
[[ZGStOlJ Michael Zink, Carsten Ghodz, Ralf aeinmetz; KOM Player - A Platform for Experimental
VoD Research; 6th IEEE Symposium on Computers and Communication, Hammamet, Juli
2001, S.370-375

KOM Player - A Platform for Experimental VoD Research
Michael ~ i n k ' , Carsten ~ r i w o d z ~ , and Ralf ~ t e i n m e t z " ~

Industrial Process and System Communications, Darmstadt University of Technology, Germany
University of Oslo, Department of Informatics, Nonvay

German National Research Center for Information Technology, GMD IPSI, Darmstadt, Gerrnany
Email: {Michael.Zink, Ralf.Steinmetz} @KOM.tu-darmstadt.de, griff@ifi.uio.no

Abstract
In contrast to audio which is ofren streamed as complete

music titles or even as a life feed from a radio station, video
in today's Internet is almost only available as small clips
und pre-generated programs. Although some of the prob-
lems concerning AV streaming are reasonably solved right
now, sorne work in jields like wide-area distribution sys-
tems need further investigation to muke applications like
"Trite Video-on-Demand" work. Oltr research und the one
of many ntlzers is focused on problems thnt have to be
solved to make application like VoD work in the Internet. It
is mainly concerned ivith wide aren distribution. In this
paper cve presents a plaffornl for experimental VoD
reseccrch ri~lzich is thoitght to Support resear-chers working
on VoD nnd cvide-area distribution for audio and video
coritent. This platforin offers resear.chers the possibiliiy to
impleinerit tlzeir ideas ivirhorlt hiiilding a cornplete stream-
ing erivironment und in additiorr allows the combination of
dcfleretit implemetitations. Afrer motivating the develop-
inent of o ~ i r plaCform ive present the design of our plaffnrm,
give ari overview of the actitul irnplernenration und the
existitig components that ive have nlrecidy biiilt. Finnllj~
excimple .scenarios for the irse of oitr platfornz in researclz
nrr g i v ~ n .
Keywords: VoD, Wide Area Distribrition, RTSE RTP

1. Introduction

The use of the Internet for an increasing number of mul-
timedia applications has lead to an increase of the amount
of audio aiid video (AV) traffic i n the Internet. The techno-
logical basis for this development was laid by improve-
ments in the infrastructure of the "last mile" (ADSL, cable
modems).

The most favored technology for the transmission of AV
content is the streaming technology which allows a client
to start listening or watching content iinmediately after the
request. Unfortunately today's cornmercial applications
can not compete with the quality of standard TV, especially
in comparison to VoD Scenarios. Consequently, several
researcher are looking for ways to overcome the gap
between standard TV and VoD. Recent examples are
research in the efficient distribution of AV content, in the
adaptation to network conditions including the TCP-friend-
liness of AV traffic, and in encoding techniques like layered

video.
It is a common way to prove new ideas by analytical

results and by simulation, but these approaches may hide
complexity or shadow incorrect assumptions and are not
always sufficient to prove applicability in real-world sce-
narios. [I] for example has shown that an often used model
for user requests in VoD systems does not model real User
behavior. [2] has expressed doubts about typical web traffic
modeling on the basis of anonymized web cache traces.
Researchers would profit from implementations of their
ideas, either for an evaluation of the implementation com-
plexity, for an identification of the limits of the technique,
or for an experimental deployment. Results from operating
real-world systems, even on a small scale, provide input for
further investigations using analysis and simulation. The
KOM player documented in this paper is intended as a step
towards such an experimental system for distributed VoD
systems. Many research results in AV streaming have been
integrated into commercial products. Examples are AV en-
and decoders (MPEG-X, H.2xx) and transport protocols
(RTSP, RTPIRTCP). There is still a lot of ongoing research,
like layered coding or reliable multicast. In order to show
the applicability of these new techniques in AV streaining
applications, they must be integrated into existing applica-
tions or completely new applications must be build.

Our research focus is mainly in AV distribution systems
such as [3,4, 5, 61. Conversations with other researchers i n
this field have shown that there is a need for a standards-
compliant, free and Open experimental AV streaming plat-
form. Vendors focus on expanding their key technologies in
proprietary building blocks while they keep their systems
interoperable in all other blocks, they can rarely provide
researchers with entirely Open systems. Researchers, on the
other hand, may Want to share and combine their imple-
mentaiions with research groups in the same or in comple-
mentary areas which makes interoperability with standards
inevitable.

The hope for interaction led us to redirect some of our
time into the development of an AV streaming platform and
to make it freely available.

2. Design

In this chapter the major design goals for an AV stream-
ing environment are given. We decided to build our system

based on IETF standards in order to achieve interoperabil-
ity with streaming applications deployed in the Internet.
Since Sree software developments did not include many
appropriate building blocks when we started, most of our
system is written from scratch. To make it acceptable by
other researchers, we apply the following goals:

Reusable from the technical as well as the legal point of
view, modular with well-defined interfaces
Interoperable with other standard compliant 1001s
Integratable with cxisting code

2.1 Reusability

When trying to build an AV streaming application one
realizes that some functionality is needed in different parts
of the application. E.g., in the case of a video server and
client, protocols like RTPIRTCP, RTSP and SDP are
needed in both parts. Therefore i t is necessary to imple-
inent these protocols in a way that they can be easily inte-
gratcd into applications by creating a well defined and
documented API for each module. It is necessary to sup-
port different decoders, and several video servers that
stream diverse encoding formats (e.g. H.263, MPEG- I ,
QuickTime). It is highly unlikely that the APIs of third
party software are identical, leading to an adaptation effort
whenever a new library is integrated. A generic wrapper is
iised to Iiicle this differentes Srom other parts of the sys-
tem.

While such abstractions are typical for streaming appli-
cations, a generic struciure like that of thc JMF [7] is
rarely Soiiiid. Existing approaches implement either hard-
coded sequences, or they coiisider frameworks that allow
tlie spccification of an end-to-end behavior for complex
multiniedia systems. In the latter kind oT systems, func-
tionality is described at the level of cooperating distributed
componcnts [8, 91. It is typical for such frameworks to
consider networking as a component that is also under the
control of the framework. In an environment that ensures
interoperability by specifying protocols (such as the RTSP
streaming environment), we prefer a local approach. The
control of the framework extends only over a single
machine and RTSP is used explicitly for coininunication.
The currently implemented components, called stream
handlers, work at a granularity similar to the components
of the JMF and do not provide an abstraction from the net-
work. The stream handlers are modular media processing
units that can be connected dynamically by a controlling
entity to form a Set of modules, which process data units
sequentially. The sequence of data units is called the
stream, the modules are the stream handlers.

Due to the interaction of RTP and RTCP, and the possi-
bility of receiving data from several sources at a single
port, a directed, non-cyclic graph of stream handlers is an

appropriate streaming model. In case of RTP, a stream
handler infrastructure seems to be appropriate only if
dynamic reconfiguration is supported by the stream han-
dlers as well as the controlling framework. A packet that
arrives at an RTP Source Stream Handler (a stream han-
dler that reads UDP packets from a network interface and
interprets them as RTP packets) from an ~inexpected
sender must be handled in an application-defined way: i t
may be appropriate to discard the packet, to assign i t to a
default path, or CO create an additional streain for special
processing.

