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Abstract—In the aftermath of large-scale disasters, critical
communication infrastructure is often destroyed. Ad hoc net-
works can restore wireless communication with basic function-
alities, especially for civilians in the affected areas. However, as
humans form groups and tend to stay around important locations
like shelters in such situations, the network is highly intermittent.
Autonomous Unmanned Aerial Vehicles can act as controllable
and highly mobile data carriers between separated network
clusters to enable delay-tolerant inter-cluster communication.
A possible heterogeneous set of usable aerial vehicles and the
necessity to adapt the system to various environments requires
the system to be highly flexible. Combined with severe constraints
in energy usage or number of available vehicles, there is a need
to increase the efficiency of inter-cluster flights. In this paper,
we present approaches to optimize inter-cluster flights based on
communication performance and energy efficiency. The resulting
optimization model is a powerful tool for operators to adjust
system settings to match required demands.

I. INTRODUCTION

The number of natural large-scale extreme weather disasters
such as floods and hurricanes has risen significantly in recent
years and is expected to further increase in the future [22].
In the aftermath of such events, critical infrastructure for
information and communication technologies (ICT) is often
destroyed [15], [30], although functioning ICT has shown to
be an important factor in reducing disaster-related fatalities
[22]. Device-to-device communication among smart mobile
devices and the formation of large, delay-tolerant mobile
ad hoc networks (DTN-MANET) within the affected areas
can relief the situation especially for civilians, by providing
basic communication functionalities [2], [10], [11]. However,
humans have shown to naturally form groups and to stay
around important locations such as shelters and power or
water resources in disaster situations. This severely limits
the communication performance in the disaster area, as the
network is highly intermittent and mobility between distinct
network clusters is rare [2], [10].

To establish inter-cluster communication, message relaying
over mobile data carriers is an effective technique [27], [28].
Especially in disaster scenarios, Unmanned Aerial Vehicles
(UAVs) have several advantages over both static and ground-
based relays. As a UAV system can be deployed where and
whenever it is needed, it is highly flexible and allows for a
quick and situation-adapted deployment. Furthermore, aerial
vehicles are independent of flooded, obstructed, or destroyed

roads and can move in a direct line between points-of-interest,
rendering them highly mobile in contrast to pedestrians or
cars. Besides, sensing capabilities of UAVs provide valuable
information for operators or the system to detect temporary or
unexpected events, which require the system to adapt [27]. We
have shown the applicability of autonomous UAVs and their
impact on intermittent DTN-MANETs in previous work [13],
with the focus on small, autonomous commodity multicopter
UAVs due to wide availability, low costs, pilot-less flight, and
in particular their ability to hover. Simulations suggest that a
communication support system comprised of just a few UAVs
significantly decreases the delay until messages arrive and
also increases the message spread throughout the intermittent
network. However, communication performance of the inter-
cluster links is strongly dependent on factors such as the
present disaster scenario and the DTN-MANET, but also on
the available UAVs, their flight properties, battery capacity, or
similar, which was not considered up to this point.

To provide optimal performance in regard to different ob-
jectives like fast data delivery in the network or low power
consumption on the UAVs, operators of the aerial communica-
tion support system have to consider a plethora of parameters.
As, e.g., the set of available UAVs can be highly heteroge-
neous with different ranges, velocities, flight times, and more,
taking only a few parameters into account for an suitable
solution is very complex. Furthermore, the requirements on
the support system can change constantly due to temporary or
unexpected events, and thus, parameters must be re-evaluated
and the system must be adapted to the new situation, which
poses an additional burden for operating personnel. In this
paper we therefore present three approaches to optimize inter-
cluster flights based on distinct system demands and highlight
their differences. An existing simulation framework [13] was
enhanced with a configurable optimization model, that is able
to combine different optimization objectives. This model gives
system operators the ability to analyze communication as well
as system performance under various settings, and eventually
to find the optimal system settings to match the demanded
requirements. The existing framework did only provide a
static power consumption model for hovering and full speed
flight, which is not suitable to model power consumption of
UAVs realistically. Thus, we also integrated a velocity-based
energy consumption model for multicopter propulsion based



on specifications and measurements of a real-world UAV that
allows a more realistic energy consumption estimation of the
UAV system.

