOLOGY DATA

The network topology of DTNs in disaster scenarios is
typically highly intermittent due to the human nature to
form groups and cluster around points-of-interest [2]. Within
these clusters, connectivity among the network nodes is
good, whereas inter-cluster communication is sparse and in-
frequent. Aerial Post-Disaster Communication Assistance Sys-
tems (ALPACAS) can significantly increase inter-cluster com-
munication performance by deploying highly mobile UAVs as
data ferries.

However, knowledge of the cluster locations is a necessary
requirement to deploy ALPACAS in the first place. Thus,
topology information must be obtained to determine where
communication support is required, i.e., by identifying net-
work clusters. As discussed in Section II, acquiring topology
information is feasible with several approaches. However, it is
often neglected that topology information is changing over
time and once optimal flight paths could become obsolete
due to the dynamicity of the environment. Furthermore, this
information may be provided by different sources at different
times with different degrees of detail and accuracy. Topology
information can comprise, for example, device locations and
their time of measurement, but also further information such

Fig. 2: Grid overlay with location measurements in an inner-
city environment. The grid size and its placement have a
significant influence to which cells measurements are allocated
to. Some groups are within a single cell, while others are
spread over multiple cells.

as unique device IDs, neighborhood topology information,
movement directions, speeds, and more. Data could, however,
also be derived from sources like satellite or aerial pictures and
therefore only provide location information without further
meta data. In order to deploy an ALPACAS in any unforeseen
disaster situation, it therefore cannot be designed to rely on
complex data.

Consequently, the following questions arise: (i) how sim-
plistic data can be interpreted to detect or estimated network
clusters, (ii) how updates of the topology data can be used to
adapt and improve the detection or estimation over time, and
(iii) how cluster detection and estimation can be robust against
missing, incomplete, or erroneous data updates.

A. Collecting Topology Information: Heatmap

Assume we have a source of topology data, such as a topol-
ogy monitoring UAS running in parallel to our ALPACAS.
The provided simple topology data is in the form of a set
of locations P = { p | p = (xp, yp) } from the disaster area.
Our system cannot influence the monitoring system and has no
access to any further information in addition to the locations on
the network topology. Potentially, the provided location data
is already several minutes old and locations were measured
with some error. Within a certain period ∆tupdate, the source
will deliver a new set of locations as an update or addition to
the last input, e.g., after a monitoring UAV returned with new
information.

The most obvious approach would be to determine network
clusters based on the latest data. However, if this data is
incomplete or erroneous, we would potentially miss cluster
locations completely. This would make the system less robust
against real-world input data in disaster scenarios, hence,



(a) Grid counter heatmap. The lower cluster
is suboptimal placed in the grid, resulting in
two separate, non-adjacent high-density cells.

(b) The non-adjacent cells became merged by
a Gaussian smoothing kernel convolution. In-
transit nodes are mostly faded out.

(c) Detected hotspots and their center cells
after high-pass filtering and hotspot detection.

Fig. 3: Three network clusters and sparse in-transit node movement in a 1500 x1500m2 area with cells of dcell=50m. The used
Gaussian kernel is 5x5 in size and σ=50m. After smoothing, the lower hotspot, which was distributed over two non-adjacent
cells in (a) before, is detected as one cluster in (c) with its center between those two cells.

historic data should also be included in the detection. On the
other side, determining clusters on all data ever collected is
also infeasible, because (i) information may become outdated
and less relevant, thus hinder correct cluster estimations and
(ii) the amount of data in a long-term deployment will become
unwieldy.

The determination of clusters could be done with well-
known clustering algorithms such as k-Means [1] or DB-
SCAN [5]. However, k-Means require knowledge of the num-
ber of clusters a priori or repeat it with multiple values for
k and determining somehow the best k, which may become
computationally expensive especially in large datasets [5].
Furthermore, usual properties like arbitrary shape detection
and the clustering of all data points bear two significant
disadvantages. First, close but distinct clusters may be wrongly
detected as a single cluster. Second, it is hard or even im-
possible to detect outlines and sizes of clusters, if locations
outside of clusters are seen to belong to it nonetheless. This is
especially important, as the location data will have a significant
amount of noise in the form of location measurements of in-
transit devices.