Dynamic reconfiguration must also be supported to han-
dle User interaction with a proxy cache of a VoD system if
that cache acts also as a rcflector. The client receives data
from origin server through the proxy cache. which writes
RTP packets froin the origin server to disk as well as Sor-
wards them to thc client. If the client pauses ancl the appli-
cation decides to continue the caching operation, tlie trunk
of the stream handler graph that forwards data to the client
must be cut, while the trunk that stores data on disk must
be maintained. If thc client resumes viewing, the applica-
tion must create a ncw stream handler graph, which
retrieves the data rrom tlie cache.

2.2 Interoperability

We decided to support the protocols that are used i n
most AV streaming applicatioiis and standardized by the
IETF: RTPIRTCP [IO], RTSP [I I] and SDP [121. RTP
provides end-to-end delivery services for data with rcal-
time characteristics. These services are suitable for various
distributed applications that transmit real-tinic data. such
as interactive audio and video. Thc companion control
protocol (RTCP) provides feedback to the RTP sources in
the RTP session and to all participants in the session as
well. Each participant in an RTP session periodically
sends an RTCP packet to all other participants in the ses-
sion. RTSP is an application-level protocol that provides
control over the delivery of real-time data. The protocol is
typically applied for control over continuous tinie-syn-
chronized strcams of continuous media such as auclio and
video and acts as a "network remote control" for media
servers. Usually RTSP does not typically deliver the media
streams itself but controls streams that are being carried by
some transport protocol like RTP.

SDP was originally intended as a complement for the
session annouiicement protocol SAP to communicate con-
ference addresses and tool-specific information over the
MBone. Alternatives such as HTML postings or E-mail
distribution of session descriptions were taken into
account as well. With this primary goal in mind, SDP does
not support negotiation of any of session information, but
is just used for dissemination.

2.3 Integration 3.1 Overview

The design of our system allows the integration of
already existing systems and tools. One example is the use
of IBM's ~ i d e o ~ h a r g e r ' as video server for our client. In
this particular case we use mainly the data pump of the
VideoCharger which is controlled by our RTSP implemen-
tation. One major element in an AV streaming environ-
ment are audio and video decoders. Given the variety of
encoding formats (H.263, MPEG-I ,...) that are used by the
applications interoperability can only be reached, if these
formats are also supported by our architecture. Since we
are not able to build en- and decoders for all these formats,
and there are already C and C++ libraries that support
some formats, we decided to make use of third party en-
and decoders fairly simple. So far we have integrated three
different libraries: MpegTV, smpeg and mpeglib. All three
of them support MPEG-I and mpeglib supports also
MPEG- I audio layer 3 (MP3).

3. Implementation

The impleinentation consists of three applications that
are sufficient for building an experimental streaming
media distribution system: client, server and proxy-cache.
When we started our implementation, there was only one
implementation of RTSP available in Open source2. We
found out that this iinplementation preceded the RFC [I I]
and was not easily updatcd and reused. After some unsat-
isfactory experiences in adapting existing RTPIRTCP
implementations for our goals, we decided to integrate our
own implementation 1131 into the System. We checked
whether JMF [7] fulfils our needs but MPEG-I decoders
e.g. are only available for Solaris and Windows. RTP was
integrated in some Open source projects like vic, but a
closer look at this implementations showed us that RTP is
highly intergrated and was therefore not usable. In the
MASH pro-ject a scalable multimedia architecture for dis-
tributed multimedia collaboration in heterogeneous envi-
ronments 1141 was developed. Streaming in MASH is
realized by the MBone videoconferencing tools and there-
fore bears the same problems a described for vic. .

We are also aware of a stand-alone RTP library [IS], but
this project started after we decided to implement our own
RTP. The "Darwin" project [I61 was published by Apple
after the start of our work as well. It is concerned exclu-
sively with the server side and supports only the Quick-
Time file format [17].

The implementation of the KOM-Player platform aims
at the development of a research Prototype in the area of
wide-area distribution systems for streaming media in the
Internet. The existing code base considers mainly the dis-
tribution of CBR MPEG-I system streams, which was our
initial target format because it combines hardware- and
OS-independent playback capability with an appropriate
quality. Since this encoding format does not support the
scalability of encoding formats that can now and in the
conceivable future be deployed in the Internet on a wide
scale, more flexible encodings are considered as well in
our research. This is reflected in ongoing implernentation
work. During the development we realized that the inte-

RTSY * e m i L I l 4 RTSP cimg
I

Figure 1: Client-server configuration overview

gration of varioiis independently developed data pumps,
GUI and decoder modules with the RTSP code results in
an abundance of intermediate states (e.g. RTP connection
to video server established, decoder not yet initialized). To
coordinate the state transitions, we have put an automaton
(finite state machine) at the core of the session manage-
ment (Figure 1). All events are controlled by the automa-
ton to assure that only allowed actions will be executed. To
enforce completeness of the automaton, we built a tool
that generates automata in C++ from an automata lan-
guage.

3.2 Server

The server irnplementation is multi-threaded, where the
main purpose of the separation into threads was to achieve
a better modularity. It uses only TCP for reliable delivery
of RTSP packets [I 11, RTSP over UDP is not supported.
Like most other RTSP implementations, ours does cur-
rently not support deferred play requests. Several data
pumps are controlled concurrently by one RTSP server
process. Two data pumps are implemented at this time.
One relays commands to a low level API of the IBM Vid-
eocharger server, the other is hand-coded and described in
this Paper. Our data dump (see Figure 2) uses UDP for the
transmission of RTP packets over IP unicast and multicast.
It supports MPEG- I system CBR, MPEG- I audio layer 3
and raw H.261 data files. The implementation is separated
into the 3 Parts: RTSP session administration, RTSP com-

munication and parsing and RTP streaming. Each active

Figure 2: Server

RTSP session is represented by an RTSPServerSession
object. The object inherits KOMServer class which imple-
ments the automaton for the server. The state machine is
driven by the client's RTSP messages. The automaton con-
trols the RTP data pump and answers the RTSP messages.
Currcntly each RTSPServcrScssion runs in a thread. The
RTSPServerSession objcct is associated with an RTSPFiII-
Buffer object (which is a TCP socket). The RTSPFiII-
Buffer object receives data from a TCP socket and parses
thc RTSP inessage. Each message object is delivered to its
scssion for processing. The receptioii aiid parsing process
is initiatecl by an object that inonitors the RTSP communi-
cations.

The RTP streaming part performs the data transfer from
a file to the network. It is separatcd into two threads, RTP
and RTCP. It is managed by the RTSP Part that initiates the
streaming, changes the present streaming position within
the stream, halts the sireaming tcmporarily and dcstroys it.
The RTP thread performs the deliveiy of the media contcnt
to the network. It includes: accessing and reading from a
media file in the file System, preparing RTP packets (pack-
etization) and scheduling and emitting the RTP packets to
the network. The RTCP thread prepares and emits sender
reports to a separate UDP port and receives receiver
reports.