The paper is structured as follows. Initially, we present
related work for inter-cluster communication and trajectory
optimization of data ferry UAVs in Section II. Our energy
consumption model is presented in Section III. Afterwards,
Section IV describes different objectives for optimizing data
ferry links and the combined optimization model, which is
then evaluated in Section V. Section VI concludes the paper.

II. RELATED WORK

Overcoming partitions in a Mobile Ad Hoc Network
(MANET) and transferring messages between intermittent
network clusters is generally approached by adding disruption-
and delay-tolerance to the communication protocols [1], [17],
[24]. In the resulting delay-tolerant ad hoc networks (DTN-
MANETs), every node can act as a mobile relay, thus, carrying
received messages around and distributing them when connect-
ing with other nodes. More sophisticated protocols [9], [14],
[21], [25] use group formations or encounter probabilities to
mitigate common problems like broadcast storms or overfilled
data memories. However, node mobility is required for a
working communication, but is especially in a post-disaster
scenario very slow or even impossible due to obstructed and
destroyed roads or the common human trait of group formation
and highly static clustering around important locations such as
shelters [2]. Introducing specialized and usually controllable
mobile relay nodes, also called message or data ferries, has
shown to greatly improve the communication in intermittent
networks [23], [28], [29].

With the increasing availability and falling costs for Un-
manned Aerial Vehicles (UAV), either fixed-wing planes or
rotary-wing multicopters, they have gained significant atten-
tion for their applicability as highly mobile and controllable
data relays or data collectors. Connecting multiple locations by
an optimal route, known as either the Minimum Latency Prob-
lem [4] or the Travelling Salesman Problem [5], is an np-hard
calculation, and thus, most often heuristics and algorithms are
used to calculate optimal trajectories [7], [28]. In [28], a simple
nearest neighbor heuristic is compared with a traffic-aware al-
gorithm, which takes the number of messages and the location
of their destination in consideration, to improve connectivity
in the network. Similarly, gradient-based trajectory algorithms
for optimal connectivity of ground nodes are proposed in [7].
Besides general connectivity, trajectories can be optimized to
allow for maximized data throughput or to minimize required
transmission power for data exchange in the network [29]. An
increase in data throughput with decreased transmission power
by optimizing a UAV’s trajectory is achieved in [27]. Mozaffari
et al. [16] used UAVs to collect data of multiple static IoT
devices to decrease transmission energy of the devices used
for long-range communication to a central data sink. Pearre
et al. [19] used reinforced learning and stochastic techniques
to optimize UAV trajectories to allow distributed sensors in
a wide-spread network to minimize its transmission power

similarly. To connect distinct emergency shelters with large
data loads and considerable up- and downlink times with the
Internet, a genetic algorithm is used in [3].

For a fixed-wing UAV, power-efficient trajectories towards
an objective based on the UAV’s constraints in movement
and power consumption are calculated in [26]. A theoretical
energy consumption model for a multicopter UAV is provided
in [16]. In contrast to these two examples, either for fixed-wing
or multicopter UAVs, most approaches assume the deployed
UAVs to be generally appropriate for the scenario and do not
take power consumption of UAVs into account. However, in
our case of long-term inter-cluster communication provision
with small commodity hardware, power consumption of the
UAV has a significant influence on the system performance
and runtime. It is therefore necessary to have a realistic energy
model for the used UAVs to obtain meaningful results.

III. PROPULSION ENERGY CONSUMPTION MODEL

The simulation framework we presented in previous work
[13] used a simple movement and energy model, which
consumed energy at a constant rate for flying and for hovering.
Adjusting the speed did not influence the amount of consumed
energy. To enable a more realistic evaluation of different
speeds and their impact on flight duration and performance,
we created a sophisticated energy consumption model for
multicopter UAV propulsion. This model is based on available
specifications and conducted lab measurements with the Intel
Aero Ready-to-Fly Drone1.

