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Abstract
As a consequence of rising energy prices, manifold so-

lutions to create user awareness for the unnecessary opera-
tion of electric appliances have emerged, e.g., real-time con-
sumption displays or timer-based switchable wall outlets. A
common attribute of these solutions is the need to buy and
install additional hardware, although their acquisition and
operation costs often diminish the attainable savings. Fur-
thermore these solutions only permit to retrieve accumulated
figures of the energy consumption. Especially in households
or office spaces with multiple persons, however, attributing
electricity consumption to individuals provides enormous
potential to determine possible savings.

We therefore propose a system that allows to identify
the energy demand incurred by a user’s action based on au-
dio recordings using smartphones. More precisely, we cap-
ture the user’s ambient sounds and applying suitable filtering
steps in order to determine the user’s current activity with
the help of a machine learning component. Our results indi-
cate that our system is capable of detecting 16 typical house-
hold activities at an accuracy of 92%. By annotating the de-
tectable household activities with information about typical
energy consumptions, extracted from 950 real-world power
consumption traces, a good estimate of the energy intensity
of the users’ lifestyles can be made. Our novel personalized
energy monitoring system shows people their personal en-
ergy consumption, while maintaining their user comfort and
relinquishing the need for additional hardware.

Categories and Subject Descriptors
C.m [Computer Systems Organization]: Miscella-

neous—Mobile Sensing Systems
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1 Introduction
Globally rising energy prices have led to an increased user

awareness for a conscious use of electric energy. Motivated
by the widely used slogan “The cheapest energy is the one
we do not consume,” people take a great interest in their en-
ergy footprint and the potential for savings. Indeed, we agree
on this opinion that the awareness of a user’s electricity con-
sumption is a key factor in supporting a sustainable lifestyle
and avoiding the wastage of electric energy through the un-
necessary operation of devices.

In this paper, we thus present an approach to estimate
a user’s energy footprint which is based on the collection
of sound samples from the environment and extracting the
underlying operating devices from these recordings. We
have deliberately chosen not to install special energy sen-
sors in buildings due to the additionally incurred cost that
may quickly exceed the achievable energy savings. In-
stead, we propose to rely on sound samples that have been
recorded using a mobile device, e.g. a smartphone. Having
become lifestyle items that are carried close to their owners
at all times, smartphones allow for unprecedented acoustic
insights into the user’s current environment and thus permit
to attribute device operation to the user.

Our research is motivated by the fact that the largest opti-
mization potential exists for appliances that are actively con-
trolled by the user. This class of devices has a high chance
of operating unnecessarily due to the user’s failure to switch
them off when not needed any longer. At the same time,
however, they are usually specifically activated by the user
when their operation is deemed necessary; in other words,
the user is generally in close physical proximity to such ap-
pliances when turning them on. We thus investigate the ef-
ficacy of our approach to use smartphones for recording and
identifying the sounds recorded from the user’s surround-
ings.

We make the following contributions:
• We present our system design, which performs the tasks

of collecting sound samples from the user’s environ-
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ment and extracting characteristic features from these
data.

• We conduct a comprehensive evaluation of the situation
recognition efficacy when smartphone audio recordings
are used. For this purpose, we have sampled the op-
erational sounds of 16 different devices and situations.
Our activity classification algorithms could determine
these situations based on their sound with an accuracy
of 92%.

• We map the detected appliance operations to real situ-
ations and enrich the knowledge of their operation by
the energy consumption of the situation in which they
are typically used. This energy augmentation is based
on situations extrapolated from a real-world data set.

This paper is structured as follows. First a broad overview
of the related work is given in section 2. In the following
section 3 the concept of our energy estimation system Sen-
siMate is presented and the design decisions are discussed.
Then in section 4 we give an exhaustive explanation of its
implementation. In section 5 we extensively evaluate the key
parts of our system, namely the activity classification and the
energy estimator with real-world data. Last but not least we
conclude this paper and summarize our findings.

2 Related Work
Building an indirect energy consumption estimator in-

volves two major steps, namely the activity classification and
the energy modeling. Therefore we begin with an overview
of the state of the art in activity detection. Then we discuss
selected works which build models to estimate the energy
consumption.

