
C

[ZJGStOO] Michael Zink, Alex Jonas, Carsten Griwodz, Ray Steinmetz; LC-RTP (Loss
Collection RTP): Reliability for Video Caching in the Internet; Proceedings of
NGITA 2000, June 2000.

LC-RTP (Loss Collection RTP): Reliability for Video Caching in the Internet

Michael zinkl, Alex .Tonasl, Carsten ~riwodz' , Ralf ~ t e i n r n e t z ' , ~
'KOM - Industrial Process and System Communica- ' 1 ~ ~ 1 , Gennan National Research Center for

tions Information Technology
Darmstadt University of Technology Dolivostrasse 15

Merckstrasse 25 4293 D a m t a d t , Germany
64283 Darmstadt, Germany 0049-61 51 -869869

The increasing amount of audio-visual (AY) content that is
offered by websites leads to a network bandwidth andsior-
age capaciv pmblem. Caching is one of the techniques
that can ease this problem. But even in a caching system
rhe distribution of data (i.e. the AV content) should be
bandwidth-efficient. FUI-the~more the deliveiy to the end-
user must regal-d the restrictions implied by real-time data.
This paper describes LC-RTf: an eficient andsimple reli-
able multicast proiocol that complies with RTP ([I]). Zts
deployment would require neither changes to the network
infrasmcture nor to existing end-urer presentation soff-
nla>-e. It provides lossless transmission of AV content into
cache Servers und concurrent[y, lossy real-time deliveiy to
end-users using multicast. Zt achieves reliabiliv by
retransmission. The trafic increme is minimal because the
transmission of the AV content und any caching will rake
place while the end-user is served Support for multicast in
the distribution system ensures that all cache servers af a
multicast group can cache an AV content while transmit-
ting it to a consumer Finally wepresent the results of lang
distancefile transmissions in order 10 shaw thar LC-RTP
pe1f01-ms well und meets the requirements far lassless
transmission o fA Vcontent.

1. Introduction

The increasing interest in transmining audio-visual data
over the lnternet shows that streaming is becoming an
irnportant applieation. The huge arnount of data in stream-
ing rnedia Systems leads to network bandwidth and Storage
capacity problerns. Another problem is the response time,
which should be minimal in order to preserve its attractive-
ness. Considering these restrietions and problems it would
be advantageous to support such streaming operations wiih
a generic distributed infrastructure [2]. A new and popular
content can be cached by nodes close to the customer and
can be served to the end-users with low lateney, avoiding
the use of network resources upstrearn from the cache
server.

Since network bandwidth is a scarce resource (and we
follow tbe assurnption that it will always becorne scarce

again soon after an infrastructure enhancernent) dedicated
cache server update transmissions should be avoided.
lnstead cache servers should receive the content by Iisten-
ing to strearns that serve end-users as well. While this can
be irnplernented by rnulticast, the reliable transfer into the
cache must be guaranteed, while the data is also transmit-
ted to the end-user in real-time. The latter implies that an
end-user can not wait for any resent packets instead of dis-
playing the current data, so the normal data flow rnust per-
sist and any retransmission must happen aside of the
normal data flow.

This paper describes our protocol Set that fulfils these
cornbined requirernents in the current lntemet infrastruc-
ture. One of its basic design goal was a protocol set that
requires neither costly changes to the nehvork infrashuc-
ture nor the replacement of end-user software.

It focuses on LC-RTP, an WC-cornpliant extension to
RTP for reliable file transfer that requires no infrashucture
rnodifications except on the servers and caches. lt provides
lossless transfer of real-time data by using loss collection
(LC). The sender sends RTP-packets via rnulticast to all
receivers (clients and eache servers) in the rnultieast group.
If a cache server detects a packet loss during the transrnis-
sion it will be memorized in a list. At the end of the session
servers that are eaching the video from this rnulticast trans-
mission request the missing parts frorn the sender. The
sender retransrnits all missing blocks and waits until no
more packets are requested.

