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Abstract—Due to rising electricity prices, there is an increas-
ing incentive to save energy. Therefore, more and more large
organizations intend to reduce their energy consumption. Often,
their plans cannot be realized due to missing insights into the
causes energy consumption. Centralized energy meters provide
no information at which appliances the energy is spent and
the installation of thousands of distributed meters is often not
feasible from an economic point of view. To simplify the energy
metering in large scale, we propose to make Internet of Things
(IoT) appliances aware of their own electricity consumption
using on software based virtual energy sensors. We demonstrate
how to automatically generate those energy models for nearly
arbitrary networked devices with a high accuracy. Our purely
software based energy metering solution approximates the energy
consumption of common office equipment with an error between
2.19% and 10.8%. Using our approach, IoT appliances become
aware of their own energy expenditure. This greatly simplifies
energy metering on device level granularity, giving appropriate
user feedback and developing more energy-efficient appliances.
All these benefits are achieved without the need for installing
additional hardware sensors.

I. INTRODUCTION

As stated by Darby [1] and Fischer [2] up to 25% of the
electricity consumption in home or office environments could
be saved if the inhabitants of an environment would consume
energy more carefully. Especially in large organizations with
thousands of employees those numbers sum up to huge saving
potentials.
However, the realization of those plans is rather challenging.
First, there is a big stock of appliances which contribute to
the total energy consumption. Second, the employees do not
benefit from saving energy. Due to these facts, sophisticated
tools for monitoring the consumption, analysing for saving
potentials and providing saving recommendations are required
for holistic energy management.
Hereby, the fine grained consumption monitoring is a very
crucial part. Only if the actual consumption is recorded with
an appropriate level of detail, the aforementioned steps can
be applied successfully. Especially in large organizations with
thousands of appliances, monitoring becomes the bottleneck
for energy optimization. As we will state in section II, existing
solutions either do not scale to large environments, do not
provide a sufficient level of detail or are too expensive for
medium to large scale use cases. Thus, we propose a software
based electricity metering solution which uses virtual sensors
to estimate the electricity consumption of networked appli-

ances and Internet of Things enabled devices.
Our solution provides insights in the electricity consumption
on device level granularity without requiring the installation of
new or additional sensors. Instead, our purely software based
electricity metering uses different observable device state
variables to estimate the electricity consumption of common
appliances. In this paper we focus on a method to automatically
generate high accuracy energy models for a broad set of elec-
trical appliances. More precisely, we show that our algorithm
is capable of creating energy models which determines the
electricity consumption of common office equipment with an
accuracy of up to 97,81%. As our solution does not require
an additional metering infrastructure, it scales well for large
environments.
This paper is structured as follows. At first, in Section II we
name and describe related work. Then we describe the design
fundamentals of our virtual energy sensors. Building upon that,
we describe the implementation of our generic energy model
generator in Section IV and evaluate its performance in Section
V. Finally, we conclude this work.

II. RELATED WORK

Our main goal is the creation of tools which enable large
organizations to gain insights in their electricity consumption.
In other words, we want to provide methods for measuring
the electricity consumption on appliance level with minimal
effort and low installation costs. Furthermore, our proposed
solution should be applicable in large scale environments with
thousands of electrical appliances. To clearly argue, why our
solution is required, we will analyze state of the art electricity
metering approaches with regard to their provided level of
detail, accuracy and installation costs.

A. Decentralized Electricity Meters

When using decentralized smart meters, one metering unit
per appliance is required. This metering unit can be directly
integrated in the wall outlet, it can be a special plug between
the appliance and the wall outlet [3] or installed at any
other location where it can sense effects of the electricity
consumption [4]. Often, those metering units are intercon-
nected via wireless communication channels. For example, the
ACme [5] distributed smart meter uses 802.15.4 together with
6LowPAN for communication with other nodes and a gateway
node. If not manually configured, the smart meters are not
aware of the currently attached appliance. To avoid a manual
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configuration, researchers have developed a machine learning
based approach to automatically detect the currently attached
electrical appliance [6], [7]. Those distributed smart meters
provide a good accuracy together with a medium scalability
for big installations.
While the hardware should also work in large scale, the broad
distribution of this technology is limited by installation costs,
efforts and the mobility of appliances. For bigger organizations
which would need thousands of distributed smart meters, these
factors are rather important. Furthermore, the insertion of
sensors in the power supply of appliances might be unac-
ceptable in some scenarios. Especially when the failure of
power meters would introduce faults in otherwise smoothly
running processes, those distributed smart meters might not
be an acceptable solution.