3.3 Client

The client of the KOM-Player platform uses third party
C++ tools or libraries for the GUI and the dccodcr imple-
mentations. It is designed to cooperate with other stream-
ing servers beside ours. This required interoperability
testing with other RTSP and RTPIRTCP implementations.
Taking part in an RTSP interoperability test [I81 with
other streaming servers and clients helped us to enhance
our own implementation. Wc tested the client with several
servers and realized that the video format is currently the
limiting factor. Figure 3 shows thc most important classes

of the client. Four functional parts can be distinguished:
RTSP session administration, RTSP communication, RTP
streaming aiid content decoding. Since somc of these parts
are identical to the one used by the server, oiily the parts
exclusively used in the client are describecl here. The com-
parison of the two class diagrams (Figure 2 and Figure 3)
shows the reusable classes. Classes in this part are only

RT\P Ci~in!rtii,iirrii>ii arid Piininl

Figure 3:'client

used i n thc client since a visual presentation at thc server is
not nccessary. In combination with the automaton and an
abstract intcrface between the automaton and the decoder
we can integrate several available clccoders. The generic
API makes it simple to integrate decodcrs into our clicnt
and wc expect Support for other decoders (e.g. MPEG-2.
H.261) too. The player is tested on Linux, iis current GUI
is based on the Qt library3. To work as a Netscape plug-in,
the pluggcr too14 is used at this time.

3.4 Proxy Cache

Since one of our research topics is on caching for multi-
media streams we also designed and are currently building
a proxy cache Tor those streams. A detailed design can be
found in [19]. Figure 4 shows the class diagrarn of the
proxy cache. Parts taken from server and clicnt are not
describcd again. The proxy is not an RTSP proxy as under-
stood in the RFC [l I] . Rather, i t is an RTSPIRTP proxy
cache that Stores content in addition to handling RTSP
requests. Our caching approaches consider the typical
commercial request to communicate with a stream's origin
server for cvery RTSP session. RTSP messages from dif-
ferent RTSP sessions are multiplexed onto one connection
between an origin server and a proxy. RTSP SessionIDs
are the keys to de-multiplex sessions. A proxy installs an
RTSP connection to an origin server on-demand when a
request for the particular origin server is received from a
client. The connection is torn down when no more active

RTSP sessions between the proxy and the origin server
exist.A proxy server maintains an instance of the RTSP-
ProxySession for each active RTSP Session. Since the
proxy cache acts as a client (of the server) and as a server
(for rhe client) its automaton is a combination of the server
and client automaton.

1

R7SP Ciiim,ciiliic<i!,<,#a ,,ii,iPursii. I RTPSinim#nx
ii..,..""

R r r . ~ ~ ~ . ~ ~ . ~ . ~ ~ ~ ~ ~ ~ ~ ~ i ~ ~ , r ~ ~ ~ ~ ~
I

~ i ~ u r e 4: Proxy cache
The most significant changes compared to server and

client occur in the RTP streaming part of the proxy cache. - .

This is caused by the fact that the proxy cach; needs client
and server functionality. The client functionality is differ-
ent in a way that a stream can be

stored on the local disc
forwarded to the client and
the cornbination of both
The servcr functionality means to Iorward an incoming

or to send a cached stream to the requesting client. This
functionality is shown in the RTP streaming part of Figure
5 and explained in more detail in [19].

\trdl. P.,.",
W

Rlihurri RTKirnnrr

T ~ w . ~ . 4 L r.a~nn

J
RTI?.%d""~i<rs

J
Y T ~ n i l n R - l i i r

Figure 5: Streaming graph for the proxy cache

3.5 RTSPISDP Implementation

Since RTSP is an ASCII-based protocol we use a gener-
ated to parse the RTSP messages. The parser'is at

'- using bison++. an extension of GNU bison: http://siin-
site.biIkent.edii.tr/pub/langiiageslc++/tools/flex++bisoii++/

the core of the RTSP implementation. In combination with
a factory class that maps RTSP messages to their related
classes, functional variations are easily implemented. This
is useful in experimental environments were new function-
ality and modifications are tested. By using the existing
RTSP implementation we were able to create RTSP
classes for the proxy cache quickly that implement differ-
ent behavior. SDP is also an ASCII-based protocol and
implemented with an additional parser for SDP messages.
Functional adaptation works as with the RTSP parser.

4. Conclusions and Future Work

Most available commercial products today have a well
defined and documented API that makes it convenient to
integrate functionality of those products in other applica-
tions. Unfortunately APIs are often not sufficient for
research. If e.g. it is assumed that a new en-Idecoder tech-
nology should be tested in an application, the codecs must
be integrated into the application. For distribution systems
research, networking protocols or Storage mechanisms
must be replaced. With our ongoing work on wide-area
distribution systems for AV content it became clear that
we had to build our own AV streaming platform to per-
form further investigations. We Want to give some exain-
ple Scenarios for research' that exploits our platform.

4.1 Caching

Multimedia streaming makes greater demands on the
transrnission network than traditional data transmission
because of the greater volume of the data and because of
the real-time properties. Multimedia streaming requires a
tot of memory space in hosts and high bandwidth in links.
Large-scale video-on-demand can only be provided with
distributed systems. Content can be stored in a nurnber of
caches that are located at various places in a network. A
streaming request from a client is served from a cache
instead of from a centrally located server. This saves net-
work resources and provides the user with better quality
and lower costs. In addition all caches need proxy func-
tionality to communicate with the origin server. The devel-
opment of client-independent caching systems, and
cooperative caching for high-volume content are impor-
tant research issues.

4.2 Patching and Gleaning

The basic approach in Patching [4] is the use of multi-
Cast for the delivery of a video streams to requesting cli-
ents. Clients that request the Same video shortly after the
start of its transmission start to Store the multicast trans-
mission in the local cache immediately. The server sends
~inicast streams (patch streams) to the clients containing

the missing initial portion of the video, until the cached
portion is reached. Then, the clients use their caches as
cyclic buffers. Gleaning is an extension of Patching in a
way that cache Servers are deployed as proxy caches, i.e.
clients will always connect to their proxy server to access
data on the origin server. If the client requests a strearn and
this stream is already being delivered to a cache server or
client, and the sender dccides that the patching window for
this stream is still Open, it orders the cache server to join
that rnulticast stream. Additionally, it starts the transrnis-
sion of a patch strearn to the proxy cache. The proxy cache
has to set aside sufficient buffer spacc for the cyclic buffer
to hold the length of thc patch stream, even if it does not
cache the movie; the strearn is delivered as a unicast
stream to the client. It is important to evaluate the irnple-
rncntation complexity to select the rclevant optirnization
options.