Our approach is to aggregate the input data to cope with
large amounts of location measurements and to increase ro-
bustness against problematic input data. For that, we divide the
UAS mission area into a simple grid of equally-sized quadratic
cells c of edge length dcell as shown in Figure 2. Each location
from the input data is then matched to their respective cell,
each having a counter Ωi representing the number of measured
positions within the cell ci. Thus, new data can easily be
added on existing data, without the necessity to re-calculate
or re-evaluate the whole topology. The resulting structure is a
heatmap of the node distribution in the area.

Naturally, information may get outdated over time as

the network topology is subject to change. Within disaster
scenarios, new clusters can form and existing clusters can
dissolve, for example around temporary resource distribu-
tions centers [10]. Linearly increasing the counters at new
measurements will result in a static topology assessment,
which becomes more and more inaccurate. As the detection
of and adaption to topology changes is one of the major
issues for an efficient ALPACAS deployment, historical data
must not overpower more recent measurements. Therefore,
it is necessary that the value of information—that is each
counter Ωi—decreases over time. The intensity of this tem-
poral decrease, however, is also a major influence factor on
the overall system capability to adapt to topology changes.
On the one hand, a slow decrease might lead to a loss in
dynamicity and the system reacts too slow to changes. On the
other hand, decreasing too fast could lead to instability in the
topology assessments and a vulnerability to receiving incorrect
or inaccurate data.

To address this challenge, we introduce a half-time period
T1/2 to the counters that we determine on the update interval
such that T1/2 = ∆tupdate. With that, the counter Ωi after a
certain interval ∆t is

Ωi(t+ ∆t) = Ωi(t) ∗ e
−∆t∗

ln(2)
T1/2 (1)

such that Ωi is only half of its original value after the
counters half-time period. But as new measurements will be
added again, cells with a stable amount of measurements
will not change significantly. On the other hand, however, Ωi

is reduced exponentially without new measurements, which
allows to quickly detect if a cluster has dissolved. Therefore,
the system is robust against temporary errors in the topology
measurement as historical data is included in the assessment,



but also flexible to changes as historical data is not paramount
to new and updated data.

Another major influence on our approach is the choice of the
grid cell size. In general, smaller cells have the advantage of
depicting the area in greater detail, but the increased number
of cells necessary within the same area are more complex
to process. Furthermore, tiny cells will yield no significant
advantage over the raw data, as data aggregation will be
minimal. Bigger cells, on the contrary, are less complex, but
also less accurate and detailed.

We propose to set the grid cell size to be within expected
network communication ranges. With that, we have a high
probability that nodes within a cell can communicate with each
other and also that communication links to nodes in adjacent
cells can exist. This connectivity is most important from our
point-of-view, as it allows the assumption that adjacent cells
form a single, connected cluster. A real-world test performed
in an urban scenario [2] highlighted that most urban DTN
connections can be expected to be within 50 to 100 meters,
although they may reach up to 150 meters. Thus, cell sizes
should be chosen from the range between 50 to 100 meters
based on the encountered scenario, considering the required
level of detail and accepted computation complexity.

B. Processing Topology Information: Cluster Detection

The naı̈ve approach for the detection of clusters in the
heatmap is to select the most populated cells. However, the
major drawback of using a static data structure like this grid
for hotspot detection is its subjection to the grid placement
itself. That is, a group of nodes on the border between cells
or spread across multiple cells will result in their location
measurements being assigned different cells. Therefore, the
measurement is distorted, which complicates the detection
of this cluster. A coincidentally centered and high-density
cluster, on the other hand, will result in a much clearer cluster
detection. Especially with smaller cells, this problem increases
in frequency, and thus, severity. Furthermore, we generally
cannot assume clusters to have a certain size and a centered
placement in the grid, so that further adaptations for the cluster
detection are necessary.

To address this problem and reducing the severity of clusters
distorted over multiple cells, exemplarily shown in Figure 3a,
we propose to combine nearby cells together, while simulta-
neously reducing highly localized spikes in the heatmap. As
depicted in Figure 3b, this can be achieved by applying a Gaus-
sian smoothing filter on the heatmap. Similar to its application
in digital image processing, location measurements are blurred
and aggregated over multiple cells to obtain smoother values in
general. Furthermore, it reduces the impact of localized peaks
(noise) in the position measurements, as for example, a larger
group of people in transit between clusters would produce,
and therefore reduces false cluster detection. Recognizing this
mobile group as a static hotspot would reduce effectiveness,
as the UAV will approach a probably empty location.