Initially, we reviewed the officially available specifications
and measured the energy requirements of the UAV. The
manufacturer’s specification state that the UAV is able to hover
for 20 to 24 minutes with a 4000 mAh 4S LiPo battery. In that
case, the power draw of each of the rotors would be between
2.5 A and 3 A at the given supply voltage of 14.8 V. We
made an indoor flight test with a slightly smaller and lighter
3700 mAh 4S LiPo battery for full 22 minutes, after which the
battery was at 15% charge. The overall power draw was around
8.6 A, however, this also includes power consumption from the
onboard computer, which is specified to 10 W, and maneuvers
that were necessary to hold the UAV steady. Furthermore, we
note that the indoor lab measurements did neither include wind
nor movement from the UAV, and thus, power consumption in
realistic environments will most likely be higher.

In the next step, we assessed the thrust provided by the four
9x6 inches two-bladed propellers. The University of Illinois
at Urbana-Champaign provides a database of propeller perfor-
mance data [6], which we used to reconstruct the performance
of the Aero Drone. Since there are no official specifications
on the used propellers, we used the performance data of a
comparable 9x6 inches APC propeller.

The provided thrust T (n) of a propeller is calculated by

T (n) = cT,n ρ n
2 D4 (1)

1Specifications for the Intel Aero Ready to Fly Drone:
https://www.intel.com/content/www/us/en/support/articles/000023272/drones/
development-drones.html (accessed 01.08.2019)



where n is the number of revolutions per second, cT,n is
the thrust coefficient of the propeller at the given n, ρ is
the air density, and D is the propeller diameter [18]. For
simplification, we chose ρ = 1.2045 kg

m3 statically, which is the
air density at 20◦C and a height of 30 meters. The diameter of
the propeller is 22.86 cm (9 inches). The weight of the UAV
including the 3700 mAh LiPo battery is 1.237 kg, and thus, an
upward force FH = 12.131 N is required for the UAV to hover,
or around 3 N from each rotor. In the performance data we
found that approximately 5000 RPM are required by such a
propeller to provide this force. With the given value of cT,5000
[6] we use Equation 1 to calculate n as

n =

√
T (n)

cT,n ρ D4
(2)

which gives us 5005 RPM as the specific value necessary for
hovering the UAV. Furthermore, we use the propeller power
equation in [20]

P (n) = cP,n ρ n
3 D5 (3)

together with cP,5000 from the database to calculate that
1.86 A would be required to drive each propeller, or 7.44 A in
total. In comparison with the values obtained from the indoor
flight test, the calculated values show a high correlation. The
additional 1.1 A in the indoor flight test can, as already stated,
be attributed to the onboard computer and required maneuvers.

The performance data shows a high usability to calculate
realistic values for the provided thrust and the required power.
For the simulations, we wanted to enhance the UAV perfor-
mance, and thus, increased the battery capacity to a realistic
maximum. With the available maximum thrust T (8200 1

s ) =
7.4 N per rotor and 865 g dry mass of the UAV, around
660 g of battery can be added such that the thrust-weight-ratio
stays above 2.0, which is necessary for the UAV to maintain
highly maneuverable. A 6600 mAh battery has shown to be
the largest size fitting on the UAV without increasing the
overall takeoff weight too much, and is, therefore, used in
the simulations. Nevertheless, the proposed model is flexible
and can handle an arbitrary battery size.

We calculated several key performance characteristics, that
will later on allow the stateless calculation of thrust and current
with the propulsion energy consumption model. This includes
the minimum and maximum motor speeds (2500 RPM and
8200 RPM2), the thrust required for a safe vertical descent
and ascent velocity of 5ms , respectively, and hovering. Thrust
calculations for specific velocities can be approximated using
the air drag [18], [26] on the UAV as

D(v) =
1

2
ρ v2 A cD (4)

on the one hand, and the thrust required to keep the velocity v
stable (Eq. 1) on the other hand, where A is the area exposed
to drag, in this case the top or bottom area, respectively, and

2Intel Aero RTF Drone: Intel Forum Entry on Motor Specifica-
tions, https://forums.intel.com/s/question/0D50P0000490HoiSAE/request-for-
motor-esc-and-propeller-specs (accessed 01.08.2019)

TABLE I: Motor characteristics used in the simulator. Values
are stated per each rotor.