4.3 Adaptive Streaming

U D P is usually used as transport protocol for AV
streaming. In contrast to TCP, UDP does not include any
mechanisms like flow control and retransmission. Adapta-
tion is also inandatory to keep UDP based streaming TCP-
friendly and therefore avoid that thosc strearns arc blocked
by backbonc Operators. We Want to invcstigate how a
caching support for adaptive streaining coulcl be realized.
Our focus is on cachcs that support caching for adaptive
streams transporting different forinats (MPEG-1, QT, lay-
ered video) [I9]. We intend to iniegrate the adaptation
functions into the proxy cache o i the KOM-Player plat-
form.

4.4 Reliable Multicast

When caches are uscd in applications like VoD it inust
be ensured that thc content on a cache is an exact copy of
thc original. In order to achieve this requirement, a trans-
rnission to the caches can be made indepcndently Ii.om
transinissions to clicnts, or the transrnission to the client is
extended to allow a reliable transrnission to the cache by
additional repair mechanisms. The second case can be
realized by extending RTP to remernber lost packets and
initiatc retransrnissions that are ignored by the client. We
impleinented a first version in our RTP stack and are right
now integrating it in a proxy cache to test i t .

Wc hope that our irnplementation can help other
rcsearchers in creating experimental platforms to test and
dernonstrate their new ideas. The KOM-Player platform6
rnay be used under the conditions of the GNU public
license but the core elements are also available for other
licensing.

" AAvnible at: http://koin.e-techi1ik.t~-darrnstadt.den<on~-
player

5. References
[I] C. Griwodz, M. Bär, anti L. C. Wolf. Long-terin Movie Pop-

ularity in Video-on-Deinand Systems. In Pt.oceeclitigs of
ACM Mulritnedia '97, pages 34g3.57, November 1997.

[2] 1. Marshall and C. Roadknight. Linking Cache Performance
to User Behaviour. In Proceedings of tlie 31.~1 Itir'l WWW
Cacliiirg Workshop, Mar~chestei; Etiglatid, Jiinc 1998.

[3] S. Viswanathan and T. Imielinski. Metropolitan Area Video-
on-Demand Service using Pyramid Broadcasting. Miilritne-
rlicr Sysrein, 4(4): 197-208, 1996.

[4] K. A. Hiia, Y. Cai. and S. Sheu. Patching: A Multicast Tech-
nique for True Video-on-Demand Services. In Proceediiigs
of rhe ACM M~il/iirredia Corrfererice 1993, Brisrol, Et~gland,
pages 19 1-200, September 1998.

[SI M. Zink, C. Griwodz, A. Jonas, and R. Steinmetz. LC-RTP
(Loss Collection RTP): Reliability for Vicleo Caching in the
Internet. In Procee~lings of the Sevetirli ltz~er~iatioi~al Coitfer-
ence oti Pai~allel and Distrihrrted Svstems: \~Voriisl~ol>s. pages
281-286. July 2000.

[6] S. Floyd. V. Jacobson, C. Liii, S. McCanne, antl L. Zhang. A
Reliable Multicast Framework for Light-weight Sessions and
Applicaiion Level Frarning. Tratisnctioils oir Nerwor.kii~g.
5(6):784-803, 1997.

[7] L. DeCarmo. Core Java Media Frame~lork. Prenticc Hall,
Upper Saddle River, New Jersey, USA, 1999.

[8] T. Kaeppner. E111wicklr1tig verteil~er Multitn~~rlio-Applikn-
tiotretr. Vieweg Verlag, 1997.

[9] F. Eliassen and J. Nicol. Supporting lnteroperation of Con-
tiniious Media Objects. Tlleon arid Pracrice (tf Ol)jec/ Sys-
ierns: Special lssr~e on Distribrited Ohjecr Morragettieirr,
2(2):95-1 17, 1996.

[I01 H. Schiilzrinne, S. L. Casner, R. Frederick, and V. Jacobsoii.
RFC 1889 - RTP: A Transport Protocol for Real-Time Appli-
cations. Standards Track RFC, January 1996.

[I I] H. Schulzrinne. A. Rao, and R. Lanphier. RFC 2326 - Real
Time Streaming Protocol (RTSP). Standards Track RFC,
April 1998.

[I21 M. Handley and V. Jacobson. RFC 2327 - SDP: Session De-
scription Protocol. Standartls Track RFC, April 1998.

[I31 C. Griwodz, A. Jonas, and M. Zink. Affordable Int'rastriic-
ture for Stream Playback in the Internet. Technical Report
TR-KOM-1999-07, Darinstatlt University of Technology,
December 1999. Avalaible at ftp://ftp.korn.c-technik.tli-
darmstadt.de/piib/TR/TR-KOM- 1999-07.ps.g~.

[I41 S. McCanneei al. Toward a Common Infrastruciure Tor Mul-
timedia-Networking Middleware. In 7111 In//. Il/orkslrop oil
Network nnd Opcraring Sy.r/ertis Sirpport ,for Uigirnl Airdio
and Video (NOSSDA V '97). May 1997.

[I 51 J. Liesenborgs. Voicc over IP in rietworked i~irt~~cil eiivirotl-
tneiir.~. PliD tliesis, Limburgs Universitair Ccntriim. Liinburg,
Belgiiim, May 2000.

[I61 Darwin Streaining Server Manual. 2000. http://www.piiblic-
soiirce.apple.com/projects/streamin~StreamingServerHeIp/.

[I 71 G. Towner. Discoverirzg Qiricktitne. Morgan Kaufmann Pub-
lishers. San Francisco. California, USA, 1999.

[181 R. Freclerick. RTSP lnteroperability Bakeoff . In Proceed-
irigs of rhe fow-eighth hirernet Eirgirieerii~g Tnsk Force, Aii-
gust 2000.

[I91 G. Gudmundsson. Design of a Multiformat Capable Cache
for Video Streaming. Diplomarbeit. Fachbereich Elektro-
technik und Informationstechnik, Darmstadt Ilniversity of
Technology, September 2000.

KOM Player - A Platform for Experimental VoD Research
Michael Zink, Carsten Griwodz, Ralf Steinmetz
to be published at ISCC 2001,Copyright IEEE, See http://www.computer.org/policies.htm

KOM Player - A Platform for Experimental VoD Research

Michael 2ink1, Carsten ~ r i w o d z ' , Ralf steinmetzl r2

'KOM - lndustrial Process and System Communications 2 1 ~ ~ ~ , German National Research Center for
Darmstadt University of Technology Information Technology

Merckstrasse 25 Dolivostrasse 15
64283 Darmstadt, Germany 64293 Darmstadt, Germany

0049-61 51 -1 661 51 0049-61 51 -869869

Abstract -- In contrast to audio which is often streamed as complete music titles or even as a life feed from a

radio Station, video in today's Internet is almost only available as small clips and pre-generated programs.

Although some of the problems concerning AV streaming are reasonably solved right now, some work in fields

like wide-area distribution systems need further investigation to make applications like "True Video-on-

Demand" work. Our research and the one of many others is focused on problems that have to be solved to

make application like VoD work in the Internet. It is mainly concerned with wide area distribution. In this

paper we presents a platform for experimental VoD research which is thought to support researchers working

on VoD and wide-area distribution for audio and video content. This platform offers researchers the possibility

to implement their ideas without building a complete streaming environment and in addition allows the combi-

nation of different implementations. After motivating the development of our platform we present the design of

our platform, give an overview of the actual implementation and the existing components that we have already

built. Finally example scenarios for the use of our platform in research are given.

