
Leveraging the BPEL Event Model to Support
QoS-aware Process Execution

Farid Zaid, Rainer Berbner and Ralf Steinmetz

Multimedia Communications Lab - KOM, TU Darmstadt, Germany
Email: {Farid.Zaid, Berbner, Ralf.Steinmetz}@kom.tu-darmstadt.de

Business processes executed using compositions of distributed Web Services
are susceptible to different fault types. The Web Services Business Process Exe-
cution Language (BPEL) is widely used to execute such processes. While BPEL
provides fault handling mechanisms to handle functional faults like invalid mes-
sage types, it still lacks a flexible native mechanism to handle non-functional
exceptions associated with violations of QoS levels that are typically specified
in a governing Service Level Agreement (SLA). In this paper, we present an
approach to complement BPEL’s fault handling, where expected QoS levels and
necessary recovery actions are specified declaratively in form of Event-Condition-
Action (ECA) rules. Our main contribution is leveraging BPEL’s standard event
model which we use as an event space for the created ECA rules. We validate
our approach by an extension to an open source BPEL engine.

1 Introduction

One challenge for Service-oriented Architecture (SOA) is to meet the needs of
particular processes, not just within the enterprise but across the entire value
chain. Research in the context of SOA has shown that the usage of WSDL [8]
and SOAP [6] is not sufficient to establish cross-organizational processes in real-
world scenarios. Considering Quality of Service (QoS) requirements is crucial
for a sustainable success of SOA. Without any guarantee regarding QoS, no
enterprise is willing to rely on external Web Services within critical business.

Generally, Quality of Service (QoS) requirements are specified in a Service
Level Agreement (SLA) between process partners. The The Web Services Busi-
ness Process Execution Language (WS-BPEL or shortly BPEL) specification
[3] offers support for handling abnormal (functional) situations in form of fault
and compensation handlers. However, BPEL has no integrated method to handle
QoS degradations, which are more considered as finer non-functional exceptions.

In this paper, we propose an approach that utilizes the BPEL event model to
overcome BPEL’s limitation in handling QoS exceptions. We also propose to use
the Even-Condition-Action (ECA) rules as a logical framework to specify SLA
statements and map them to relevant events and recovery actions. The proposed
approach leverages BPEL in the following dimensions:

– The approach keeps the alignment with BPEL as a Programming in the
Large paradigm. Similar to BPEL’s declarative syntax that enables easy

rst
Textfeld
Farid Zaid, Rainer Berbner, Ralf Steinmetz: Leveraging the BPEL Event Model to Support QoS-aware Process Execution. In: Kommunikation in Verteilten Systemen 2009 - KiVS 2009: Informatik aktuell, no. 1431-472X, Springer, January 2009.

rst
Textfeld
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

mapping of business strategies to corresponding business processes, the ECA
rules have a declarative syntax that can be used to express SLA terms in a
logical way.

– The approach leaves BPEL’s standard syntax intact while reusing BPEL
event model to accommodate proposed recovery actions.

– The approach provides explicit separation-of-concerns between the business
logic and business control. Thus it is possible to modify existing ECA rules
and/or apply new ones without need to modify the process definition or stop
running process instances.

This paper is organized as follows: Section 2 describes relevant basic concepts like
the BPEL fault handling, the BPEL event model and the ECA rules. Section
3 presents our approach for handling QoS violations. Section 4 sketches our
implementation to validate the concept. Section 5 positions our work among
existing literature. Finally, Section 6 wraps up our paper.

2 Basic Concepts

2.1 Fault Handling in BPEL

A BPEL process can handle a fault through one or more fault handlers. Within
a fault handler, some activities are defined to recover from the fault, possibly
reverse the partial (unsuccessful) work of the activity where the fault has oc-
curred, and/or signal a fault message to the client. BPEL faults can be classified
in two categories [3]:

– Business faults are application specific faults and occur when an explicit
<throw> activity is executed or an <invoke> activity gets a fault as re-
sponse. Such faults are denoted by the <fault> element within the <op-
eration> declaration of a WSDL definition. A fault has a qualified name
(QName) and an associated message type.