RPM cT cP Thrust [N] Current [A] Note

2500 0.1291 0.0610 0.74 0.22 Idle state
4000 0.1245 0.0652 1.82 0.98
5150 0.1263 0.0648 3.06 2.08 5m

s
descent

5550 0.1293 0.0630 3.60 2.53 Hover
6000 0.1273 0.0640 4.19 3.25 5m

s
ascent

7000 0.1232 0.0649 5.52 5.24
8200 0.1210 0.0647 7.43 8.39 Full throttle

TABLE II: Total thrust FT , induced forward thrust Fv , and
theoretically achievable horizontal velocity vh with respect to
a specific pitch angle α.

α FT [N] Fv [N] vh[
m
s
]

5◦ 14.46 1.26 5
10◦ 14.62 2.54 6.5
20◦ 15.32 5.24 8.3
45◦ 20.36 14.4 12
60◦ 28.80 23.94 15.7

the drag coefficient cD of the UAV. Eventually, seven motor
characteristics are used for the propulsion energy consumption
model in the simulation, which are stated in Table I, consisting
of provided thrust and required current draw.

The simulator looks up the thrust that is required to reach
or hold a specific velocity, and receives the corresponding
current. Values which are not directly provided by a character-
istic are interpolated between the next lower and next higher
characteristics. The amount of thrust required for a specific
velocity v can be—similarly to the vertical movement—
calculated by finding the thrust Fv in movement direction
that is equal to the induced drag Dv (Eq. 4). In case of pure
horizontal movement, Fv can be easily deduced from the thrust
FH required to hold the altitude and the forward pitch angle
α:

Fv = tan(α)FH . (5)

Clearly, as α increases, FH also has to increase to hold the
altitude steady. The increase for small angles, however, is very
small. The forward thrust induced on the UAV also induces
air drag, that ultimately defines how fast the UAV can move in
the equilibrium of forces. The maximum possible horizontal
velocity at a given pitch angle α and a given forward thrust
Fv can be calculated as

v(α) =

√
2Fv

ρAαcD
=

√
2 tan(α)FH
ρAαcD

. (6)

By pitching the aircraft, the size of the exposed area in the
forward direction is also changing, and thus, Aα has to be
calculated as

Aα = sin(α)Atop/bottom + cos(α)Afront/rear (7)



Fig. 1: Required energy to move the UAV a meter for a
certain velocity. The minimum refers to the most efficient
flight velocity, that is 9 m

s in case of our real-world UAV.

with the simplification of equal areas for the top and bottom as
well as the front and rear faces, respectively. Interestingly, due
to the quadratic increase of air drag and the relatively small
front facing area, low pitch angles yield already comparably
large horizontal velocities. Similarly, the overall increase in
pitch angle and induced forward thrust lets the velocity grow
asymptotically towards the maximum [18]. As an example,
pitching the UAV to α = 5◦ will give a maximum possible
horizontal velocity of vα=5◦ = 5ms using Equation 6. Counter-
intuitively, this only requires an approximated 9% increase in
overall thrust, but is compliant to flight tests with the drone,
where low pitch angles resulted in unexpected high speeds.
However, a small α will lead to low acceleration, and thus,
the UAV most likely will accelerate with higher pitch angle
and thrust first but then pitch and throttle back to hold the
desired velocity with the most efficient setting. More examples
for pitch angles α and their respective maximum horizontal
velocities vh are found in Table II. The relation between
energy consumption and flown distance is shown in Figure 1.

With this new model for a multicopter’s propulsive energy
consumption, it is now possible to assess the system’s effi-
ciency based on different velocities and respective power con-
sumption. Up to this point, we do not incorporate additional
influences such as wind or the change of air density in relation
to height or temperature.