Keywords: VoD, Wide Area Distribution, RTSP, RTP

The use of the Internet for an increasing number of multimedia applications has lead to an increase of the amount of

audio and video (AV) traffic in the Internet. The technological basis for this development was laid by improvements in

the infrastructure of the "last mile" (ADSL, cable modems).

The most favored technology for the transmission of AV content is the streaming technology which allows a client

to start listening or watching content immediately after the request. The strong interest in AV streaming in the Internet

KOM Player - A Platform for Experimental VoD Research
Michael Zink, Carsten Griwodz, Ralf Steinmetz
to be published at ISCC 2001,Copyright IEEE, See http://www.computer.org/policies.htm

caused the availability of many commercial applications. Unfortunately these applications can not compete with the

quality of standard TV, especially in comparison to VoD scenarios. Consequently, several researcher are looking for

ways to overcome the gap between standard TV and VoD. Recent examples are research in the efficient distribution of

AV content, in the adaptation to network conditions including the TCP-friendliness of AV traffic, and in encoding

techniques like layered video.

It is a common way to prove new ideas by analytical results and by simulation, but these approaches may hide com-

plexity or shadow incorrect assumptions and are not always sufficient to prove applicability in real-world scenarios.

[GBW97] for example has shown that an often used model for User requests in VoD systems does not model real User

behavior. [MR98] has expressed doubts about typical web traffic modeling on the basis of anonymized web cache

traces. Researchers would profit from implementations of their ideas, either for an evaluation of the implementation

complexity, for an identification of the limits of the technique, or for an experimental deployment. Results from oper-

ating real-world systems, even on a small scale, provide input for further investigations using analysis and Simulation.

The KOM player documented in this paper is intended as a step towards such an experimental System for distributed

VoD systems.

Many research results in AV streaming have been integrated into commercial products in recent years. Examples are

AV en- and decoders (MPEG-X, H.2xx) and transport protocols (RTSP, RTPIRTCP). There is still a lot of research

going On, like layered coding or reliable multicast. In order to show the applicability of these new techniques in AV

streaming applications, they must be integrated into existing applications or completely new applications must be

build.

Our research focus is mainly in AV distribution systems such as [VI96, HCS98, ZGJSOO, FJL+97]. Conversations

with other researchers in this field have shown that there is a need for a standards-compliant, free and Open experi-

mental AV streaming platform. Vendors focus on expanding their key technologies in proprietary building blocks

while they keep their systems interoperable in all other blocks, they can rarely provide researchers with entirely Open

systems. Researchers, on the other hand, may Want to share and combine their implementations with research groups

in the Same or in complementary areas which makes interoperability with Standards inevitable.

KOM Player - A Platform for Experimental VoD Research
Michael Zink, Carsten Griwodz, Ralf Steinmetz

'

to be published at ISCC 2001,Copyright IEEE, See http://www.computer.org/policies.htm

The hope for interaction led us to redirect some of our time into the development of an AV streaming platform and

to make it freely available.

In this chapter the major design goals for an AV streaming environment are given. We decided to build our system

based on IETF standards in order to achieve interoperability with streaming applications deployed in the Intemet.

Since free software developments did not include many appropriate building blocks when we started, most of our sys-

tem is written from scratch. To make it acceptable by other researchers, we apply the following goals:

Reusable from the technical as well as the legal point of view, modular with well-defined interfaces

Interoperable with other standard compliant tools

Integratable with existing code

A. Reusability

When trying to build an AV streaming appl;cation one realizes that some functionality is needed in different parts of

the application. E.g., in the case of a video Server and client, protocols like RTPRTCP, RTSP and SDP are needed in

both parts. Therefore it is necessary to implement these protocols in a way that they can be easily integrated into

applications. In order to do this a well defined and documented API for each module is needed.

It is necessary to support different decoders, and several video Servers that stream diverse encoding formats (e.g.

H.263, MPEG-1, QuickTime). It is highly unlikely that the APIs of third party software are identical, leading to an

adaptation effort whenever a new library is integrated. A generic wrapper is used to hide this differences from other

parts of the system.

While such abstractions are typical for streaming applications, a generic structure like that of the JMF [DeC99] is

rarely found. Existing approaches implement either hard-coded sequences, or they consider frameworks that allow the

specification of an end-to-end behavior for complex multimedia systems. In the latter kind of systems, functionality is

described at the level of cooperating distributed components ([Kae97, EN961). It is typical for such frameworks to

consider networking as a component that is also under the control of the framework. In an environment that ensures

KOM Player - A Platform for Experimental VoD Research
Michael Zink, Carsten Griwodz, Ralf Steinmetz
to be published at ISCC 2001 ,Copyright IEEE, see http://www.computer.org/policies.htm

interoperability by specifying protocols (such as the RTSP streaming environment), we prefer a local approach. The

control of the framework extends only over a single machine and RTSP is used explicitly for communication. The

currently implemented components, called stream handlers, work at a granularity similar to the coniponents of the

JMF and do not provide an abstraction from the network. The stream handlers are modular media processing units

that can be connected dynamically by a controlling entity to form a Set of modules, which process data units sequen-

tially. The sequence of data units is.called the stream, the modules are the stream handlers.

Due to the interaction of RTP and RTCP, and the possibility of receiving data from several sources at a single port,

a directed, non-cyclic graph of stream handlers is an appropriate streaming model. In case of RTP, a stream handler

infrastructure seems to be appropriate only if dynamic reconfiguration is supported by the stream handlers as well as

the controlling framework. A packet that arrives at an RTP Source Stream Handler (a stream handler that reads UDP

packets from a network interface and interprets them as RTP packets) from an unexpected sender must be handled in

an application-defined way: it may be appropriate to discard the packet, to assign it to a default path, or to create an

additional stream for special processing.

Dynamic reconfiguration must also be supported to handle User interaction with a proxy cache of a VoD System if

that cache acts also as a reflector. The client receives data from origin server through the proxy cache, which writes

RTP packets from the origin server to disk as well as forwards them to the client. If the client pauses and the applica-

tion decides to continue the caching operation, the trunk of the stream handler graph that forwards data to the client

must be cut, while the trunk that Stores data on disk must be maintained. If the client resumes viewing, the application

must create a new stream handler graph, which retrieves the data from the cache.

B. Interoperability

We decided to support the protocols that are used in most AV streaming applications: RTPIRTCP [SCFJ96], RTSP

[SRL98] and SDP [HJ98]. The decision was also due to the fact that these protocols are standardized by the IETE

RTP, the real-time transport protocol framework, provides end-to-end delivery services for data with real-time char-

acteristics. These services are suitable for various distributed applications that transmit real-time data, such as interac-

tive audio and video. The companion control protocol (RTCP) provides feedback to the RTP sources in the RTP

session and to all participants in the session as well. The Same underlying transport service is used for both protocols

KOM Player - A Platform for Experimental VoD Research
Michael Zink, Carsten Griwodz, Ralf Steinmetz
to be published at ISCC 2001 ,Copyright IEEE, see http://www.cornputer.org/policies.htrn

(usually UDP) but a different Port is used to distinguish the packet streams. Each participant in an RTP session period-

ically sends an RTCP packet to all other participants in the session.