In the past few years many models for user activity detec-
tion were proposed, which vary with respect to both the types
and combinations of sensors used, as well as approaches and
use cases. For instance, accelerometers have been successful
to detect the users’ physical activity [24, 10, 13, 9, 11, 27],
while GPS and WiFi/Bluetooth traces help track users [19]
and build and predict user mobility patterns [25, 8, 26], de-
tect their most important places and estimate when and for
how long they would come to a specific place [22]. More
complex activities, like telling the type of location the user’s
in, say a bookstore, restaurant or disco, would need to com-
bine the WiFi traces, sound, accelerometer, camera and light
sensor data, as SurroundSense [1] shows.

Still, to the best of the authors’ knowledge, there are no
approaches to specifically detect a user’s energy consuming
activities and to build a consumption profile based on that.
The problem of recognizing the time period as well as the
type when somebody is using an electrical device, has to fo-
cus more on detecting the activity of a device than of the
user himself. We decided to use the acoustic emissions for
this purpose and discuss the reasons for this in section 3.3.
Therefore we will present related approaches from the field
of acoustic event detection in the next few paragraphs.

There are approaches to use microphone recorded sounds
to detect the health state of the user, for instance a cough
detector [12] or a heartbeat counter [17]. Schweizer et al.
[23] create a participatory noise mapping system and Chen

et al. [4] detect and analyze activities taking place in the
bathroom. Mesaros et al. [15] detect a wide array of ac-
tivities related to the user’s environment (namely, 60 activi-
ties), while AmbientSense [21] takes this one step further by
executing the recognition in real time, for a varied array of
sounds that could characterize the user’s environment, from
a dishwasher running to birds chirping and restaurant or for-
est noises. Peltonen et al. [18] detect various contexts of the
user, which are grouped in six main categories: outdoors,
vehicles, public/social places, offices/quiet places, home and
reverberant places.

While all the above mentioned approaches create applica-
tions for specific sets of actions and sounds, there are frame-
works like Auditeur [16] which attempt to label and classify
all environment sounds and employ a user participatory ap-
proach for that, allowing users to add and label their own
data.

When knowing the activity and its duration, we can esti-
mate the energy consumption for the given activity. Chen et
al. [3] propose a framework for energy data collection, anal-
ysis and prediction of future consumption in smart homes.
It analyzes the relationship between behavior patterns and
energy consumption and aims to support users in saving en-
ergy. The autors model the energy consumption of a whole
household for different activities based on non-linear curve
fitting.

Many researchers from the field of WSN and Mobile
Sensing built similar models to estimate the energy con-
sumption of certain hardware parts or computer programs
based on different input parameters: Zhang et al. [28] have
developed a system to estimate the battery consumption of
certain computer programs based on the state of display, the
CPU speed and the network state. Dunkels et al. [7] de-
veloped a program to aproximate the energy consumption of
WSN motes based on the current running program, and the
communication strategies. The goal is to increase the life-
time and thus the maintenance time of sensor networks by
developing energy aware routing algorithms. We use the ex-
periences from the aforementioned works to create different
models for estimating the energy consumption of different
activities.

3 Concept
As mentioned in the introduction, state of the art energy

monitoring systems often require the installation of special
hardware. Such a solution has many disadvantages: firstly
the user has to buy specific energy meters. Secondly, the
user has to manually install them in his household or at work.
Thirdly, the measurements conducted by these energy meters
are non personalized which hinders the analysis of the me-
tering data in multi-person environments.

To get over these limitations, we will develop an energy
consumption estimation system named SensiMate, which re-
lies on detection of emissions caused by electricity consum-
ing activities or appliances. These measurements could be
carried out by customary smartphones which measure the
acoustic noise emissions, derive the activity which caused
these emissions and then map an energy consumption to
these activities.
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Figure 1. Overview over SensiMate

In this section, we’ll first discuss the concept of indi-
rect measurements, describe our concept to model the energy
consumption and explain the design space of such a solution
in detail.
3.1 Indirect Measurement

Instead of directly measuring the desired variable, indirect
measurements relies on metering effects caused by this vari-
able together with a known correlation between the metered
unit and the desired variable. These indirect measurements
are often easier to achieve while being less accurate in the
general case. This is also true in our scenario: Directly mea-
suring the energy consumption on device granularity would
require either one distributed electricity meter per appliance,
energy meters with load disaggregating capabilities or elec-
trical appliances which are aware of their current energy con-
sumption.