Based on our own implementation of LC-RTP we did
some tests to show that LC-RTP works reliably and per-
f o m as least as well as TCP-based transportation proto-
cols.

2. Protocol Set for Streaming Media

In the Intemet, one set of protocols is currently adopted
-partially or cornpletely- by cornpanies in their products for
streaming rnedia (Apple, Real Networks, SUN, IBM,
Cisco, FVC.com, ...). These protocols are the cornbination
of RTSPISDP for stream control and RTPIRTCP for
streaming.

The Real Time Streaming Protocol (RTSP, [3]) is an
IETF W C that is supposed to be used in conjunction with
various other protocols. lts functionality is not generic but
rather concentrated on stream control. It references ele-
ments of HTTP to which it is weakly related It can be used
with either TCP or UDP as an underlying transport proto-
col. The data transfer protocol that is mentioned in the RFC
and that interacts most closely with RTSP, is the Real-Time
Transfcr Protocol (RTP, [I]). The same approach applies
for the session description protocols; althouph no fixed
session protocol is defined, the RFC specifies the interac-
tion with the Session Description Protocol (SDP, [4]).

SDP is originally considered as a companion protocol
for SAP, the Session Amouncement Protocol. However,
besidcs this mode of distribution for session infonnation,
othess Iike download from the web or E-mail distribution
are also compatible with this kind of infonnation.

Table 1: Protocol set

reliable file transfer & real-time streaming

RTP (Real-time Transport Protocol) was created to
transport real-time data over the Internet. VoD, Internet
telephony, MBone-conferences and all video- and audio
conferences make specific time rcstrictions on how the
data is delivered. RTP provides payload type identification,
sequence numbering, time-stamping, delivcry m o n i t o ~ g
and Supports multicast if the underlying protocol provides
this service.

LC-RTP

RTP-compatible
RTCP message

use RTP header extensions

continuous byte count

retransmission after recep-
tion
of 10% Iists

stream control & sequencing

RTSP

sföndard protocol

use SDP

Usually it is used over UDP, as UDP allows multiplex-
ing and does not have any retransmission schemes like
TCP. RTP is used together with RTCP (RTP Control Proto-
col [I]) which allows a quality m o n i t o ~ g of the network
connection and has minimal control over the session. Fur-
thcmore RTCP can be used to identify the sender. The
main task of RTCP is to send periodic control packets to all
members of the session using the same distribution mecha-
n i sm as the data packets.

We have decided to build on these protocols. The result-
ing protocol set is listed in Table 1, including the tasks that
are handled by each protocol.

LC-RTCP

RTCP-compatible

User applicatian-defined
RTCP packets

loss-list report receiver
t0 Sender

. rehansmission request
aner random waiting
time

SDP

- standard protocol - speeifies play range

different sources for
data Segments

2.3. LC-RTP

RTP with Loss Collections (LC-RTP) implements our
idea of a unified protocol for stream transmission that is
compatible with RTP, and rcliable transfer of content into
the cache Servers. It solves these problems by making RTP
reliable, while the ability is maintained that non LC-RTP
capable clicnts (standard RTP clients) can receive an LC-
RTP stream as well. The functionality of LC-RTP 1s
described in Section 4.

2.4. LC-RTCP

Just as RTP has a companion protocol RTCP for the
exchange of infonnation about the data transfer, LC-RTP
requires a cotnpanion protocol LC-RTCP, which 1s RTCP-
compliant. In application-defined RTCP packets, the
receivers inform the sender about their losses after the
reception of a BYE packet, unless all of its missing packets
have earlier been reported by another receiver.

3. Reliable Multicast

The design of a reliable multicast protocol is deter-
mined by the requirements of a specific application 01 area
of applications that the protocol is built for. Real-time
applications will accept a lossy data flow but they will not
accept a significant delay. This implies that data recovery
should not intempt the flow.