– Runtime faults are not user defined and will not appear in the WSDL of
a process or a service. The BPEL specification defines standard faults like
“uninitializedVariable”, “invalidReply”, “mismatchedAssignmentFailure”, etc.
All these faults are typeless, meaning they do not have associated message
types.

We focus here on situations related to SLA violation, for example, when the
respose time of a service invocation exceeds the threshold specified by a governing
SLA. We regard such a situation more as an exception rather than a fault. The
difference is that BPEL deals with an occurring fault as abnormality that leads
to unsuccessful completion of the scope/activity, whether that fault is handled
or not. However, we see an exception as a finer deviation from normal execution
and, if resolved, normal execution may be resumed. Fault is function-related
while exception is non-functional.

In BPEL, it is possible to raise a timeout exception in an <onAlarm> con-
struct by a <throw> activity and be caught by a <catch> activity. Listing 1.1

<scope name="Bi l lCrea t i onScope ">
<eventHandlers>
<onAlarm f o r="PT5S">
<throw faultName="createPDF:Timeout"

f au l tVa r i ab l e=" fau l tVar " />
</onAlarm>

</eventHandler>
<invoke partnerLink="pdfConverterPL"

operat i on="createPDF"
portType="pdfConversionPT"
inputVar iab l e="urlVar "
outputVar iab le="pdfVar"/>

</ scope>

Listing 1.1. Timeout Handling in BPEL

shows how a “createPDF:Timeout” fault (or exception in our understanding) is
thrown 5 seconds after <invoke> has executed. However, because only one alarm
can be activated for each scope at a time, if we want to catch different timeouts,
then we must enclose each <invoke> with its own scope, which is a tedious and
error-prone task for a process designer.

2.2 BPEL Event Model

Execution of a BPEL process is rich with events that fingerprint each state and
transition with useful information. Such information can be used in different sce-
narios like process audit trailing and coordination of fragmented processes that
run on multiple BPEL engines. However, the BPEL specification does not im-
pose any event model on the process execution environment (engine). Therefore,
different implementations may have different types of events, and even different
event structures [9].

The event model in [9] classifies events according to two different criteria:
direction and blocking. The direction indicates the source of the event, which
can be the BPEL engine itself or an external entity like another BPEL engine or
a coordinator. Blocking events block process instances until an incoming event
from an external entity is received that unblocks the particular instance. In the
rest of this paper we will use the following definition of a BPEL event.

Definition 1. For a given BPEL activity A, we define a BPEL event fired by
A as the triple e(A, t, s) where t is the time when the event was fired and s is
the state entered by A after firing this event.

Process Events These are triggered as a process instance changes its state
as shown in Fig. 1(a). These events are described in detail in [9], however of
particular interest to our approach is the ProcessDeployed event which is fired

whenever a new BPEL process model is deployed into the BPEL engine. This
event is not fired for each instance, but rather per process model, therefore
we use this event to define variables with process scope, i.e. variables that are
accessible from all process instances. The ProcessInstantiated event signals when
a new process instance is loaded. The InstanceCompleted event signals when the
process instance finishes successfully. Therefore we can use these last two events
to mark overall QoS associated with each process instance.

Activity Events Fig. 1(b) shows the general life cycle events for all BPEL
activities. Events at the activity level can be combined to mark QoS metrics for
single activities and or scope of activities.

The ActivityReady event is fired when an activity becomes ready to exe-
cute. This event may be marked optionally as blocking, in this case an incoming
StartActivity event is needed to start the actual activity execution. When the
activity starts execution, it fires an ActivityExecuting event. The execution itself
depends on the work to be done by that activity, for e.g. an <invoke> activity
places a call to a web service, while the <receive> activity waits for an incoming
request from another service. If the activity finishes execution successfully, it
either fires the ActivityExecuted event and enters the Waiting state if an event
listener is registered, or it fires the ActivityCompleted event and enters the Com-
pleted state directly if no event listener is registered. In the Waiting state the
activity is blocked and can be only completed by an incoming CompleteActivity
event. At any state in its life cycle, the activity can change to the Faulted state
if a fault is encountered in the activity itself or in a preceding activity or when
a fault in a child scope is not handled. A faulty situation is signaled via the
ActivityFaulted event.