In contrast to that, an indirect energy measurement so-
lution only requires sensors which can detect the emissions
caused by the energy consumption. Some of these emis-
sions, like audio signals, can even be recognized by custom-
ary smartphones. Therefore no special equipment is required
to capture the energy consumption of certain activities or ap-
pliances. This simplifies the setup overhead dramatically -
instead of installing energy meters at home or in the office,
the user only has to install ours application on his smart-
phone.

When analyzing the energy reports, it would be helpful to
know which user and which activity caused the energy con-
sumption. Without this information, deriving energy saving
recommendations for specific persons is a hard task. Creat-
ing a relation between persons and device level energy con-
sumption is difficult to achieve with classical energy meters,
because the energy consumption carries not much informa-
tion about the current user of an electrical appliance.

As an advantage of our solution, the indirectly estimated
consumption profiles are automatically personalized because
such a solution can only detect activities which happen next
to the user.
3.2 Activity based Energy Modeling

Knowing the activity carried out by the user, the energy
consumption for this activity must be estimated to conduct
energy consumption reports. There are many possibilities to
build such an estimator ranging from Constant Values over
Linear Regression Models up to Neuronal Network Estima-

tors or Hidden Markov Models [2]. Selecting the right model
directly influences the accuracy of such estimations. Thus
carefully determining the parameters with respect to the in-
put of the model is crucial. In our specific scenario, there are
mainly two parameter variations:

1. Activities with a determined duration, started by the
user.

2. Activities with a variable duration, carried out by the
user.

In the first case, the user only starts the activity and therefore
the energy consumption depends on the tool to carry out this
certain activity. Using a dishwasher or a toaster are examples
for the first type of activities as these appliances are started
by the user and continue running unattended. In the second
case, the energy consumption directly depends on the tools
used to carry out the specific activity as well as on the time
frame, the user performs this activity. An example of such
an activity is working or watching television.

To model activities started by the user, our solution esti-
mates these activities with a constant energy consumption
without considering the activity duration. Hence such a
model even fits well when the detected activity continues
unattended.

For activities directly carried out by the user, we assume
that it is possible to determine the duration of this activity.
This assumption may hold most of the time because the user
must be present and therefore the acoustic emissions of the
current activity are present most of the time. Having the ac-
tivity and its duration, we use a linear regression model to
estimate the energy consumption based on the duration.

3.3 System overview
As visible in Figure 1 the SensiMate system mainly con-

sists of five components arranged in a processing pipeline.
The first stage of this pipeline is obviously the sensing de-
vice which captures the required sensor data and outputs
a raw data stream. The second stage consumes this raw
data stream, windows the data, applies an activity classi-
fication to each window and outputs the resulting activity
stream. Building upon that, the third stage augments the ac-
tivity stream with a predefined energy consumption profile
and outputs an integrated activity and energy consumption
stream. The last stage then aggregates this stream to sum
up the energy for each activity and stores these reports for



visualization purposes.
Basically such a solution could be based on different

kinds of sensor data like audio, video, the gyroscope, GPS
or a mixture of them, which are available in most state of
the art smartphones. However, practical considerations nar-
row down the choice to the usage of microphones because
these sensors work under nearly all environmental conditions
without further user interaction. Only activities happening
in noisy environments are not detectable by these sensors.
Additionally, our system could rely on gyroscope measure-
ments, but energy consuming activities are hard to differenti-
ate based on the movements and are few activities which do
not involve acoustic emissions but movements. For instance
a user bending down could either use the washing machine,
the dishwasher, the dryer, a refrigerator or simply be picking
up a bag.

Except of the data recording, each stage of SensiMate
can either run locally on the phone or on a remote server.
Each of both deployment options has certain advantages and
disadvantages. A detailed of these two options is given by
Rossi [21]. We decided to deploy all stages except of the
recording of SensiMate remotely in the cloud because this
setup simplifies the update process of our machine learning
model. Nevertheless our solution could be adopted to run
on the smartphone without major changes to the underlying
design principles.

4 SensiMate Implementation
As described in section 3, the components of SensiMate

are arranged as a data processing pipeline. The input of this
pipeline is an audio sample stream from the smartphone’s
microphone and the output is an energy augmented activ-
ity event stream. The pipeline concept has many advan-
tages, namely conceptual simplicity, parallelizability, flow-
decoupling of the pipeline stages and the capability to pro-
cess infinitely long data streams.