Some examples for reliable multicast protocols are
SRM (Scalable Reliablc Multicast, [5]), TRM (Transport
Protocol for Reliable Multicast, [6]), RMTP (Reliable Mul-
ticast Transport Protocol, [7]) and LRMP (Light-weight
Reliable Multicast Protocol as an Extension to RTP, (81).
TRM and LRMP make similar assumptions about Ioss
detection and repair requests as SRM, so SRM can be dis-
cussed as an examplc for all three protocols. RMTP pro-
vides sequenced lossless delivery of buk data (e.g.
MuIticast FTP), without regard to any real-time deliveiy
restrictions. It is not applicable for streaming applications,

because the retransmission of the missing data is done
immediately afier the loss detection.

is a reliable multicast framework for light-weigbt
sessions and application level framing. It's main objective
is to create a reliable multicast framework for various
applications with sirnilar needs of the underlying protocol.
Each member of a multicast group is responsible for loss
detection and repair requests. The repair requests are multi-
Cast after waiting a random amount of time, in order to sup-
press requests from other members sbaring that loss. As it
is possible that the last paeket of a session is dropped,
every member multicasts a periodic, low rate, session mes-
sage ineluding the highest sequence nurnber. It must be
mentioned that SRM needs a specific distribution infra-
smieture which is not widely available in the Internet at the
moment.

A third class of reliable multicast protocols are the ones
which include FEC (forward error correction) as a tech-
nique to aebieve reliability [9]. Reliable multicast achieved
through FEC is also applicable for streaming Systems,
since usually no retransmissions are necessary during the
multicast transmission. The m j o r drawback of this
approach is that error eorrection infotmation appropriate
for the client with the worst connection must be included in
each multicast paeket. This will lead to a higher use of
bandwidth thus leading to a reduced connection quality for
the clients. In addition a completely new proroeol must be
built in the case of layered FEC since this model is not
compatible with alrcady existing protocols.

With LC-RTP we present a reliable multicast protocol
that is applicable for real-time streaming which does not
require changes to the infrastructure and which is compati-
ble to standard Internet protocols. It uses an approach that
allows a weighted retransmission (sections of the content
that are missed by multiple receivers are handled before
sections that are reported missing from one receiver only).

4. LC-RTP Design

in an environment for AV-caching it is absolutely neces-
sary that the cached version of the content in the proxy
cache is stored 100% correctly to avoid error propagation
towards the client. With the use of standard RTP, informa-
tion that gets lost during transmission is also lost to the
caches. The pprblem is that these errors would be transmit-
ted wjth every stream that is forwarded from the cache
server to a client. In any case that should be avoided since
it has tobe regarded as a degradation of the Service quality.
During each transmission data can get lost and thus lead to
a higher error rate in stored copies.

LC-RTP solves these problems by making RTP reliable,
while the ability is maintained that non LC-RTP capable

clients (standard RTP clients) can receive an LC-RTP
stream as well.

To describe LC-RTP the transmission process is divided
into two Parts. The fust part works like a regular RTP
transmission and ends after tbe transmission of the original
content following by the transmission of a BYE message.
The second part follows this BYE message and is used to
reiransmit all lost data. In this scenario the receiver is a
cache server tbat has received a request from a client but
that has reeognized that the requested content is not stored
locally and tberefore a request forwarding to the original or
to a cache server located upstream towards the original
server is performed. Figure 1 gives a general overview of
the different steps that are executed during a LC-RTP ses-
sion.

Receiver

...
LC-RTP CO-unication

.

4.1. Actions during the content transmission

The sender streams the content that is requested by a
client as a multicast stream to all receivers of a multicast
group including that client. In order to give the receiver the
possibility to resexve exactly the required disk space in
case of data loss, it is necessary to send infotmation
beyond the regular infomtion of an RTP packet. In our
case this consists of a byte eount which is ineluded in each
RTP packet. This mechanism facilitates the synchroniza-
tion between byte count and the data which are represented
by it. If the byte count were sent in an extra packet, e.g. via
RTCP, the sequence of the byte count and data packet can
be interchanged, or the byte count packet can get lost.