RTSP is an application-level protocol that provides control over the delivery of real-time data. The protocol is typi-

cally applied for control over continuous time-synchronized streams of continuous media such as audio and video and

acts as a "network remote control" for media Servers. Usually RTSP does not typicaiiy deliver the media streams itself

but controls strearns that are being carried by some transport protocol like RTP.

SDP was originally intended as a complement for the session announcement protocol SAP to communicate confer-

ence addresses and tool-specific information over the MBone. Alternatives such as HTML postings or E-mail distri-

bution of session descriptions were taken into account as well. With this primary goal in mind, SDP does not support

negotiation of any of session information, but is just used for dissemination.

C. Integration

The design of our system aliows the integration of already existing Systems and tools. One example is the use of

IBMYs videochargerl as video server for our client. In this particular case we use mainly the data pump of the Video-

Charger which is controlled by our RTSP implementation.

One major element in an AV streaming environment are audio and video decoders. Given the variety of encoding

formats (H.263, MPEG-1, ...) that are used by the applications interoperability can only be reached, if these formats

are also supported by our architecture. Since we are not able to build en- and decoders for all these formats, and there

are already C and C++ libraries that support some formats, we decided to make use of third party en- and decoders

fairly simple. So far we have integrated three different libraries: MpegTV, smpeg and mpeglib. All three of them sup-

port MPEG- 1 and mpeglib Supports also MPEG- 1 audio layer 3 (MP3).

The implementation consists of three applications that are sufficient for building an experimental streaming media

distribution system: client, server and proxy-cache.

KOM Player - A Platform for Experimental VoD Research
Michael Zink, Carsien Griwodz, Ralf Steinmetz
to be published at ISCC 2001 ,Copyright IEEE, See http://www.computer.org/policies.htm

When we started our implementation, there was only one implementation of RTSP available in Open source2. We

found out that this implementation preceded the RFC [SRL98] and was not easily updated and reused. After some

unsatisfactory experiences in adapting existing RTPIRTCP implementations for our goals, we decided to integrate our

own implementation [GJZ99] into the system.

We checked whether JMF [DeC99] fulfils our needs but MPEG-1 decoders e.g. are only available for Solaris and

Windows. RTP was integrated in some Open source projects like vic, but a closer look at this implementations showed

us that RTP is highly intergrated and was therefore not usable as a starting point for our own implementation. In the

MASH project a scalable multimedia architecture for distributed multimedia collaboration in heterogeneous environ-

ments [M+97] was developed. Streaming in MASH is realized by the MBone videoconferencing tools (vic, vat, ...) and

therefore bears the Same problems a described for vic.

We are also aware of a stand-alone RTP library [LieOO], but this project started after we decided to implement our

own RTP. The "Danvin" project [DarOO] was published by Apple after the Start of our work as well. It is concerned

exclusively with the server side and supports only the QuickTime file format [Tow99].

A. Overview

The implementation of the KOM-Player platform aims at the development of a research Prototype in the area of

wide-area distribution Systems for streaming media in the Internet. The existing code base considers mainly the distri-

bution of CBR MPEG-1 system streams, which was our initial target format because it combines hardware- and OS-

independent playback capability with an appropriate quality. Since this encoding format does not support the scalabil-

ity of encoding formats that can now and in the conceivable future be deployed in the Internet on a wide scale, more

flexible encodings are considered as well in our research. This is reflected in ongoing implementation work.

During the development we realized that the integration of various independently developed data Pumps, GUI and

decoder modules with the RTSP code results in an abundance of intermediate states (e.g. RTP connection to video

server established, decoder not yet initialized). To coordinate the state transitions, we have put an automaton (finite

state machine) at the core of the Session management (Figure 1). All events are controlled by the automaton to assure

KOM Player - A Platform for Experimental VoD Research
Michael Zink, Carsten Griwodz, Ralf Steinmetz
to be published at ISCC 2001,Copyright IEEE,see http://www.compiiter.or~policies.htm

RTSP
RTSP client

Automaton +
RTCP -
RTP

Figure 1: Client-server configuration overview

that only allowed actions will be executed. To enforce completeness of the automaton, we built a tool that generates

automata in C++ from an automata language.

B. Server

The server implementation js multi-threaded, where the main purpose of the separation into threads was to achieve

a better modularity. It uses only TCP for reliable delivery of RTSP packets [SRL98], RTSP over UDP is not sup-

ported. Like most other RTSP implementations, ours does currently not support deferred play requests.

Several data dumps are controlled concurrently by one RTSP server process. Two data pumps are implemented at

this time. One relays commands to a low level API of the IBM VideoCharger server, the other is hand-coded and

described in this Paper. Our data dump uses UDP for the transmission of RTP packets over IP unicast and multicast. It

supports MPEG-I System CBR, MPEG-I audio layer 3 (CBR, VBR under development) and raw H.261 data files.

An overview of the implementation is illustrated in Figure 2. Although it shows only a part of the implementation it

gives an overview of the classes that are involved in the administration of one RTSP session. The implementation is

separated into the 3 Parts: RTSP session adrninistration, RTSP communication and parsing and RTP streaming.

Each active RTSP session is represented by an RTSPServerSession object. The object inherits KOMServer class

which implements the automaton for the server. The state machine is driven by the client's RTSP messages. The

automaton controls the RTP data pump and answers the RTSP messages.

KOM Player - A Platform for Experimental VoD Research
Michael Zink, Carsten Griwodz, Ralf Steinmetz
to be published at ISCC 2001,Copyright IEEE, see http://www.computer.org/policies.htrn

RTSP Cornmunicarion and Parsing

MNTCPSocket

RTSPFillBuffer ir̂ i

I

RTSPServerSession

RTSP Session Admii~is~ra~iort

: RTP Streaming (VC)
I

I
I MNRTPhase

r---fT7 Apkq- 1 , -1 RTPEncode RTPSinkSH
M - 1 I I A , I 41 MNRTCP 11

I
I RTP Slreaming (MN)

Figure 2: Server

Currently each RTSPServerSession runs in a thread. The RTSPServerSession object is associated with an RTSPFiII-

Buffer object (which is a TCP socket). The RTSPFillBuffer object receives data from a TCP socket and parses the

RTSP message. Each message object is delivered to its session for processing. The reception and parsing process is

initiated by an object that monitors the RTSP communications.

The RTP streaming part performs the data transfer from a file to the network. It is separated into two threads, RTP

and RTCP. It is managed by the RTSP part that initiates the streaming, changes the present streaming position within

the stream, halts the streaming temporarily and destroys it. The RTP thread performs the delivery of the media content

to the network. It includes: accessing and reading from a media file in the file system, preparing RTP packets (packeti-

zation) and scheduling and emitting the RTP packets to the network. The RTCP thread prepares and emits sender

reports to a separate UDP Port and receives receiver reports.