IV. OPTIMIZING DATA FERRY LINKS

We applied autonomous UAVs on highly intermittent DTN-
MANETs in previous work [13] and have shown their sig-
nificant impact on the overall communication performance.
Due to wide availability, low costs, pilot-less flight, and the
ability to hover, which grants more stable communication
links than during movement [8], we solely focus on small
and autonomously flying commodity multicopter UAVs. They,
however, have severe restrictions especially regarding flight
times in contrast to larger multicopter or fixed-wing UAVs in
general. As simulations have shown, an increase in the number
of deployed UAVs using data ferries among all network clus-

ters [3], [28] does not necessarily increase the communication
performance, due to the transport routes of data ferries getting
saturated quickly [13]. It is therefore more efficient, especially
in large-scale scenarios where routes may be too long for
the UAVs to complete them, to establish 1-to-1 connections
between network clusters instead of routing UAVs over all
of them. On these data ferry links, UAVs directly oscillate
between clusters, and thus, data is distributed more evenly
and more quickly than in the former case. Although not part
of this work, we note that data ferry links connecting multiple
network clusters can be found, for example, by calculating
a minimum spanning tree over all clusters using Prim’s or
Kruskal’s algorithm.

Through the course of a disaster, the requirements on the
overall communication and the type and amount of data
that is being distributed can change dramatically [12]. For
example, emergency calls need to be distributed very fast and
reliable to allow quick responses of emergency services or
voluntary helpers, whereas private messages between friends
and families should be delivered within a reasonable time, but
do not necessarily have to regarding the common good [10].
To provide the optimal performance regarding a system’s
objective, for example fast data delivery in the network or
low power consumption on the UAVs for a long-term service,
operators of the aerial communication support system have to
consider a plethora or parameters and it must also be highly
flexible to allow for the required adaptions. Furthermore, the
communication performance of inter-cluster links is not only
dependent on the disaster scenario itself, but even more so
on the available UAVs and their flight properties. With a
possibly very heterogeneous set of available commodity UAVs
with different ranges, velocities, flight times, and more, taking
only a few parameters into account for an optimal solution is
very complex, and the required re-evaluation after changing
the target communication performance for example, places
additional burdens for operating personnel.

We therefore automate the process of finding system set-
tings providing the desired communication performance. This
relieves the operating personnel but also allows to optimize
the process in the first place based on chosen requirements.
An analysis of multiple requirements on the communication
performance and the data ferry links revealed three gen-
eral approaches to optimize the settings of such a system.
These approaches are namely link-energy-efficiency, ferry-
time-efficiency, and message-energy-efficiency which will be
discussed in the following. From a wide range of available
system settings, the UAV’s velocity v moving on the link
between clusters and the time period td it hovers over an
cluster while distributing and collecting messages are most
influential on the communication performance. The maximum
possible velocity vmax is defined by the multicopter UAV and
restricts v such that 0 < v ≤ vmax. And furthermore, the
operator may restrict td such that td,min ≤ td ≤ td,max with
minimum and maximum boundaries for the distribution time.



A. Link-Energy-Efficiency

The link-energy-efficiency optimization maximizes the us-
age of a UAV’s battery power while also maximizing the
number of round trips to prolong the time a UAV can provide
the communication support before requiring to be reloaded or
exchanged. A round trip for a UAV on a link is defined as
the way from one network cluster to the other and back. We
also define one of the network clusters as handover position,
thus, as the cluster where the UAV exchange happens, which
is the one cluster that is closer to the recharging station. A full
round trip starts and also ends at this cluster. Therefore, the
distance traveled for one round trip dRT is equal to two times
the distance dcluster between the clusters, and furthermore,
the time required for one round trip depends on the distance,
the link velocity v, and the distribution time tdist, such that

tRT (v, tdist) = 2 ∗ dcluster
v

+ 2 ∗ tdist =
dRT
v

+ 2 ∗ td. (8)

Similar, the energy that is required for one round trip can be
calculated as

ERT (v, tdist) =
dRT
v
∗ E(v) + 2 ∗ tdist ∗ Ehover (9)

where E(v) is the energy that is required for flying with
velocity v and Ehover the energy for hovering. The energy
consumption is calculated using the propulsion energy model
as introduced in Section III. In combination with the overall
energy available in the battery, we can calculate the number
of full round trips that are achievable by the UAV as

nRT (v, tdist) =

⌊
Eusage

ERT (v, tdist)

⌋
(10)

where Eusage is the amount of energy that is available for
the flight. For safety reasons, we define a battery threshold
ethresh that, when reached, triggers an immediate return to
the recharging station, to prevent a loss of the UAV by battery
failure. Furthermore, the usable energy is also reduced by the
energy Ehop which is required to reach the handover position
from the recharging station.