The receiver stores the data and detects a loss by check-
ing the byte count with the last memorized byte eount. If a
packet Ioss is detected, the difference between the two byte

Counts and the length of the actual packet is computed and
this computed size can be reserved on the disk for a later
insertion of the retransmitted data (see Figure 2). The
rcceived payload of the packet is then stored after this
resetved gap. Furtbermore the loss must be written to a loss
list. If no loss is detected the received data is stored on the
disk immediately.

Each cachc server implementation has to nansfonn the
byte count value into its own file indcxing information. As
a consequence it is possible to havc different filc layouts on
the sender- and receiver side. For example one cache
sewer implementation stores the file as raw data and
another stores some header information with it.

hyte count
C I]File at the sender
I L I I I iPayload for LC-RTP pkt.
i i' Packct loss

Y
Filc at the receiver

r

Left empty for insettion of
missing data at retransrnission

Figure 2: LC-RTP byte count supports retransmission

As a consequence of mcluding the byte count in the data
packet, and the requirement of serving regular RTP clients,
only an RFC-confoming protocol extension was an option
for ur; including the bytc count in the payload of the packet
would cause problems for standard reeeivers (see Section
5.) .

At the end of the transmission, an end packet is sent
including the last hyte count, in order to inform the receiv-
ers of the normal end of the transmission including infor-
mation to check whether data preceding the end packet was
lost.

Reserving the computed space in the file in case of a
lass detection has advantages for several reasons. Our solu-
tion 01 resetving the correct amount of space on the hard
disk is very simple and efficient, because it presewes the
sequential nature of the stored data. And this property is
essential for an efficient use of a hard disk, as seeking on a
disk importantly d i i i s h e s its throughput. Furthennore,
this alloas LC-RTP to be compatible with multimedia file
Systems ([lO], [II]) which are penalized by inserting or do
not support it at all.

4.2. Actions after the content transmission

After sending the end packet the sender starts a hmer.
This timer should be a multiple of the worst casc R T i
(Round Trip Time) between the sender and tbe known
receivers. This RTT ean be computed with the periodic
RTCP packets that are sent for ealculahons of the network
quality During this timer penod at least one loss list has to

be received froma receiver that has detected packet losses,
or the session ends.

With the reception of the end packet the receiver fin-
ishes the normal procedure of the transmission of the con-
tent and starts the procedure for initiating retransmissions.
To avoid a possible overload of the sender, loss lists are
sent from the receivers after a random amount of time. The
loss list includes all ranges of the detected data losses. If
ranges are direct ncighbors, they are combined into one
range, in order to keep tbc size of the list small.

If a loss list amves at the server, the requested data
ranges are stored in a schedule list. This list includes a
Counter for each range to indicate the number of rcquesting
clients. This allows the use of a strategy for building a
retransmission schedule (e.g. most frcquently lost fust).

Resent packets are of the same size as the packets that
were sent during the fust transmission to simplify storing
at the recciver. The resent data range is dcleted from this
list. The client saves each requested, retransmitted packet
at the position that is indicated by the byte count. Concur-
rently, thc loss list is updated. If the byte count is not
included in thc loss list the packct is discarded.

When the last entry of the list is processed and deletcd,
the sender resends thc end packet in order to infnrm the
receivers that this retransmission cycle is over. This proce-
dure is repeated until an application-specific retransmis-
sion Counter has reached its threshold value or until no
more loss lists are sent.

To avoid the blocking nf a receiver a timer is necessary
tbat terminates the session if no end packet or other reseni
packets are received after a considerable period.

5. Use and Integration of Protocols

The design of LC-RTP was made within the constraints
of an WC-confoming RTP implementation. This secrion
describes how the standard RTP protocol is extended to
meet the goal deseribed above.