C. Client

The client of the KOM-Player platform uses third party C++ tools or libraries for the GUI and the decoder imple-

mentations. It is designed to cooperate with other streaming Servers beside ours. This required interoperability testing

KOM Player - A Platform for Experimental VoD Research
Michael Zink, Carsten Griwodz, Ralf Steinmetz
to be published at ISCC 2001 ,Copyright IEEE, see http://www.computer.org/policies.htm

with other RTSP and RTPRTCP implementations. Taking part in an RTSP interoperability test [FreOO] with other

streaming servers and clients helped us to enhance our own implementation. We tested the client with several servers

and.realized that the video format is currently the limiting factor.

Figure 3 shows the most important classes of the client. Four functional p'arts can be distinguished: RTSP Session

administration, RTSP communication, RTP streaming and content decoding. Since some of these parts are identical to

the one used by the server, only the parts exclusively used in the client are described here. The comparison of the two

class diagrams (Figure 2 and Figure 3) shows the reusable classes.
I

1 ,

MNRTPStreamer
RTSP Commirnicaiion und Parsing

I
I

MNTCPSocket
MNStreamer GraphMgr

I r

RTSPParserBase Q
I - I

MNThread

I
I DecoderCommandInterface

KOMPlayer I

I

'layer
MNRTPbase

I
I

Mpeglibl

RTSP Session Adminisrroiion
RTP Srreaming

I' 4

Conrenr Decoding

Figure 3: Client

Classes in this part are only used in the client since a visual presentation at the server is not necessary. In combina-

tion with the automaton and an abstract interface between the automaton and the decoder we can integrate several

available decoders. The generic API makes it simple to integrate decoders into our client and we expect support for

other decoders (e.g. MPEG-2, H.261) too.

KOM Player - A Platform for Experimental VoD Research
Michael Zink, Carsten Griwodz, Ralf Steinmetz
to be published at ISCC 2001 .Copyright IEEE, See http://www.computer.org/policies.htm

The player is tested on Linux, its current GUI is based on the Qt library3. To work as a Netscape plug-in, the plug-

ger too14 is used at this time.

D. Proxy Cache

Since one of our research topics is on caching for multimedia streams we also designed and are currently building a

proxy cache for those streams. A detailed design can be found in [GudOO]. Figure 4 shows the class diagram of the

proxy cache. Parts taken from server and client are not described again.

The proxy is not an RTSP proxy as understood in the RFC [SRL98]. Rather, it is an RTSPIRTP proxy cache that

stores content in addition to handling RTSP requests.

Our caching approaches consider the typical commercial request to communicate with a stream's origin server for

every RTSP session. RTSP messages from different RTSP sessions are multiplexed onto one connection between an

origin server and a proxy. RTSP SessionIDs are the keys to de-multiplex sessions. A proxy installs an RTSP connec-

tion to an origin server on-demand when a request for the particular origin server is received from a client. The con-

nection is tom down when no more active RTSP sessions between the proxy and the origin server exist.

A proxy server maintains an instance of the RTSPProxySession for each active RTSP session. Since the proxy

cache acts as a client (of the server) and as a server (for the client) its automaton is a combination of the server and cli-

ent automaton.

The most significant changes compared to server and client occur in the RTP streaming part of the proxy cache.

This is caused by the fact that the proxy cache needs client and server functionality. The client functionality is differ-

ent in a way that a stream can be

stored on the local disc

forwarded to the client and

the combination of both

The server functionality means to forward an incoming or to send a cached stream to the requesting client. This

functionality is shown in the RTP streaming part of Figure 5 and explained in more detail in.[GudOO].

KOM Player - A Platforrn for Experimental VoD Research
Michael Zink. Carsten Griwodz, Ralf Steinmetz
to be published at ISCC 2001,Copyright IEEE, see http://www.computer.org/policies.htrn

I

I
RTSP Comm~rnicafion and Parsing I RTP Sfreaming

I
I

MNTCPSocket
RTCPSenderReceiver

1 n I

Downsrreiim
RTSP 4 4

Downsrrenm

RTPStreamerBase

4
I
I

.RTSPProxySession I
I

Sessit>nlD " I -da 7 RTPDepacketizer M
Clienr FSM

S e n w FSM -9
RTPDepacketizer D

I
I
I

i

RTPReceiver W

I
I

RTPStreamer K=Ji
RTPMonitor

I
I
I

RTSP Session Adminisrrarion I
I

Figure 4: Proxy cache

E. RTSP/SDP Implementation

Since RTSP is an ASCII-based protocol we use a generated to parse the RTSP messages. The parser is at the

core of the RTSP implementation. In combination with a factory class that maps RTSP messages to their related

classes, functional variations are easily implemented. This is useful in experimental environments were new function-

ality and modifications are tested. By using the existing RTSP implementation we were able to create RTSP classes

for the proxy cache quickly that implement different behavior. SDP is also an ASCII-based protocol and implemented

with an additional parser for SDP messages. Functional adaptation works as with the RTSP parser.

IV. CONCLUSIONS AND FUTURE WORK

Most available commercial products today have a well defined and documented API that makes it convenient to

integrate functionality of those products in other applications. Unfortunately APIs are often not sufficient for research.

5 . using bison++, an extension of GNU bison: http://sunsite.bilkent.edu.tr/pubAang~age~/~++/tools/flex++bison++/

KOM Player - A Platform for Experimental VoD Research
Michael Zink, Carsten Griwodz, Ralf Steinmetz
to be published at ISCC 2001,Copyright IEEE, See http://www.computer.org/policies.htm

Media Stream

FileSource RTPStreamer

a RTPPacketizer ~ ~ ~ ~ o n i t o r

TO server 2 L TO ciient

RTCPSenderReceiver RTCPSenderReceiver

Figure 5: Streaming graph for the proxy cache
If e.g. it is assumed that a new en-Idecoder technology should be tested in an application, the codecs must be inte-

grated into the application. For distribution systems research, networking protocols or Storage mechanisms must be

replaced.

With our ongoing work on wide-area distribution systems for AV content it became clear that we had to build our

own AV streaming platform to perform further investigations. We Want to give some example scenarios for research

that exploits our platform.

A. Caching

Multimedia streaming makes much greater demands on the transmission network than traditional data transmission

because of the greater volume of the data and because of the real-time properties. Multimedia streaming requires a lot

of memory space in hosts and high bandwidth in links. Large-scale video-on-demand can only be provided with dis-

tributed systems. Content can be stored in a number of caches that are located at various places in a network. A

streaming request from a client is served from a cache instead of from a centrally located server. This saves network

resources and provides the User with better quality and lower costs. In addition all caches need proxy functionality to

KOM Player - A Platform for Experimental VoD Research
Michael Zink, Carsten Griwodz, Ralf Steinmetz
to be piiblished at ISCC 2001,Copyright IEEE, See http://www.computer.org/policies.htm

communicate with the origin server. The development of client-independent caching Systems, and cooperative

caching for high-volume content are important research issues.