The common approach for Gaussian smoothing in similar
cases is to convolute the map with a pre-computed discretized

kernel. The entries of the two-dimensional kernel can be
computed using

kernel[x][y] =
1

2 ∗ πσ2
∗ e−0.5∗(( x−meanσ )2+( y−meanσ )2) (2)

where x and y are the indices in the kernel and mean is the
center of the kernel. The kernel is typically symmetric and of
odd size.

The σ determines the width of the Gaussian distribution,
thus, in which extend adjacent cells will impact the smoothed
result. Generally, a smaller σ results in a more narrow Gaus-
sian distribution, thus adjacent cells will have less of an
impact. In contrast, larger σ result in a wider distribution,
incorporating neighbors more intensively, while attenuating the
center cell more than a narrow distribution does. Again, we
propose to use the expected average communication range as
choice for σ, so that cells within that radius have the most
impact on the smoothed value (around 68%), similar to the
higher probability of communication links and therefore a
higher probability of a connected cluster. The kernel should at
least cover a radius of 2σ, so that it approximates the Gaussian
distribution sufficiently (approx. 95.45%).

After smoothing the heatmap, we apply a high-pass filter
to filter out small localized measurements, e.g., as seen in
the center of Figure 3b, to prevent them from being falsely
detected as clusters. However, the threshold of the high-pass
filter is highly scenario-dependent. Using a big threshold it
will negatively influence the detection of actual small clusters,
whereas a small threshold will increase the amount of wrongly
detected clusters. As of now, we chose to set a fixed border
based on the minimal amount of nodes we want to serve on
each cluster. Nevertheless, a dynamic or localized adaption of
this high-pass filter could be a significant enhancement to the
overall cluster detection and is left open for future research.

Figure 3c depicts the final step of the cluster detection, in
which a local maximum search is performed such that the
extend of a cluster match the size of the kernel. In the given
example, we were able to detect all three clusters and can use,
for example, their center cells as the locations UAVs should
approach in each cluster.

With the gathered and processed information, we are now
able to calculate the UAV flights between these center cells to
bring our assistance support system in service.

IV. TOPOLOGY-AWARE IN-TRANSIT COVERAGE PATH
PLANNING

Calculating an optimal path between found cluster locations,
however, is no trivial task. Shortest path calculation over
all cluster locations requires to solve the NP-hard Traveling
Salesman Problem (TSP), thus, heuristics are usually applied.
Additionally, a significant amount of turns on the path can
negatively affect the energy consumption and with it the
mission completion time of the UAV [16], [19], [24]. The
shortest path may, therefore, not be the most optimal for a
UAV. However, path optimization is still a significant research
gap that is not within the scope of this work and we use a
simple heuristic to determine the sequence of clusters to visit.



In this section, we specifically approach the problem to
cover nodes that are in transit between clusters. Such nodes
are usually required in DTNs to carry messages between
clusters (carry-store-forward principle). Nevertheless, most
DTNs exert a message lifetime to reduce overall network load,
and with increasing distances between clusters the transit time
will eventually exceed the lifetime. To overcome this problem
of poor inter-cluster communication performance, we apply
ALPACAS in the first place. Obviously, data ferry UAVs
fly in straight lines between clusters to minimize message
dissemination times.

However, in-transit nodes are thus not covered by the system
if a data ferry UAV is not crossing the path of these nodes
by coincidence. They are therefore disconnected from the ad
hoc network for possibly the whole transit time. Because
we specifically consider a post-disaster scenario, this is a
significant problem as very important messages like evacuation
notices or warnings of emerging threats may not be delivered
in time. Our main objective is, therefore, to increase the
amount of nodes that the UAVs have contact to on their path
between clusters, which directly correlates to the amount of
nodes that are notified timely.

A possible approach to increase the covered in-transit nodes
is to use map data to adapt data ferry routes to the street layout.
However, the question arises which streets should be traversed
by UAVs, as (i) roads may be obstructed and not usable for
ground nodes due to the disaster, (ii) shortest flights or biggest
streets may not correlate to the routes taken by nodes, and (iii)
nodes may not even use official streets at all but move cross-
country. As this may be out of our knowledge, map data is
not applicable to solve our problem.