Incoming events External sources like a coordinator of fragmented processes
or a monitoring tool can influence a process execution by sending events. The
StartActivity event causes an activity that is blocked in the Ready state to be
continued. The CompleteActivity event unblocks an activity that is blocked in
the Waiting state (thus causing the transition to the Completed state) or to fire
the direct transition from the Ready state to the Completed state (thus causing
an activity to be skipped). The Continue event simply unblocks activities [9].

2.3 ECA Rules

ECA Rules form a natural candidate for systems where reactive functionality
is needed. Each rule is characterized by the events that can trigger it; once a
rule is triggered and its condition holds, then rule action is executed. Rules have
languages for event, query, action and condition testing. Each of these languages
has metadata and ontology which are associated with a processor [2]. In this
paper, we do focus on the paradigm rather than on the specific syntax of the
rules. Listing 1.2 shows the pseudo syntax for an ECA rule we will be using in
rest of this paper.

(a) (b)

Fig. 1. Process events (a) and activity events (b) [8].

Rule ru leID
Event t r i g g e r i n g event
Condition guarding statement
Action r ecovery ac t i on

Listing 1.2. ECA rule pseudo syntax

3 Approach

We propose a flexible and declarative approach to handle QoS exceptions in
BPEL processes by applying ECA rules to events generated during a process
execution. Fig. 2 shows an overview of the approach. In the Logic Plane, a
standard BPEL process will be deployed to a BPEL engine for execution. In
the Control Plane, a set of ECA rules are registered with a rule engine (event
manager). The BPEL engine sends subscribed events to the rule engine and
reacts to recovery actions issued by the rule engine when some rules are triggered.

This clear distinction between logic and control planes permits creation of
rules to modify QoS constraints without interrupting running process instances.

3.1 Detecting QoS Exceptions

It is obvious from Section 2 that BPEL events represent atomic events, in the
sense that an event conveys information about a volatile situation at some point

Fig. 2. Approach Overview

in time. Therefore applying ECA rules to these events directly will trigger real-
time and instant actions, which may not be relevant to detect QoS exceptions
which typically require interval-based rule processing. To handle this, we apply
a formalism based on Temporal Event Algebra to express QoS exceptions as
composite events formed from atomic BPEL events. Then we apply ECA rules
to the mapped composite events. Next we show how to detect response time and
availability violations from primitive BPEL events.

Response Time Exceptions Listing 1.3 shows the events and rule needed to
detect a violation of response time threshold when executing an activity A. The
rule engine needs to subscribe to two events fired by the invocation activity A:
event e1 with type ActivityExecuting which marks when A starts to execute,
and e2 with type ActivityExecuted which marks when A finishes execution. We
use the temporal event composer AND THEN to indicate that the rule rtRule
triggers each time an e1 event is followed by e2 event [2].

Subscribe
e1 (invoke (A) , t , Act iv i tyExecut ing)
e2 (invoke (A) , t , Act iv i tyExecuted)

Rule rtRule
Event e1 AND THEN e2
Condition (e2 . pInstance == e1 . pInstance) &&

(e2 . t−e1 . t > rtThresho ld)
Action replaceOnNext (A, a1 , a2)

Listing 1.3. Events and rule to handle a response time exception

We measure the response time as the time elapsed between the two events.
Of course, this definition of response time is an approximation of reality as it
counts communication delay to the response time of the partner service. The
condition component assures that these events are fired within life cycle of the
same process instance (pInstance) and that the estimated response time does
exceed the threshold value. If the condition holds, the action replaceOnNext is
executed (explained in Section 3.2).

BPEL’s <invoke> activity represents the actual interaction between a pro-
cess and external services. However, as the event model described earlier applies

to all BPEL activities, we can apply similar approach to handle QoS violations
for composition activities (constructs). For example, if two invoke activities are
composed via a <sequence> construct, then we can use the ActivityExecuting
and ActivityExecuted events fired by the sequence activity to estimate the ag-
gregate response time of the two activities, rather than filtering all events for
individual invoke activities.