Eusage = Ebattery ∗ (1− ethresh)− Ehop. (11)

Therefore, the link-energy-efficiency LEE(v, tdist) ∈ [0, 1]
estimates the amount of used battery power:

LEE(v, tdist) =
ERT (v, tdist) ∗ nRT (v, tdist)

Eusage
. (12)

B. Ferry-Time-Efficiency

The optimization function for ferry-time-efficiency is used
to minimize the delivery delay of inter-cluster communication.
The worst-case scenario for message transportation between
two clusters is that a message is generated shortly after the
UAV has departed. In that case, the message will remain in
the cluster until the UAV returns and just then transports it over
to the other cluster. Using the worst possibility to describe the
transport time of the data ferry has the advantage of being
applicable for all messages at once, not just a subset. The

ferry-time-efficiency FTE(v, tdist) is, therefore, independent
of the energy consumption and can be described as

FTE(v, tdist) = 3 ∗ dcluster
v

+ 2 ∗ tdist (13)

which results in an estimation for an overall transport duration.

C. Message-Energy-Efficiency

With the message-energy-efficiency function, system set-
tings are adapted to minimize the amount of energy that
the transportation of each message over the data ferry link
consumes, by increasing the amount of messages transported
by the UAV but also decreasing the energy that is used for the
movement itself. Although messages might be stored longer
in the UAV’s memory, we only take messages that are new
and are not known on the destination network cluster into
consideration for the calculation. Furthermore, the rate of
messages that are created within a certain time frame rmsg
must be known or anticipated a priori, e.g., by monitoring
the DTN-MANET beforehand, to be able to calculate the
optimized system settings. As this rate is an average value,
we do not use the worst-case estimation for the transport time,
but the average round trip time as shown in Equation 8. The
message-energy-efficiency function

MEE(v, tdist) =
ERT (v, tdist)

tRT ∗ rmsg
(14)

calculates the average energy consumption per transported
messages.

D. Additional Side Conditions

In some specific scenarios, optimizations will result in
system settings with which the UAV cannot fly even one full
round trip, mostly when dcluster is large in comparison to the
UAV flight range. We therefore define the side condition (1)
nRT (v, td) ≥ 1 (cf. Eq. 10), so that the given settings allow
at least one round trip. If this cannot hold at any setting, the
available UAVs are not suitable for the respective scenario
and we have to re-evaluate the situation. Error handling if this
applies, however, is out of the scope of this paper.

Furthermore, an optional parameter tRT−max is included,
which resembles an upper limit for the overall round trip dura-
tion. If the operator sets it, for example, to the lifetime value of
messages in the DTN-MANET, it guarantees that all messages
are distributed between the two clusters within their lifetime.
When activated, side condition (2) tRT (v, td) ≤ tRT−max (cf.
Eq. 8) must hold for all optimization functions.

E. Weighted Combination Optimization Model

Apart from prioritizing distribution time, UAV service
time, or energy consumption per transported message alone,
respectively, the system operator could emphasize multiple
objectives, such as quick dissemination but also moderate
transport energy. For this case, we use weights for each
optimization function such that wLEE +wFTE +wMEE = 1.
Naturally, setting one of these weights to 1 is the same as
using the respective function alone. The operator can state the



preferences for each objective by the weights and an overall
solution

Fcomb(v, tdist) = wLEE ∗ LEE(v, td)

+ wFTE ∗ FTE(v, tdist)

+ wMEE ∗MEE(v, tdist)

(15)

can be calculated as the combination of the weighted and
normalized functions.

The optimization model uses the function to calculate the
combined score Fcomb(v, tdist) ∈ [0, 1] for a pair (v, tdist).
To find the optimal values for v and tdist, we use a numerical
approach by calculating Fcomb for each pair within the given
boundaries tdist,min ≤ tdist ≤ tdist,max and vmin ≤ v ≤
vmax. Values for v and tdist are incremented by ∆v = 0.5 m

s
and ∆t = 1 s, respectively. The increments, however, can be
changed if necessary.