Instead, we make use of the available topology data in the
heatmap to calculate a flight path between two clusters. More
specifically, we model our path planning problem as a shortest
path problem [14] between a start and an end cluster. For that,
visiting a cell ci on that path provides a certain benefit

b(ci) =
Ωi

Ωmax
(3)

that is dependent on the normalized counter of location mea-
surements, so every measurement provides the same weight.
Generally speaking, a longer path using more frequented cells
should be favored over a shorter path using less frequented
cells or cells without location measurements. Nevertheless, an
increase of the path length will also increase the time a UAV
requires to traverse all clusters, and thus, negatively influence
overall message delivery delays. We therefore balance the
tradeoff between fast message delivery and increased in-transit
node coverage by scaling the benefit of each cell with an
impact factor f . Thus, the weight ω for a directed edge
between two adjacent cells ci and cj can be expressed as

ω(ci, cj) = d(ci, cj)− b(cj) ∗ f (4)

where d(ci, cj) is the distance between these cells, i.e.,
d(ci, cj) = 1.0 for direct neighbors and d(ci, cj) =

√
2 for

diagonal neighbors.

Fig. 4: In-transit coverage path planning with different possible
paths. Paths are restricted to the dotted area based on the
direction from the start at the bottom to the target on the
top. If f is chosen sufficiently large, the longer path on the
left with higher coverage is chosen over the shorter path with
lower coverage in the center. The right path is outside of the
restricted area and therefore invalid.

The overall route cost then is

ω(c0..cn) =

n−1∑
i=0

ω(ci, ci+1)

=

n−1∑
i=0

d(ci, ci+1)− f ∗
n∑

j=1

b(j)

(5)

and the influence of f on the route becomes more graphic.
For f = 0, the path planning algorithm chooses the shortest
distance, but with f > 0 searches for available paths that have
lower costs compared to the shortest distance path. As the
graph may contain negative edge weights and negative cycles
depending on f , using classical path planning algorithms
like Dijkstra or Bellman-Ford is not applicable. Furthermore,
finding shortest simple paths—paths without any loops—is
an NP-hard problem. To remove negative cycles from the
graph, we further restrict the path planning algorithm to use
only four out of eight possible movement directions, based on
the direction from source to target (c.f. Fig 4). The problem
now reduces to a shortest path problem with negative edge
weights without negative cycles, which we solve with dynamic
programming [14]. This also restricts the path to be within the
general direction of the target, avoiding excessive detours, and
further balancing the path coverage tradeoff.

An example of our topology-aware path planning approach
is given in Figure 4. Darker shades denote a higher Ω for that
cell. When calculating the best path from the start (bottom) to
the target (top), the planning area is restricted by the four grid
directions in the direction of the target. In this case, as depicted
by the arrows it is straight right, diagonal up and right, straight
up, as well as diagonal left and up. The allowed area is framed
by a dotted border. From the three shown paths, the right one
is outside of the restricted area and therefore invalid. The left
is considerably longer than the center path, but traverses more
cells with higher node count on its way. Which path is chosen
in the end depends on the size of f and Ω of the traversed
cells. However, it becomes clear that the impact of large f



on the UAV flights may be significant, as even with the area
restriction the maximum path length is 1 +

√
2 ≈ 2.41 times

the length of the shortest distance path on the grid, i.e., when
f = 0. Thus, f has to be chosen reasonably.

V. EVALUATION

The evaluation of our approach was conducted within the
SIMONSTRATOR [21] simulation platform using the PEER-
FACTSIM runtime environment [26]. Used simulation settings
are listed in Table I. For analyzing the communication per-
formance, we rely on the simple and robust HyperGossip [9]
epidemic DTN protocol. Our approach was added to the sim-
ulation platform for Unmanned Aerial Systems as described
in [11] and uses a single multicopter UAV as data ferry [32].

All simulations were performed within a 3x3 km2 inner-
city area with 250 mobile nodes for 6 hours and 10 random
seeds. The area size is chosen to be challenging to both the
UAVs maximum flight range of approximately 9600 m (at a
constant speed of 10m

s , cf. [32]) and the DTN communication
performance. Node movement was restricted to streets and
walkways accessible for pedestrians by using Open Street
Map1 (OSM) data. The used mobility model uses attraction
points around which nodes move, and therefore clusters build
up. Nodes may also move to another attraction point, thus
becoming transit nodes.