These advantages are simply based on the fact that each
pipeline stage only depends on the interfaces to the prede-
cessor and to the successor. There are no direct dependen-
cies between single pipeline stages. This allows an injection
of middleware components which provide certain nonfunc-
tional properties like parallelization, queuing or deploying
one or more stages at remote hosts. But it also allows to
replace certain stages with other implementations satisfying
the same interface.

Having explained the overall structure of our SensiMate,
we will now explain its pipeline stages in detail.

4.1 Stage 1: Recording
This stage records the sensor data obtained from the

smartphone’s internal microphone, creating an infinitely
long stream of sensor data. Thus, we use an Android back-
ground service, which collects audio sample stream. We use
a plugin kind of architecture for the sensors we collect the
data from, so the app could be easily extended in the future if
other sensors incorporated in the phone are deemed to bring
useful information related to the energy consumption.

The recordings can be either stored on the smartphone’s
internal memory or fed into the processing pipeline by trans-
ferring them to a central server. Having both possibilities is

particularly important for the user, who might have no in-
ternet connectivity at some point, or might be on a limited
mobile plan, so the app has the option of saving the time-
stamped samples and transferring them only when the user
is connected to a WiFi network. The app also allows the
user to label specific readings/situations, which is mainly in-
tended for gathering the training instances for the classifier
and less for the final user who should be able to leave the ap-
plication run in the background, without having to intervene
or give any input.

Also, depending on the manufacturer, the phone might not
have a unique identification number and the MAC addresses
cannot be read if the WiFi is disabled, so we had to come up
with a different solution to identify the user whose consump-
tion profile we create. Thus, we do not identify the device,
but the app installation, by generating a unique number for
each installation instance.

4.2 Stage 2: Activity Classification
As described in section 3.3, the main purpose of this stage

is the deduction of the current activity based on the incoming
audio stream. To achieve this task, the stage is partitioned in
five sub-stages. In the subsequent section, we will describe
them in detail.

4.2.1 Windowing
The first sub-stage of the activity classification is respon-

sible for windowing the infinitely long audio stream from the
recording stage in smaller pieces of data which are easier to
process. To window the data, we use a simple, rectangu-
lar windowing function with a fixed length window size and
a configurable overlap between the last window and the cur-
rent window. As preliminary tests have shown, the side lobes
generated by this window function do not affect the classifi-
cation accuracy. Currently, our windowing function creates
windows with a size of 4,096 samples. Together with the
sample rate of 44.1 kHz, this window size corresponds to an
audio length of 10.8 ms per window.

Nevertheless, this windowing function may have a fur-
ther improvement potential: currently, each window starts
at a randomized point in time. Each activity also starts at
a randomized point in time. The chances are good, that the
starting point of the nearest time window and the starting
point of the activity have a high difference which may cause
a window which is nearly filled with background noise. This
fact may be a problem, because the turn on transient of some
activities are very characteristical. To solve this problem, we
configured the windowing in a way, that each window over-
laps the last window by a factor of 50%. More sophisticated
solutions could try to detect the starting point of events and
synchronize this with the starting point of a new window.

4.2.2 Silence Removal
The main goal of the silence removal stage is to filter out

windows containing only evironmental noise and no infor-
mation about the current activity. Removing them is impor-
tant to achieve a high classification accuracy in the next sub-
stage. If these segments were not removed before the clas-
sification, the classifier will assign them an arbitrary class
which reduces the accuracy of the overall system. Therefore



having a robust silence removal algorithm is crucial to the
overall system performance.

Detecting silent parts in audio signals is important in
many fields. For example the well-known speex audio codec
uses such an algorithm for voice activity detection [5]. Typ-
ically these algorithms consist of three consecutive steps:
first, a noise reduction schema is applied, then some features
like the spectral shape or the signal energy are calculated
and in the last step a classification rule is applied to decide
whether the signal is noise.

According to this concept, our silence removal sub-stage
works straight forward. First we calculate the signal energy
of the current window. If this energy is below a certain
threshold, the window is filtered out. If the signal energy
is above this threshold, the window is forwarded to the next
sub-stage.
4.2.3 Feature extraction

The extraction of significant features is the one of the
most important tasks when solving separation problems.
Hence, a modular feature extraction sub-stage was devel-
oped. When designing the feature extractor, we had the ex-
tensibility in mind. Thus, new feature extractor functions can
be added on demand. So far we implemented the following
features:
• Zero Crossing Rate (ZCR)

• Mel Frequency Cepstral Coefficient (MFCC)

• Delta MFCC (DMFCC)