5.1. LC-RTP as an RTP Extension

The main problem in mapping LC-RTP into RTP is the
byte count, as it has tobe inctuded mto the header of RTP
(see Scction 4.). This is iiecessary in order to keep content
of LC-RTP packages compatible with RTP-related packag-
ing RFCs and therefore to make it possible for standard
RTP clients to receive LC-RTP streams. A legal way of
inserting the byte count into the RTP header and not into
the payload is the use of the extension header of RTP
(Figure 3). By setiing the X-bit a variable-length header
extension to the RTP header is appended LC-RTP defuies
two kinds of header extensions. They are defined to easily
distinguish whether a packet is sent as part of the regular

1 1
0 1 2 3 1 1 6 1 8 9 0 1 2 1 ~ 5 6 7 8 9 0 1 2 3 1 5 5 7 B 9 0 I
* ~ . . . ~ * ~ * ~ ~ ~ * . * ~ * ~ * . * ~ + ~ * . . ~ * . * . . ~ + . * ~ * - . . * ~ * . * ~ . ~ * . * ~ . . * ~ * ~ ~ . * ~ *

1 def ined by proL11c I lcnglh 1
* ~ * ~ + ~ * ~ * ~ * . * ~ * ~ * . * ~ * . * ~ * ~ * ~ * ~ * ~ * - * ~ * ~ * - . ~ + - * - * ~ , - * ~ * ~ * - + ~ * ~ * - + ~ *
I b y ~ e count 164 b i ~ ! I
* ~ * ~ * ~ * ~ * . . ~ * ~ * . . ~ * ~ . . * ~ + . * ~ * ~ * . + ~ * ~ + . . ~ . . . ~ * ~ * . * ~ * . * . . ~ * . . ~ . ~ * . +
I h ~ r e saunt I .~.~...~.~..*~.~..+~.....~..*~*~*-*~*.*-.~.-*~+~*-*~*..-*~*..~*~.

Figure 3: RTP header extension

strearn or during a retransmission phase. The only differ-
ence between them is the value in the identifier field. Each
extension header has, in addition to the two RTP dependent
extension fields, the byte count field. For a current video
streaming application this field should be 64 bit long, as a
cyclic byte count must be prevented.

During the usual transmission, the RTP transrnission is
made as usual, except for the hyte count which is included
in the RTP header. At the end of the transmission an end
packet is sent. An appropriate way to do this is by sending
an RTCP packet. This packet should not be the normal
RTCP BYE packet, as this is used for other rneanings.
Thus, an application-dependent extension RTCP packet
must be created. An application defined RTCP packet is
shown in tigurc 4 .

I 2 i
3 1 2 3 4 1 6 7 8 9 0 1 2 ? 4 5 6 7 8 9 0 1 2 1 < I 5 6 7 S 9 0 1
.~.~*..~~~.~+~*.*~...-.-...~.~..*~*.*-*~...~*.*~.~*..~*.*.*.*.*~.
Y - ~ I P subtype I PT-IIDP-~OI I lengcn I
+~*~ . . * - * . *~ *~* . *~ *~ . . *~ * . .~ * - * . *~ * . * - *~ * . .~ * -+ - *~* . *~ * . * .+ . *~+ .+

SSRClCSRC 1
. . + ~ * . * ~ * ~ * . + ~ + ~ * ~ + ~ * ~ * ~ + ~ . . * ~ * ~ * - + ~ * - * ~ * ~ . - * ~ * ~ . - * ~ + . . ~ * ~ * . * ~ * . .

nam- (&SCII! (sec to LRTPI 1
. ~ * . * ~ * ~ * ~ * ~ * . * ~ * ~ * . + ~ . . . ~ . ~ * . . ~ . ~ * . . ~ . . , ~ . ~ . . . ~ * ~ * ~ ~ ~ . . * ~ , ~ . ~ * ~ .

application~dependenk daLa . . 1
* . * ~ . ~ * . * ~ . ~ * . . ~ * ~ * ~ * ~ * . + ~ * . * ~ * . . . * ~ . ~ + - * ~ . - * - * ~ * - * ~ * ~ * ~ + ~ * - * ~ * ~ .

Figure 4: Application defined RTCP packet

LC-RTP defines two application defined RTCP packets.
The first one is the end packet and the second one is the
loss list packet. The only additional data transmittcd in the
end packet is the last byte count of the session. The name
of the packet itself is of enough infomation for the
receiver to interpret this as the end of the normal transmis-
sioii. The list appended into the loss list packet should be
appended as a list of byte count ranges.