V. SIMULATION RESULTS

The optimization model and the energy consumption model
(cf. Section III) were both implemented as additions to the
simulation platform for Unmanned Aerial Systems, which was
described in [13]. Before a UAV is dispatched to a specific
data ferry link, the optimization model calculates the best link
velocity v and message dissemination time tdist based on the
energy model and battery constraints of the respective UAV
and the optimization weights given by the operator. Resulting
parameters are used to program the UAV, which then takes
off and then transport data between the network clusters of
the specific link. The simulation environment was specifically
chosen to evaluate the influence of the different functions
and also the weighted combination of them. We defined a
single link between two network clusters, one located around a
hospital and one at a school, with a distance of dcluster = 2km
in an inner-city environment in Darmstadt, Germany. The link
is constantly served by one UAV, while a second UAV is ready
to replace the first when necessary. The recharging station
is placed in the courtyard of the local fire brigade, around
350m from the network cluster at the hospital, from where a
UAV system could be operated reasonably. Each simulation
was performed with 100 DTN-MANET nodes that moved
around a 100 m radius around the hospital and the school,
respectively. Nodes were placed randomly on the map and
used a pedestrian movement model with map data from Open
Street Map3. The target location the nodes will gather around
is also chosen randomly, resulting in similar but unevenly split
DTN-MANET clusters as network clusters. All simulations
were repeated with ten different random seeds and simulated
a duration of 5 hours. Messages were generated a rate of
approximately 10 per minute, which was used to define rmsg ,
each of them from a randomly chosen node with all nodes as
targeted recipient (broadcast). The message lifetime (time-to-
live, TTL) was set to 10 and 20 minutes, respectively, and the
optional parameter tTR−max used for the guarantee of timely
message delivery in side condition (2) was set to the same

3Open Street Map, www.openstreetmap.org (accessed 16.05.2019)

Fig. 2: Message recall (percentage of reached nodes) with
10 and 20 minutes message lifetime, respectively. Omitting
side condition 2 (tTR−max) has significant impact for MEE,
because messages expire during transport, and thus, do not
reach the other cluster.

value as the applied TTL. The battery threshold ethresh was
set to 15%, which is sufficient to return to the base in this
scenario.

Figure 2 shows the recall, i.e., the percentage of nodes that
eventually received one message, for each optimization, re-
spectively. Whiskers indicate the 2.5th and 97.5th percentiles,
colored boxes the 25th and 75th percentiles, bold dashes the
median, and colored circles the mean values, respectively.
For example, optimizing for link efficiency (LEE) with a 10
minute TTL and side condition (2), all messages are distributed
to all nodes. Removing side condition (2), however, leads to
a degradation of message dissemination. As indicated by the
whisker, around 25% of messages do not reach the other side
of the link in that case.

Thus, using or omitting the side condition tTR−max has
significant influence on message dissemination, especially
when optimizing for minimal transport energy (MEE). When
omitted, MEE chooses the distribution time td high and the
flight velocity v = vmin, and thus, message transport takes too
long to be successful. In our simulations with 10 minutes TTL,
this resulted in not a single successfully transported messages
over the link, as indicated by a mean recall of 50%. The shown
deviation indicates the unevenly split network clusters, as
described above. Even when using a 20 minutes TTL without
the side condition, only 25% of messages reach the other side
of the data ferry link. The ferry time optimization (FTE) aims
for fast dissemination, thus, td is always chosen minimal and v
is always chosen maximal. Therefore, the side condition does
not have any effect here.

Especially for the application in disaster scenarios, we think
a complete message dissemination among the network clusters
to have top priority. As a conclusion, we will always use the
side condition tTR−max in the further course of the evaluation.