• Band Energy (BE)

• Power Spectrum (PS)
The Zero Crossing Rate was used in some older speech
recognition algorithms. It is defined as the number of sign
changes in a defined period. Thus it is an easy to calcu-
late feature. Newer speech recognition algorithms and mu-
sic information retrieval systems rely on MFCC features.
These features have been well proven for speech recognition
[6, 14], and were adopted by the authors of [21, 15, 16] for
audio event classification due to their accurate recognition
results. Therefore we use MFCC features with 13 logarith-
mically distributed, triangular shaped filter banks to calculate
the coefficients. As the MFCC features are only calculated
in one particular window, they do not contain information
about the long term time domain. To also obtain features for
the variation in time, we also calculate Delta MFCC features
which are the first order derivative of the MFCC-features
with respect to time. Last but not least we also calculate
the band energy of 13 logarithmically distributed frequency
bands as a feature for the classification. The filter function
for each frequency band has a triangular shape.

To sum up, this sub-stage takes a window with audio sam-
ples as input, calculates the aforementioned features and then
outputs these features to the next stage.
4.2.4 Classification

Having extracted the features from the audio signals, the
corresponding activities can be deduced. Responsible for
this task is the classification sub-stage. Our implementa-
tion is modular in a way, that allows plugging in many

classifier implementations. Currently our solution supports
the following classifiers: Decision Tree (DT), Random For-
est (RF), Gaussian Naive Bayes (GNB), K Nearest Neigh-
bors (KNN), Support Vector Machine Classifier (SVC), and
Gaussian Mixture Model (GMM). We expect the best classi-
fication results with state of the art ensemble classifier Ran-
dom Forest. A detailed comparison of different classification
methods is available in section 5.
4.2.5 Window reduction

There are multiple windows per second - this means that
there are multiple classification results per second. Having
so many activities causes a high computation overhead in
the next stages and make the whole process prone to errors
caused by single windows which are incorrectly classified.

To reduce the number of windows we use a flattening al-
gorithm which pre-filters the data and aggregates the gener-
ated activity stream over time to reduce the amount of data
to process in further stages.

4.3 Stage 3: Energy augmentation
Having an activity stream from the previous SensiMate

pipeline stage, now the activity must be augmented with its
energy consumption. To do so, this pipeline stage accumu-
lates sequential activities of the same kind to measure the ac-
tivity’s duration. Once the activity is finished, this stage uses
the estimator to approximate its energy consumption. As de-
scribed in section 3.2, depending on the activity, the estima-
tor either uses a Constant (C) or a linear regression model
for approximating the energy consumption. To build the un-
derlying models, we used energy profiles from the publicly
available Tracebase [20]. For the Constant model, we cal-
culate the average energy consumption Eest for the energy
consumption en of each carried out activity a:

Eest(a) =
N

∑
n=0

en(a)
N

(1)

The output of the estimator for these models is Eest(a). Ob-
viously the output does not depend on the duration of the
activity.

For the Linear model, we calculated the average power
consumption Pest for the power pn and the duration tn over
all carried out activities a.

Pest(a) =
1
N

N

∑
n=0

pn(a)
tn

(2)

In this case, the output of the estimator is the linear function

Eest(a, t) = Pest(a)∗ t (3)

depending on the activity a and its duration t.
With these approximation models, the estimator can guess

the energy consumption of the given activity. Finally this
pipeline stage outputs this activity together with its energy
wastage Eest .

4.4 Stage 4: Aggregation
This last stage of the pipeline reads the energy augmented

activity stream from the input and aggregates the energy
wastage for each activity. Then it outputs the activity, its start



Table 1. Activities recorded to evaluate the activity clas-
sification stage.

Code Activity # Windows Precision
bre Cutting bread 964 97%
cof Making coffee 4213 93%

com Working at laptop 205 81%
dis Dishwasher 12,224 99%

doo Opening door 656 68%
ket Using kettle 14,617 99%
lcd Watching television 6149 98%

men Lunch in the cafeteria 654 96%
mic Using microwave 2217 99%
tap Using water tap 3033 92%
toa Toasting bread 197 86%
too Brushing Teeth 1374 98%
unl Unlock door 726 78%
uac Air Conditioner 1046 98%
was Washing machine 12,416 99%
wc Flushing toilet 3240 92%

Total 64,960 92%

time and duration as well as the estimated energy consump-
tion. So this pipeline stage generates a personalized energy
consumption profile. This information is quite valuable for
further processing. Therefore various applications for giving
user feedback or deriving energy saving recommendations
could use these reports to give user feedback.