We defined three different scenarios to assess both our
hotspot detection approach as well as our adaptive in-transit
coverage routing approach:

i) STATIC: 5 attraction points randomly placed within the
simulation area with at least 200 m distance. Nodes move
around the attraction points, but are not allowed to move
between them. Thus, this scenario results in a very static
topology with only changing cluster shapes.

ii) MOBILITY: Similar to STATIC, but nodes can move
between attraction points. This results in a less static topology
with frequent changes in both cluster sizes and shapes. Due
to random node and target selection, the distribution of nodes
over all attraction points may be highly imbalanced.

iii) DYNAMIC: For this scenario we have chosen 9 points-
of-interests from OSM data within our inner-city area, such
as hospitals and schools, that are important locations in a
post-disaster scenario. Only three of these locations, however,
are static for the whole time, the other will be created and
again removed during the runtime. Therefore, node mobility is
highly dynamic as new attraction points will result in changing
movement patterns but also in a very unstable, and thus,
challenging environment.

A. Cluster Detection

As already stated, we assume the cluster detection to be
highly dependent on the cell size and the information update
interval. A shorter interval should result in an increased
currentness of the topology data, and thus, a more accurate
cluster detection. Smaller cells should also provide a more

1www.openstreetmap.org

TABLE I: Simonstrator Environmental Settings

Scenario

Area 3000 m x 3000 m
Map Inner City, Post-Disaster
Duration 1 h warmup, 5 h evaluation
Nodes 250
Node Speed 0.8 – 1.5 m

s
Node Movement Pedestrian OSM Map
Attraction Points random, OSM points-of-interest

Comm.
PHY Wi-Fi
Range approx. 75 m
Data Rate 5 Mbit/s

DTN

Protocol epidemic, HyperGossip [9]
Msg TTL 30 minutes
Msg Size 600 Byte
Msg Rate 6 per minute

UAS
UAV 1 quadrotor (cf. [32])
Flight Range approx. 9600 m at 10 m/s
Battery Swap Time 60 seconds

Heatmap
Update Interval 5, 15, 30 minutes
Cell Size 50 m, 75 m, 100 m
σ Kernel Size 50 m

accurate view of the topology, and thus, a better performance
than with bigger cells.

The cluster detection was assessed in the three scenarios for
different grid cell sizes and information update intervals with
the following metrics:

i) RECALL denotes the fraction of correctly estimated
clusters among the set of all existing clusters.

ii) PRECISION denotes the fraction of correctly estimated
clusters out of the set of estimated clusters.

Figure 6 depicts the aggregated RECALL and PRECISION
of ten simulation runs with different random seeds. Measure-
ments for each scenario are grouped by cell size and therein
shown with different update intervals. On each boxplot, the
bold line shows the median, the colored box 25th and 75th
percentiles, and the whiskers 2.5th and 97.5th percentiles,
respectively. The colored dot and handles show the mean and
their standard deviation, respectively. As the attraction points
from the simulator’s movement model indicate the locations
where nodes will gather around, it makes them a reasonable
choice to integrate them in our evaluation. Therefore, a cluster
was counted as correctly detected if the estimated cluster area
overlapped with an attraction point from the movement model,
and a false estimation if there not.

As expected, the cluster detection performs very good for
the STATIC scenario but worse for scenarios with movement.
Especially the DYNAMIC scenario results in a high deviation
and significantly lower correctly estimated clusters than in the
other scenarios. This can be accounted for a highly imbalanced
distribution of nodes over attraction points, such that small
clusters cannot be detected. Interestingly, smaller cells do not
yield better results for the cluster detection, in fact the opposite
is the case. Although the false positive detection of clusters is
better with smaller cells, correctly detecting clusters is much
harder since then large clusters are spread over too many cells.
With large cells, on the other hand, the false detection of



(a) Cluster detection RECALL, i.e., the fraction of correctly estimated
clusters out of the set of existing clusters.

(b) Cluster detection PRECISION, i.e., the fraction of correctly esti-
mated clusters out of the set of estimated clusters.

Fig. 5: Cluster detection RECALL and PRECISION for cell sizes of 50, 75, and 100 meters as well as information update intervals
of 5, 15, and 30 minutes, respectively. Smaller cells provide better PRECISION while larger cells provide better RECALL. The
impact of the update interval is scenario-specific.

clusters is much higher, as groups of in-transit nodes could be
taken for a cluster. We can determine a general trend that larger
cells perform better in RECALL, while smaller cells result in
a better PRECISION. Therefore, a cell size of 75 m performs
best when maximizing both metrics in all three scenarios.