Figure 3 shows the delivery delay of messages for 10 and
20 minutes message lifetime, respectively. The lowest delay is
reached with the ferry time optimization (FTE) due to picking
minimal td and maximal v. Thus, we can already deduce that



Fig. 3: FTE optimization is independent of applied TTLs, as
the fastest parameters are always chosen. In contrast, MEE
minimizes transport energy by fully utilizing the TTL.

the FTE optimizer returns the parameter settings as expected.
With 10 minutes message lifetime, the optimizers for link
(LEE) and message energy (MEE), respectively, perform
similar in delivery delay. For 20 minutes TTL, however, MEE
uses the available time more fully to wait longer and transport
more messages in one link traversal, resulting in significantly
increased delivery delays in this case, whereas LEE only
slightly increases.

The expended energy to transport messages is depicted in
Figure 4, showcasing the influence of MEE to minimize
message transport energy. In comparison to the fastest delivery
(FTE), energy expense can be more than halved, especially
for 20 minutes TTL. The difference between MEE and LEE,
however, is smaller as expected, presumably due to the similar
goal of energy minimization. Link energy optimization (LEE)
uses short dissemination times and the most efficient velocity
(cf. Fig. 4) to maximize both the number of possible round
trips and battery utilization. The measured battery level when
returning to the base station after the exchange UAV has
arrived is 14.5% on average, showing that available energy
is fully utilized for link flights. The message energy optimizer
(MEE), on the contrary, picks slow speeds and long dissem-
ination times to minimize the transport energy. Interestingly,
this results in less ferry exchanges using MEE than LEE
required for the continuous service during the simulation time,
because LEE results in higher velocities, and thus, higher
power consumption.

In case of combining different functions, the resulting
parameter settings cannot always be intuitively anticipated
because some features like the number of possible round trips
are not steady. It is therefore necessary to assess the influence
of different weight combinations for the operator to find
the matching system settings. Furthermore, each scenario is
different, and thus, needs individual examination. The resulting
design space of optimization functions and parameter combi-
nations is highly complex. To demonstrate the possibility of
finding suitable weights, Figure 5 shows delivery delay and
transport energy per message when combining the ferry time
optimizer with the message energy optimizer. The weights

Fig. 4: Optimizing for message transport energy efficiency
utilizing MEE more than halves the energy expense in com-
parison to the optimization for fastest delivery using FTE.

wFTE = 1 are shifted towards wMEE = 1 with a difference
of ∆w = 0.1 in each step. The weight for the link energy
optimizer wLEE is 0 in all these cases. It can be seen that
the delivery delay is increasing when more weight is put on
energy efficiency than on delivery delay. The transport energy,
in contrast, decreases at the same time. If the operator searches
for system settings that are a trade-off between transport
energy and delivery delay, this helps picking the weights,
e.g., as wFTE = 0.6 and wMEE = 0.4 to reduce energy
consumption by a factor of two while still delivering most of
the messages within 10 minutes.

Fig. 5: Delivery delay and transport energy per message.
Weight combinations were shifted in ten steps of ∆w = 0.1
from wFTE = 1 towards wMEE = 1.

VI. CONCLUSION

In this paper we presented three different approaches op-
timizing inter-cluster flights of data ferry UAVs as com-
munication support in highly intermittent DTN-MANETs.
A configurable optimization model seamlessly combines the
different optimization functions in case that multiple objectives
are pursued by the support system. Furthermore, we designed
a velocity-based energy consumption model for multicopter
UAVs based on a real-world counterpart, that is required by



the optimization model for a realistic estimation of energy
consumption. Both models were implemented and simulated
in an existing simulation framework for Unmanned Aerial
Systems [13].

Evidently, more complex scenarios like communication
between multiple network clusters or highly varying network
loads will further increase the complexity of the system and
might require different optimization functions. Furthermore,
simulations were conducted with the flight properties of
the presented real-world multicopter UAV in an inner-city
scenario. Although the optimization model is applicable for
scenarios of different sizes, it may not be suitable for fixed-
wing UAVs due to their inability to hover and an inherently
different movement from that of multicopter UAVs. Besides
these two examples, there are still many open issues regarding
the optimization of complex data ferry applications. However,
the presented configurable optimization model not only allows
for extensive system assessments, but also provides the ability
to find the most suitable system settings based on available
UAVs and their flight properties, cluster locations and dis-
tances, as well as requirements on the support system. It is
therefore a powerful tool for operators of aerial communication
support systems in post-disaster scenarios.
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