Availability Exceptions Listing 1.4 shows how different BPEL events can be
combined to detect an availability exception. Here, the rule engine subscribes to
e1 event fired from the process where activity A is defined. This event is used to
to trigger initRule that initializes two variables with process-wide scope: all, to
count the number of times A was scheduled for execution, and failures to count
times of failed executions. The schedRule uses event e1 to increment all, while
the failRule increments failures when an e2 AND THEN e3 pattern occurs. An
e3 event identifies a faulty invocation, which as discussed in Section 2 can have
different reasons, therefore the condition part of failRule assures that the fault
(fault_type) is really related to partner’s availability, and is not due to a local
reason. When its condition holds, failRule will fire the avEvaluate which is an
internal event we define to trigger the avRule rule. This in turn uses the failures
to all ratio to estimate the availability [7].

Subscribe
e1 (p roce s s (A) , t , ProcessDeployed)
e2 (invoke (A) , t , Act iv i tyExecut ing)
e3 (invoke (A) , t , Act iv i tyFau l t ed)

Rule i n i tRu l e
Event e1
Condition t rue
Action a l l =0, f a i l u r e s=0

Rule schedRule
Event e2
Condition t rue
Action a l l++

Rule f a i l Ru l e
Event e2 AND THEN e3
Condition (e3 . fau l t_type == remoteFault)
Action f a i l u r e s++, f i r e (avEvaluate)

Rule avRule
Event avEvaluate
Condition (1− f a i l u r e s / a l l < avThreshold)
Action replaceOnNext (A, a1 , a2)

Listing 1.4. Events and rules to handle availability exception

In contrary to active monitoring, which implies probing partner’s availability
with periodic pings, the shown mechanism resembles a kind of passive monitor-
ing, which counts the times of successful and unsuccessful processing of requests
sent to the partner service.

3.2 Recovery Actions

Basic Actions Actions are recovery commands that attempt to repair process
execution in favor of better fulfillment of QoS levels.

As mentioned in Section 2, situations that can be handled by the standard
fault handling are excluded here, although our approach can be elaborated to
cover such situations. Initially, we identify the following basic actions:

– Ignore (A) causes execution of activity A to proceed normally. This is the
default action when no QoS deterioration is detected. It steps the activity
from Waiting state to Completed state.

– Skip (A) causes execution of activity A to be skipped. It causes the activity
to pass over from READY state to Completed state.

– ReplaceOnNext (A, a1, a2) instructs activity A to change its binding from
partner a1 to partner a2 for execution of next process requests (instances).
This is useful when a partner service violates QoS levels repeatedly and bet-
ter be replaced by another service that meets the same functional require-
ments. This command affects service binding during next process instances
and has no effect on current activity state.

Mapping Actions to Event Model The target of an action can be the same
activity firing the event that triggered the ECA rule, or it can be another activity.
However, external recovery actions should be enacted in such a way that they
do not cause conflicts to the states of the executing activities. We make use
of the incoming events defined in Section 2 to apply external actions to BPEL
activities. However, to preserve consistency of the event model, we assume that
an activity enters the Waiting state after leaving the Executing state. With this
assumption, we can map the basic recovery actions to BPEL event model as
follows:

– The Ignore command is mapped to the CompleteActivity incoming event.
– The Skip command is mapped to the Continue incoming event.
– The ReplaceOnNext is mapped to the StartActivity incoming event. This

command is applied to next execution of the activity and not to current
execution.

Another assumption that is specific to applying the Skip command is that func-
tional requirements are still met. This implies activity can not be skipped if its
output parameters form a required input for a successive activity, even if the
Skip command was issued by a triggered rule.

4 Implementation

To demonstrate our approach, we implemented the Event Manager (EM) as
an extension to the ActiveBPEL engine [1]. Consistent with how ActiveBPEL
engine manages various functions using managers, EM plugs into the engine by

implementing the “IAeManager” interface which defines all methods a manager
has to support, most importantly, the create, start, and stop methods. Once EM
is created, it registers itself as a listener for following event types:

– AeEngineEvent which marks when a process instance is created, started and
terminated.