5 Evaluation
The accuracy of SensiMate depends on precise activity

detection as well as on exact energy estimations for the de-
tected activities. Thus we first evaluate the classification pre-
cision of our solution by categorizing a set of audio sam-
ples. In the next step, we evaluate the accuracy of our energy
model by comparing the estimations of our model with the
real energy consumption of different activities.
5.1 Evaluation Setup

We used a Samsung Galaxy S2 as well as a Google Nexus
S for recording various audio samples of 16 different appli-
ances and activities. All audio samples were recorded se-
quentially in a quiet office environment with the microphone
exposed to the open air. As this setup does not reflect the us-
age patterns of many smartphone users, a follow up study is
required to prove the usability of SensiMate under real world
conditions. The audio sample rate is 44.1 kHz which gives
us, together with the Nyquist criterion a usable frequency
range from zero to 22.05 kHz. The length of these recordings
ranges from 10 to 240 seconds. We’ve built up a training set
consisting of 108 recordings from these samples to train our
activity classifier. A listing of these samples is shown in Ta-
ble 1. The column Windows of this table shows the number
of non-silent windows extracted from the sound files for each
activity whereas the column Precision shows the accuracy of
classifying the activity as described in section 5.2. The ac-
tivities used in the evaluation were selected to determine the
capabilities of our activity classification with a broad set of
different sounds.

To evaluate the energy augmentation stage, we used the

Table 2. Precision/Recall results for each feature and
classifier combination. All values are precentages.

Results DT RF GNB KNN SVC GMM
ZCR 46/43 46/37 46/39 43/40 46/44 47/37
PS 82/83 88/88 41/67 89/89 62/67 42/68
BE 85/84 88/88 31/61 78/77 58/61 32/58

MFCC 88/88 92/92 82/84 91/91 87/86 82/84
DMFCC 92/93 92/93 81/82 90/90 86/85 80/82

energy consumption of various devices from the publicly
available Tracebase [20]. This data set consists of approxi-
mately 1.800 power traces for different electrical appliances.
To record these traces, Plugwise electricity meters with a
sample rate of 1 Hz were used. As the traces are recorded
over 24 hours, we used a simple segmentation algorithm to
extract only segments when the appliance was consuming
energy from the power traces. This segmentation works as
follows: a segment starts when the consumption is above 0
and ends when the consumption is 0 for more than 10 sec-
onds. We extracted 950 segments for 10 different activities
from the tracebase to evaluate our energy model. The de-
tailed evaluation process is described in section 5.3.

5.2 Activity classification
The SensiMate proposed in this work highly depends cor-

rectly classifying the current activity. Thus we will carefully
evaluate the precision of our audio based activity classifi-
cation. To come to a conclusion which classification algo-
rithms together with which features to use, we compare the
classification performance for all of these combinations and
select the best combination for the further evaluation of the
whole SensiMate pipeline.

As shown in Table 2, we evaluated the classification algo-
rithms described in section 4.2.4 together with the features
described in section 4.2.3. DMFCC features and MFCC
features achieve comparable results where, depending on
the classifier the DMFCCs are slightly more accurate. As
the DMFCC also contains information about historic signal
changes, this behavior is expectable. The best classification
results were achieved with a Random Forest Classifier but
the KNN-Classifier achieved comparable results for all fea-
ture classes except the Band Energy. According to these
results, we configured the SensiMate to extract DMFCC-
features and to use Random Forest for classification.

The results of a classification run with DMFCC features
and a Random Forest Classifier are shown in Figure 2. It can
be noticed that these results are highly accurate for most of
the classes. Even very similar sounds like flowing tap wa-
ter or flushing the toilet can be separated. An exception to
this are the classes open-door and unlock-door. This hap-
pens due to the fact, that both audio sequences have very
similar sequences. Therefore distinguishing between these
classes fails more often than not. While showing the limits
of the audio-based-activity classification, however, this is no
major problem for the SensiMate because these classes do
not cause an electrical energy consumption.

The results of the audio based activity classification look
really promising. In a future work, we plan to benchmark
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Figure 2. Confusion matrix showing the 16 classes we
used to check the precision of our classification pipeline.
To generate this plot, MFCC features together with a
random forest classifier was used.

our SensiMate with the algorithms of other researchers [21,
15, 18] in the field.