The extension to RTP is rninimaI and should be ignorcd
by other applications. This is very irnportant, because it
cnsures that a cache server update can be rnade in parallel
to a customer request.

During LC-RTP tests we detected that vic and vat do not
accept any extension to RTP, hecause alt packets with the
x-bit Set are rejected. After examiuation of thc source code
we realued that both implernentations are not 100% RFC
compliant.

We believc that for the intendcd application class, the
header extension is sufficienty chcap with an overhead of
8 to 12 bytes per packet. Furthermore this type of extension
is defmed in the original RTP RFC ([I]) and should -theo-
retically- he irnplernented by all RTP implementations.

6. Tests

We fmally implernented RTP and LC-RTP in Ct+.This
implementation was used for the tests we performed and
which are described in detail ui the following.

6.1. Test Scenario

Our goal for these tests was to show that LC-RTP per-
fonns as well and reliably as other data distribution proto-
cols (e.g. FTP) and can be used for the reliable distnbution
of AV content.

We transmitted two files (6MB and 2OMB of MPEG-I
Movie) from locations in Gemany, the US and Canada to a
receiver located at our institute. We show results from the
US (National Institute of Standards and Technology) and
Canada (University of Ottawa). The tests were performed 5
times for each file from both locations each time with a dif-
ferent transmission bandwidth. We dccided to perfonn thc
tests over a larger distance since we expected to have a
higher possibility of losses than it might be in a LAN or at
conncctions in Gemiany.

For each test information about the retransrnission was
logged at the receiver and thc original file and the transmit-
ted file were compared to assure that the transmission com-
pleted succcssful. The cornparison for all tests was
positive, proving that all transmissions were error-frec. We
observed that an optimal bandwidth can be found, which
results in a mininiim transmission time. We ohservc also
that below this optimurn, the total number of lost packcts
per transmission remains the same, i.e. we did not gain reli-
ability from a reduccd bandwidth.

TABLE 2 Test Results (Bandwidth, Duration)

,

BW
[kBiVs]

1000

File Size

WByte]

6

20

Max. BW
[BiVs]

Duration
[SI

NIST

1047552

1024048

NIST

41

160

Ottawa

1022800

1024000

-

Ottawa

42

160

6.2. Test results

The results we obtained from the logging we performed
during the LC-RTP sessions showed us that retransmis-
sions had to be made in almost all of tbe tests. The logging
information also confirmed that the number of retransmis-
sions increases with the size of the handwidth we tried to
send the files. If the handwidth is set much higher than the
actual bandwidth of the luik between sender and reeeiver
multiple retransmissions for one packet are more likely.
Bur also in these cases thr files were transmitted without
any errors

During the tests it also hecame clcar that the quality of
the link hetween the US and Dannstadt is of a higher qual-
ity than the one hetween Canada and Darmstadt. We also
transrnined both files via FTP from both locations to
Darmstadt to ohtain some information ahout the perfor-
mance of a traditional file transfer protocol.

Max. BW Duration
File Size

576000 328000

20

TABLE 3 Test Results FTP

7. Conclusions

Caclung and prefetching of AV content is a powerful
method to inerease overaU performance in the lntemet.
LC-RTP is designed for this environment. LC-RTP is a
simple and efiicient reliable multicast protocol compatible
with thc original RTP, which is stated by the tests we per-
formed. lt needs to be implemented only in Servers and
caches, other tools are not nffcctcd. Duriiig tlie tests we
realized that LC-RTP did perform well in point-to-point
tests which leads us to the concliision that LC-RTP must
not he used inmulticast scenarios only.