Overall, it becomes clear that the cell size has a more
significant impact on the cluster detection performance than
the update interval. For the STATIC and MOBILITY scenario,
surprisingly, the RECALL deteriorates with smaller update
intervals. The DYNAMIC scenario, on the other hand, perceives
an increase in RECALL at the same time. This most probably
resembles the scenario, as with rather static clusters in the first
case a higher update frequency lead to a faster decrease of
counters (cf. III) and with it a more unstable knowledge base
on the whole topology. This is especially interesting as the
system in this case is still able to operate the hotspot detection
without very frequent updates. With a very dynamic topology,
however, this shorter interval allows a higher flexibility and
thus a better detection of changes, although longer update
intervals still result in an acceptable cluster detection rate.
Nevertheless, we must empathize that this is very scenario-
specific and may not be correct for less-clustered application
scenarios than our post-disaster scenario. To conclude, we
can determine that our system is able to estimate clusters
within our scenarios even with larger, more realistic topology
information intervals.

B. In-Transit Coverage Path Planning

In Section IV, we discussed the influence of different values
of f on the resulting path length. A higher f should result in
longer paths and with that in a higher coverage of in-transit
nodes. For the evaluation we used a cell size of 75 m and an

update interval of 15 min to resemble our system in action. All
simulations were performed ten times with different random
seeds on all three scenarios with different values for f .

The results for path length variations are presented in
Figure 6a. First of all, the high standard deviation for the
STATIC and MOBILITY scenarios can be perceived. This is
due to the random distribution of the attraction points in the
simulation area, and therefore, differences in the general path
lengths for different simulation runs. In contrast, the DYNAMIC
scenario uses the same locations for each run, thus has a
significantly smaller standard deviation. However, the overall
deviation is much higher as the cluster detection performs
worse, which affects the number of clusters and therefore the
total path length. On the other extreme, path length deviations
in the STATIC scenario are very small since all clusters are
found and the length is mainly affected by the in-transit
coverage adaption.

As expected, increasing f results in an increase in the
path length in all scenarios. Though one may wonder why
the length increases in STATIC despite there is no in-transit
movement over which the UAV could be routed. However, a
UAV can be routed over cells of another cluster depending on
its location and the chosen f . This also result in more nodes
for the UAV to interact with, if for example the nodes were
out of reach when the UAV crossed the cluster the last time
(cf. Fig. 6b).

The most significant increase happens within the DYNAMIC
scenario, when the average path length increases by nearly
30% from direct paths towards f = 2.0. In that and other
cases, the path length therefore exceed the range of UAV
which then has to return to the base station before completing
the cluster traversal. The most reasonable approach would



(a) Calculated UAV route lengths for different values of f compared
to direct flight in the three scenarios. The dashed line denotes the
maximum range of the UAV.

(b) With increasing value of f , the amount of nodes that the UAV
has contacts with on its route increases significantly in comparison
to the direct flight.

Fig. 6: UAV route lengths and node coverage for different values of f in comparison to direct routes.

be to calculate the best value for f for best coverage while
not exceeding the UAV’s range limit. This could extend the
system capabilities to adapt to highly different scenarios and
we consider it for future research.

When comparing the node coverage presented in Figure 6b
with the path length in Figure 6a, we see a general trend
to cover more nodes with longer paths, as expected. In the
MOBILE scenario, approximately 12% of nodes are not covered
by the direct path, while an average increase of 900 m—or
11%—of the path reduces this amount down to approximately
7%. Therefore, the adapted topology-aware path covers around
42% of in-transit nodes formerly not covered. In the DY-
NAMIC scenario, around 27% of nodes are not covered. When
increasing the path length by 9%, it is able to cover 26%
of the in-transit nodes. However, it requires an even larger
increase of 20% to further increase the in-transit coverage
to 41%. Therefore, a constant increase in coverage cannot
be assumed by just increasing the path length. Especially for
highly dynamic scenarios, where nodes will take a multitude
of different paths although the UAV can only cover one, it
will be very challenging to further increase the in-transit node
coverage.