– AeProcessEvent which marks the different states of a BPEL activity.
– EmDeploymentEvent which is an extra event we defined to signal deployment

of new business processes.

EM maintains several registries: an event registry where BPEL events are stored,
a rule registry where ECA rules are stored and execution registry where an execu-
tion record for each process instance is stored. An execution record is identified
by the pInstance as a key, and it accompanies a process instance all through
its lifetime and holds information about QoS levels to be monitored and non-
functional status of execution for each activity in that process. EM has also an
event component which detects event patterns based on a simple event-matching
algorithm, a condition component which evaluates condition part of an ECA rule
and an action component which applies recovery commands to process execution.

Fig. 3 shows the web frontend we use to manage EM. The “Deployed Pro-
cesses” pane shows all processes deployed to the engine (information extracted
by the deployment event). The “Process Details” pane shows information about
the process currently selected in the “Deployed Processes”. This information in-
cludes a list of invoke activities for that process. In this pane, it is also possible
to configure a simple ECA rule per invoke activity. We restrict our proof-of-
concept implementation to detecting response time exceptions as it requires less
effort to implement. The bottom pane displays breakdown of execution records
related to the instances of the selected process. In the example shown, a re-
placeOnNext command causes the “pdfCreate” invoke in second process instance
to bind to the backup “pdfConverter2” service, because the response time of the
“pdfConverter1” service exceeded the set threshold of 3 seconds. Services “pdf-
Converter1” and “pdfConverter2” have similar implementations, however they
have different response times, which we configured by introducing different arti-
ficial delays. This way, we simulated partner services that meet same functional
requirements, but with different QoS levels.

To implement the replaceOnNext functionality, we modified the AeInvoke-
Handler which handles invocations of endpoint references on behalf of the busi-
ness process engine. For each Invoke activity, the handler places a SOAP call
(org.apache.axis.client.Call) to the web service located at specified AeEndpointRe-
ference address [1]. The address URL can be obtained from two different sources,
dependent on the addressing scheme used:

– SERVICE: here the address URL is extracted from the <port> element in
the WSDL interface of the target endpoint.

– ADDRESS: here the address URL is retrieved from a WS-Addressing end-
point reference, usually sent by another web service for callback.

We implemented the CurrentBindings class which is a singletone object to
store active bindings (i.e. address URL of the partner link) for each invoke ac-
tivity. The bindings are updated by the replaceOnNext command. The Invoke-
Handler itself is modified to check first if a binding exists in CurrentBindings.
If no binding is available, then one of the two schemes mentioned above will be
used to resolve the address URL.

Fig. 3. A snapshot of the Event manager frontend

5 Related Work

In [5], a component-based architecture is proposed to manage execution of process-
oriented applications. Binding to a service is performed at runtime, after services
are ranked based on their up-to-date QoS attributes.

In [12] SLA conditions are classified in soft and hard constraints. Violation
of hard constraints leads to abnormal execution and is handled using constraint
violation handlers, while soft constraints violation does not lead to erroneous
state and is handled with event handlers. Composite events are detected by
applying semantic matching of primitive events. Finally, recovery actions like
replaceBy and Retry are used to fix problems manifested by the fault occurrence.

The authors in [11] follow a top-down approach to annotate a BPEL process
with QoS assertions. At the top level, they specify a WSCDL description of the

process partners and the messages to be exchanged. The WSCDL descriptor is
annotated with references to one or more SLAs at the same level. The SLAs
define obligations and guarantees among the participants. The abstract WSDL
description is then transformed into executable BPEL processes, while SLAs are
transformed to QoS assertions that are directly attached to the corresponding
partner links in BPEL to so that they cab be enforced by the BPEL engine.

Similarly, [4] represents dynamic service compositions with BPEL and pro-
vides assertions to check if involved services adhere to the contracted QoS levels.
Assertions are verified with monitors which can be automaticallly defined as
additional services and linked to the composite service.