All resourees are used carefully and the extension per-
mits an implementation to use a simple method to keep the
sequential nature of the stored data without b u f f e ~ g . This
meihod considers hard disk p e r f o m n c e and possible net-
work stmctures without wasting resources (like main mem-
ory and CPU power). Its intention is to allow a maximum
number of concurrent streams handled by the cache serv-
ers. As no additional paekets are sent during thc regular
session and the packet sizes are hardly bigger than those of
an Standard RTP sender, all acccss control mechanisms and
network quality computations can rcmain unmodified. The
only difference to a normal transmission is the fact that
atisr tlic session, a rcmansmission of the lost packets to

receivers with LC-RTP extensions is performed. A con-
forming, standard RTP receiver would recognize this as a
normal session termination, and would not be affected.

Multicast ensures a minimum load increase on the net-
work, because the packets are sent only to members of the
multicast group, during a transmission to a regular cus-
tomer. LC-RTP also supports late joins and early ends of
the transmission. The full value of the LC-RTP cxtensioii
in combination with a special cache server 1s not yet
achieved by simple caching mechanisms. We have already
planned a combination of the enhanced Patching technique
([l2], [13], [14]) with LC-RTP to achieve a relevant
decrease in the number of redundant transfers. Lass pat-
tems indicate that the technique would work well as a com-
pleuient of the FEC [9] proposed by Biersack et. al.

References
[I] H. Schulmnne. S. Casner. R. Frederick, V Jacobson, RTP:

A Transporl Prorocolfor Reul-Eme Applicalions, Request
for Comments: 1889, Network Work~ng Group. 1996.

[2] C. Griwodz, M. Zink, M. Liepert, Gon, R. Steinmetz, Mul-
ricastfor Savings in Cache-based Video Distribution, to ap-

'

pear in MMCN 2000, San Jose. January 2000.
[3] H. Schulninne, A. Rao, R. Lanphier, Real Time SIreaming

Protocol (RTSP), RFC 2326, IETF, April 1998
(41 M. Handley, V. Jacobson, SDP: Session Descrrpiion Proro-

col, RFC 2327, IETF, April 1998.
(51 Sally Floyd, Van Jacobson, Ching-Gung Liu, Steven h.1~-

Canne, and Lixia Zhang, A Relioble Mulficusl Fromework
for Liglzi-weighr Sessions ond Applicolron Level Fr'roniing.
ACM Transactions on Nehvorking. 1997.

[6] Bikash Sabata. Michael J. Brown. and Barbara A. Denny,
Transporr Pmlocolfor Reliable Mulficasi: TRM, IASTED
International Conference on Networks, 1996

[7] lohn C. Lin, Sanjoy Paul, RMTP: A Relioble Mullicosr
Transport Protocol, INFOCOM 1996

[SI Tie Liao. I.igh1-weiglilRelrobIcMultrcosf Pmlocol, Techni-
cal Repori, INRIA, LeChesnay Cedex, France, 1998

[9] J.Nonnenmacher, E.Biersack, D. Towsley, Pariry-Based
Loss Kecovery for Reliable Mullicasi Transmissron, ACM
SIGCOM 1997, Cannes, France, September 1997

[I01 R. Haskin and F. Schmuck, The Iiger Shork File Systeni,
Proceedings of lEEE 1996 Spring COMPCON, Santa
Clara, CA, USA, February 1996.

[I11 Martin, P S. Narayan, B. Özden, R. Rstogi and A. Silber-
schatz, The Fellini Multimedia Storage Server. in Chung:
Multimedia Infomtian Storage and Management, Kluwer
Aeademic hblishers, 1994,

[I21 K.A. Hua, Y Cai, S. Sheu. Poiching: A Muliicasr Technique
for Tnre fideo-on-Demond Services, Proc. of ACM Multi-
media 1998, pp. 19 1-200, 1998.

[I31 C. Griwodz, M. Liepert, M. Link, and R. Steinmetz, Tune 10

LombdoParching, In 2nd Workshop an Intemet Server Per-
fomanee (WISP 99). at ACM Sigmetries '99. May 1999.

[I 41 S. W. Carter, D. Long, In~pmving Video-on-Demand Server
Eßiciencv rhrough Stream Tupping, Proc. of ICCCN'97.
Las Vegas, NV, USA, September 1997.