At last, we assessed the impact of our approach on the
general communication performance. For that, we tracked the
fraction of message distribution, i.e., the spread of a message
within the whole network, which is similar to RECALL. A
message distribution of 1.0 thus denotes that every node in
the network has received the message, whereas 0.0 denotes
that no node other than the creator knows of the message.
Furthermore, each message was restricted by a message life-
time of 30 minutes, after which the message is dropped and
not further distributed by UAVs nor nodes.

Figure 7 shows the fraction of message distribution over

the message lifetime for f = 1.0 and f = 2.0 in comparison
to the direct paths for the aggregated MOBILITY scenarios.
Bold lines denote median values, dashed lines the 25th and
75th percentiles, outer lines 2.5th and 97.5th percentiles,
respectively. In, general, we clearly see the tradeoff between
covering in-transit nodes while increasing the UAV flight time.
On the one hand, we have a perceivable gain seen as faster
message distribution for upper percentiles on the left. But
on the other hand, we also see that the lower percentiles
can become worse than the direct flight. However, a positive
impact of our in-transit coverage routing in general cannot be
neglected.

More interestingly, a larger value for f may not result in a
significant increase in performance compared to a smaller one.
Comparable to the increase in network coverage in the MO-
BILITY scenario between f = 1.0 and f = 2.0 (approx. 3%)
as shown in Figure 6b, the communication performance also
receives only a slight increase for longer paths. However, we
must denote that this again is specific for our post-disaster
scenarios with relatively large numbers of nodes in clusters
compared to in-transit nodes. In case of more in-transit nodes,
we assume to also have a more apparent performance gain.

This evaluation showcases that our heatmap-based approach
is able to estimate cluster locations even in challenging sce-
narios. For that, we only need simplistic topology information
without prior knowledge of the topology or supplementary
data. Additionally, we are able to further utilize this informa-
tion to adapt our UAV flight paths to cover in-transit nodes.
And although there is still room for improvement, we have
shown that our approach could reduce the amount of nodes
that are usually not covered by the data ferry UAVs by up to
42% with a 20% increase in UAV flights. Within the assumed
post-disaster scenario, this allows significantly more nodes



to receive urgent messages like evacuation notices or hazard
warnings. As the knowledge about dangers in the post-disaster
area may prevent damages and injuries, every node covered is
a success.

VI. CONLUSION

Aerial Post-Disaster Communication Assistance Systems
(ALPACAS) are an important supplement to post-disaster ad
hoc networks, as they enable essential communication between
isolated and distributed network clusters. However, their ap-
plication requires knowledge of cluster locations. Furthermore,
quick inter-cluster distribution is usually the single objective,
therefore omitting nodes in transit between clusters.

At first, we presented an approach for adaptive cluster
detection in dynamically changing environments based on
simplistic topology data. We have shown that our approach can
correctly estimate cluster locations even in challenging post-
disaster scenarios with a low currentness of data. Furthermore,
ALPACAS can react on changes in the topology, such as
newly formed or dissolved clusters, at runtime.

Secondly, we introduced a novel topology-aware path plan-
ning approach to adapt UAV flight routes to areas where nodes
have been in the past, such that the probability to cover in-
transit nodes by UAVs is increased. Our evaluation results have
shown that by considering these in-transit nodes, the number
of disconnected nodes can be reduced by up to 42% while
increasing the UAV path length by only 20% at the same time.
Furthermore, we observed a positive impact on the message
distribution with a large amount of messages spreading faster
through the network, however with the tradeoff of disadvan-
taging other messages.

In future work we want to consider other data structures
than grid-based heatmaps to improve the detection algorithm
and overcome inadvertent splits of clusters over multiple cells.
The benefit impact factor f used in path planning could
be adapted depending on the scenario and also involve the
technical constraints of available UAVs. Moreover, multi-UAV
systems could further improve node coverage while decreasing
message delivery delays.

With the presented approaches for cluster estimation and
topology-aware path planning for in-transit node coverage,
however, this paper provides valuable improvements to the
successful application of Aerial Post-Disaster Communication
Assistance Systems in unknown disaster areas.
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Fig. 7: Message distribution over 30 minutes message lifetime
in the MOBILITY scenario. Bold lines denote the median,
dashed lines 25th and 75th percentiles, outer lines 2.5th
and 97.5th percentiles, respectively. Generally, messages are
distributed faster with in-transit coverage. However, some
messages are distributed slower than on direct paths due to
the tradeoff between higher coverage and shorter flights.
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