In [10] also a top-down approach is used, however based on an extensible set
of fault handling patterns defined as ECA rules. Before a process is deployed and
executed, a generator is used to transform the fault patterns into BPEL code
snippets (variables and activities like <if>, <catch>, etc.) that collectively give
equivalent fault handling functionality. Although no change to BPEL syntax is
needed, the code of transformed fault handlers mixes with code of the process
logic and makes process maintenance more difficult. Besides, applying new rules
mandates redeployment of the process definition.

In our approach, we also proposed the use of ECA rules as they possess a
declarative syntax and map logically to the exception handling problem. How-
ever, we keep the creation and processing of these rules independent from process
creation and deployment. This means that these rules can be created or edited
without need to re-deploy the process definition. This is especially important
for processes with long running instances. The key enabler to our approach is
BPEL’s standard event model which serves as a rich event base for detecting
different execution anomalies.

6 Summary and Future Work

We have introduced in this paper an approach that leverages BPEL event model
to provide handling of situations that are considered as non-functional excep-
tions rather than hard functional faults. The approach focuses on separating the
business logic from SLA handling, thus enhancing BPEL’s fault handling while
keeping it intact. A process designer will typically specify ECA rules to handle
QoS exceptions such as violations of response time and availability thresholds.

Although we validated the concept with a prototype for basic commands, we
still have to address several open issues. Some of these issues are:

– The incorporation of commands that can affect the execution flow. So far,
we addressed actions that affect the execution of a single activity, mainly
the <invoke> activity.

– Monitoring of other QoS attributes. So far, the proof-of-concept is limited
to respose time, due to its ease of implementation.

– We still need to study the computaional complexity of the approach and
performance overhead introduced by instrumentation of rule processing.

These questions, once answered will much better outline the flexibility of our
approach towards supporting QoS for BPEL processes.

Acknowledgement

Parts of this research have been supported by the German Research Foundation
(DFG) within the Research Training Group 1362 “Cooperative, adaptive and
responsive monitoring in mixed mode environments”.

References

1. The ActiveBPEL Community Edition Engine.
http://www.activevos.com/community-open-source.php.

2. J. J. Alferes et al. A First Prototype on Evolution and Behaviour at the XML-Level.
Technical report, REWERSE, 2006. http://rewerse.net/deliverables/m30/i5-
d5.pdf.

3. A. Alves et al. Web Services Business Process Execution Language Version 2.0.
OASIS Standard, 2007. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-
OS.html.

4. L. Baresi, C. Ghezzi, and S. Guinea. Smart monitors for composed services. In
ICSOC ’04: Proceedings of the 2nd international conference on Service oriented
computing, pages 193–202. ACM Press, 2004.

5. R. Berbner, M. Spahn, N. Repp, O. Heckmann, and R. Steinmetz. Heuristics
for QoS-aware Web Service Composition. IEEE International Conference on Web
Services (ICWS), pages 72–82, Sept. 2006.

6. D. Box et al. Simple Object Access Protocol (SOAP) 1.1. W3C Note, 2000.
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/.

7. J. Cardoso, A. Sheth, J. Miller, J. Arnold, and K. Kochut. Quality of Service
for Workflows and Web Wervice Processes. Journal of Web Semantics, 1:281–308,
Apr. 2004.

8. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services De-
scription Language (WSDL) 1.1. W3C Note, 2001. http://www.w3.org/TR/wsdl.

9. D. Karastoyanova, R. Khalaf, R. Schroth, M. Paluszek, and F. Leymann. BPEL
Event Model. Technical report, Universität Stuttgart, 2006.

10. A. Liu, Q. Li, L. Huang, and M. Xiao. A Declarative Approach to Enhancing the
Reliability of BPEL Processes. IEEE International Conference on Web Services
(ICWS), pages 272–279, Jul. 2007.

11. F. Rosenberg, C. Enzi, A. Michlmayr, C. Platzer, and S. Dustdar. Integrating
Quality of Service Aspects in Top-Down Business Process Development Using
WS-CDL and WS-BPEL. Enterprise Distributed Object Computing Conference
(EDOC), pages 15–15, Oct. 2007.

12. R. Vaculín, K. Wiesner, and K. Sycara. Exception Handling and Recovery of
Semantic Web Services. The Fourth International Conference on Networking and
Services (ICNS), 0:217–222, Mar. 2008.