5.3 Energy Augmentation Accuracy
After determining the current activity of the user, the Sen-

siMate uses an estimator to approximate the energy con-
sumption of an activity. This raises the question of how ac-
curate this estimation is. To find an answer, we evaluated
it with ten different activities. Therefore, we built different
Linear (L) and Constant (C) energy models for the activities
given in Table 3. This model building procedure is described
in section 3.2. In the next step, we extracted 950 triples from
the Tracebase. These triples consist of the energy consump-
tion, duration and activity and act as ground truth to validate
the energy consumption models. For each triple, the activity
as well as the duration was given to the estimator to get an
estimated energy usage. Finally we compared the approx-
imation with the real energy consumption to determine the
accuracy of the energy estimator. The mean relative error for
each activity is also shown in Table 3.

For some of these activities, the estimator could accu-
rately predict the energy consumption with a relative error
below 6%. For other activities, like using the microwave
oven, the error is high. These high errors have multiple rea-
sons like the constant model assuming a constant energy con-
sumption for a certain activity or the linear model assum-
ing a constant power consumption over the whole run time.
This model may fit well for a specific appliance which al-
ways operate within the same operation mode but it may be
inaccurate for the general case. In our scenario, the 149 mi-
crowave activities were recorded with 8 different microwave
ovens used in multiple different operating modes. Due to this
high variance, making accurate energy estimations is hard to

Table 3. Relative error of the energy model compared to
the real consumption is given here.

Model Activity Count rel Error.
C Dishwasher 45 5.72%
L Watching TV (CRT) 22 5.49%
L Working at Laptop 14 14.62%
C Toasting Bread 46 22.49%
L Watching TV (LCD) 117 35.82%
C Making Tea 420 40.73%
L Cutting Bread 39 58.79%
C Making Coffee 93 58.93%
C Washing Machine 5 82.18%
L Using the Microwave 149 192.47%

Total 950 51.72%

achieve without having further information about the oper-
ating mode or the specific appliance series. Nevertheless a
more sophisticated model may reduce the estimation error
significantly.

5.4 Energy Consumption
As SensiMate runs partially on a ressource constrained

devices with a bounded battery capacity, it is important to
know the influence of SensiMate on the battery lifetime of a
smartphone. To find an answer to this question, we measured
the battery drainage over time with SensiMate running on a
Samsung Galaxy S2 phone.

6 Future Work
In the previous sections we presented SensiMate, our per-

sonalized energy consumption estimator. During the de-
velopment as well as the paper writing process, this work
showed us a great potential for extensions and future re-
search. Therefore we will present the most promising di-
rections in this section.

Most importantly, we have to increase the accuracy, as
well as the robustness of the energy estimation model. To
achieve these two goals, we will carefully investigate the es-
timations with a high error to find improvement potentials.
Having such a refined model, we will evaluate the estima-
tion accuracy of the overall system in a real world deploy-
ment, together with a distributed smart meter installation as
ground truth.

Especially our activity classification algorithms have
shown a great potential for recognizing various activities.
Together with more and better estimators, we could not only
approximate the energy consumption of a user but also his
water consumption as well as his carbon dioxide footprint.
Using participatory sensing for collecting many activity and
energy consumption tuples for multiple users, we may even
be able to extend this system for providing crowd sourced
energy saving recommendations.

7 Conclusion
In this paper we have presented the SensiMate system

which creates user awareness their current energy footprint.
Instead of relying on power sensors, whose installation may
be costly and require technical support by an electrician, our
approach is based on the use of audio data which is collected



by the users’ smartphones. SensiMate extracts several fea-
ture sets from the samples, which are being subsequently be-
ing used to train a machine learning component. Our evalua-
tion of different types of classifiers in combination with dif-
ferent feature sets has shown that high precision and recall
values of up to 92% and 93%, respectively, can be attained.
The resulting possibility to detect appliance operation solely
based on audio data enables novel ways to inform users about
the energy footprint without the need for external hardware.

In the future, we will extend SensiMate by similar func-
tionality for water and natural gas consumption monitoring,
as we expect many of these consumers (e.g., shower, gas
stove) to also emit characteristic audio signals when in use.
The final step on the way to a holistic energy awareness sys-
tem is the development of a smartphone app that suggests
possibilities for energy saving to the user based on the de-
tected consumption patterns.
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