B. Patching, Gleaning

The basic approach in Patching [HCS98] is the use of multicast for the delivery of a video streams to requesting cli-

ents. Clients that request the Same video shortly after the start of its transmission start to Store the multicast transmis-

sion in the local cache irnrnediately. The server sends unicast streams (patch streams) to the clients containing the

missing initial portion of the video, until the cached portion is reached. Then, the clients use their caches as cyclic

buffers. Gleaning is an extension of Patching in a way that cache Servers are deployed as proxy caches, i.e. clients will

always connect to their proxy server to access data on the origin server. If the client requests a stream and this stream

is already being delivered to a cache server or client, and the sender decides that the patching window for this stream

is still Open, it orders the cache server to join that multicast stream. Additionally, it Starts the transmission of a patch

stream to the proxy cache. The proxy cache has to set aside sufficient buffer space for the cyclic buffer to hold the

length of the patch stream, even if it does not cache the movie; the stream is delivered as a unicast stream to the client.

It is important to evaluate the implementation complexity to select the relevant optimization options.

C. Adaptive streaming

UDP is usually used as transport protocol for AV streaming. In contrast to TCP, UDP does not include any mecha-

nisms like flow control and retransmission. Adaptation is also mandatory to keep UDP based streaming TCP-friendly

and therefore avoid that those streams are blocked by backbone Operators. Some commercial products provide adapta-

tions to the actual network condition. We Want to investigate how a caching support for adaptive streaming could be

realized. Our focus is on caches that support caching for adaptive streams transporting different formats (MPEG-I ,

QuickTime, layered video) [GudOO]. We intend to integrate the adaptation functions into the proxy cache of the

KOM-Player platform.

KOM Player - A Platform for Experimental VoD Research
Michael Zink, Carsten Griwodz, Ralf Steinmetz
to be published at ISCC 2001,Copyright IEEE, see http:llwww.computer.org/policies.htm

D. Relinble multicast

When caches are used in applications like VoD it must be ensured that the content on a cache is an exact copy of the

original. In order to achieve this requirement, a transmission to the caches can be made independently from transmis-

sions to clients, or the transmission to the client is extended to allow a reliable transmission to the cache by additional

repair mechanisms.

The second case can be realized by extending RTP to remember lost packets and initiate retransmissions that are

ignored by the client. We implemented a first version in our RTP stack and are right now integrating it in a proxy

cache to test it.

We hope that our implementation can help other researchers in creating experimental platforms to test and demon-

strate their new ideas. The KOM-Player platform6 may be used under the conditions of the GNU public license but

the core elements are also available for other licensing.

'. Available at: http://kom.e-technik.tu-darmstadt.de/kom-player

KOM Player'- A Platform for Experimental VoD Research
Michael Zink, Carsten Griwodz, Ralf Steinmetz
to be published at ISCC 2001,Copyright IEEE, see http://www.computer.org/policies.htm

[DarOO]

[DeC99]

[EN96]

[FJL '~~]

[FreOO]

[GBW97]

[GJZ99]

[GudOO]

Darwin Streaming Server Manual, 2000. http://www.publicsource.apple.com/projects/streaming/

StreamingServerHelp/.

LindenDeCarmo. Core Java Media Framework. Prentice Hall, Upper Saddle River, New Jersey, USA,

1999.

F. Eliassen and J. Nicol. Supporting Interoperation of Continuous Media Objects. Theory and Practice of

Object Systems: Special Issue on Distributed Object Management, 2(2):95-117, 1996.

S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhang. A Reliable Multicast Framework for Light-

weight Sessions and Application Level Framing. Transactions on Networking, 5(6):784-803, 1997.

Ron Frederick. RTSP Interoperability Bakeoff. In Proceedings of the forty-eighth Internet Engineering

Task Force, August 2000.

Carsten Griwodz, Michael Bär, and Lars C. Wolf. Long-term Movie Popularity in Video-on-Demand

Systems. In Proceedings of ACM Multimedia197, pages 340-357, November 1997.

Carsten Griwodz, Alex Jonas, and Michael Zink. Affordable Infrastructure for Stream Playback in the

Internet. Technical Report TR-KOM-1999-07, Darmstadt University of Technology, December 1999.

Avalaible at ftp://ftp.kom.e-technik.tu-darmstadt.de/pubR-KOM-1999-07.ps.gz.

Gunnar Gudmundsson. Design of a Multiformat Capable Cache for Video Streaming. Diplomarbeit.

Fachbereich Elektrotechnik und Informationstechnik, Darmstadt University of Technology, September

2000.

[HCS98] Kien A. Hua, Ying Cai, and Simon Sheu. Patching: A Multicast Technique for True Video-on-Demand

Services. In Proceedings of the ACM Multimedia Conference 1998, Bristol, England, pages 191-200,

September 1998.

[HJ98] Mark Handley and Van Jacobson. RFC 2327 - SDP: Session Description Protocol. Standards Track RFC,

April 1998.

[Kae97] Thomas Kaeppner. Entwicklung verteilter Multimedia-Applikationen. Vieweg Verlag, 1997.

[LieOO] Jori Liesenborgs. Voice over IP in networked virtual environments. PhD thesis, Limburgs Universitair

KOM Player - A Platforrn for Experimental VoD Research
Michael Zink, Carsten Griwodz, Ralf Steinmetz
to be published at ISCC 2001,Copyright IEEE, See http://www.cornputer.org/policies.htm

Centrum, Limburg, Belgium, May 2000.

[MR98] Ian Marshall and Chris Roadknight. Linking Cache Performance to User Behaviour. In Proceedings of

the 3rd Int'l WWW Caching Workshop, Manchester; England, June 1998.

[~ + 9 7] Steve McCanne et al. Toward a Common Infrastructure for Multimedia-Networking Middleware. In 7th

Intl. Workshop on Network und Operating Systems Support for Digital Audio and Video (NOSSDAV '97),

May 1997.

[SCFJ96] Henning Schulzrinne, Stephen L. Casner, Ron Frederick, and Van Jacobson. RFC 1889 - RTP: A

Transport Protocol for Real-Time Applications. Standards Track RFC, January 1996.

[SRL98] H. Schulzrinne, A. Rao, and R. Lanphier. RFC 2326 - Real Time Streaming Protocol (RTSP). Standards

Track RFC, April 1998.

[Tow99] George Towner. Discovering Quicktime. Morgan Kaufmann Publishers, San Francisco, California, USA,

1999.

[V1961 S. Viswanathan and T. Imielinski. Metropolitan Area Video-on-Demand Service using Pyrarnid

Broadcasting. Multimedia System, 4(4): 197-208, 1996.

[ZGJSOO] Michael Zink, Carsten Griwodz, Alex Jonas, and Ralf Steinmetz. LC-RTP (Loss Collection RTP):

Reliability for Video Caching in the Internet. In Proceedings of the Seventh International Conference on

Parallel nnd Distributed Systems: Workshops, pages 28 1-286, July 2000.