B. Load Disaggregation

Centralized electricity metering requires a single electricity
meter to monitor the summarized consumption of a whole cir-
cuit with all attached appliances. To split this load curve in its
components, researchers have developed various non-intrusive
load monitoring (NILM) algorithms. Those algorithms take the
summarized load curve of all appliances in an environment and
calculate a set of appliances which caused this load curve.
With this technology, one can get the energy consumption
of all appliances in an environment with minimal number of
additional sensors. Historic approaches towards NILM tried to
extract the appliances which created a load curve directly from
the measured power signal [8], [9], [10]. Newer approaches re-
verse this principle by trying to find a matching set of electrical
appliances which restore the observed load curve best. Kolter
[11] proposes the usage of factorial Hidden Markov Models
for this purpose and Egarter [12] experiments with the usage of
genetic algorithms for selecting a matching set of appliances.
As shown by Parson [13], those disaggregation algorithms can
be generalized to avoid a training phase for each household.
However, currently these generative approaches are limited
to small scale environments with relatively few electrical
appliances per circuit.
A completely different approach of load disaggregation was
developed by Patel [14], [15]. His research relies on rec-
ognizing unique radio frequency noise emissions caused by
different electrical appliances. Gupta [16] shows, how those
signatures could be recognized by a single sensor installed
in the circuit breaker box of a household. Those switch events
are mapped to changes in the whole house power consumption
in order to determine the power consumption on device level
granularity [17]. Current research in this field focuses on
scaling this technology scales with regards to the number and
heterogeneity of appliances in an environment.

C. Indirect Energy Metering

The field of mobile computing makes use of indirect energy
metering. All major mobile operating systems provide the
functionality to view the energy consumption of currently
running Apps. Having such a list, the user can see which
program is emptying the battery. Building upon that, the user
can decide whether or not the program should be killed to
increase the remaining battery runtime. Dong [18] imple-
mented this functionality for Linux-based machines using a

principal component analysis. Zhang [19] uses a multi-variant
linear regression model to estimate the power consumption
of currently running Apps based on their hardware resource
usage. Their power model includes the various parameters
from the categories CPU, WiFi, Audio, LCD, GPS and Cel-
lular. However, their model was manually fine-tuned for a
particular hardware design but they provide an automatic way,
to adapt their power model to arbitrary phones based on the
battery drainage. The findings of Pathak [20] indicate that
the modeling of different power states is required in order to
estimate the power consumption with a high accuracy.
Building upon that, the goal of this work is to generalize those
energy models. In the rest of this publication, we will show
how those approaches can be extended to generate energy
models for nearly arbitrary electrical appliances.

III. CONCEPT

The goal of this work is to determine the electricity
consumption for a whole environment on device level granu-
larity. As shown in Section II existing solutions are either too
inaccurate or an inherent source of complexity when deployed
in large scale. Our goal is to mitigate those issues by making
electrical appliances aware of their own energy expenditure.
Instead of equipping each appliance wit a dedicated current
sensor, we rely on software-based energy models to approxi-
mate the energy consumption based on the current mode of
operation. These virtual energy sensors can be realized by
sensing energy related device state variables together with
an appropriate regression model for calculating the energy
consumption from the sensed device state.
As more and more electrical appliances are equipped with
processing and networking capabilities, a centralized service
can be used to collect and process the energy expenditure
for electrical appliances in a particular environment. However,
the main challenges in such a scenario are most probably not
located the networking domain. Thus, in this paper we focus
on the information processing required build virtual sensors.

Instead of relying on dedicated measurement units for
each appliance we develop a purely software based electricity
metering solution. Most modern electrical appliances internally
use microcontrollers which precisely track and influence the
state of the appliance. This state variables correlate with the
electricity consumption of the appliance and thus can be
used to approximate the electricity consumption of a device.
However, the set of state variables required to infer the
electricity consumption is device-dependent. E.g. for a desktop
computer the CPU load, the Disk IO the network utilization
and other parameters are required whereas for a LCD monitor
the brightness setting is sufficient. However, this working
principle is of course not limited to office equipment. As every
class requires a specific set of input parameters, each device
class needs an own energy approximation model stating its
energy consumption for a certain set of input parameters. To
specifically build a model for each device, we apply different
regression models from the field of machine learning. For
each tuple of input parameters, such a model approximates
the power draw caused by the appliance.



A. Data Collection

In our proposed solution, each appliance present in a
certain environment has its own instance of an virtual energy
sensor. This so called approximator estimates the energy con-
sumption of its corresponding appliance. In order to perform
this task, the approximator has to observe the state variables of
its device to estimate its power draw. There exist three different
possibilities to obtain these parameters. Namely, these are (1)
appliances equipped with a network interface, (2) appliances
equipped with a network interface and also with computation
facilities, (3) and devices equipped with dedicated additional
sensors to obtain their state variables. In the following Section,
we will describe these possibilities.
1. Additional Sensors: There exists a big stock of legacy
devices without any network interface. To integrate those appli-
ances in our proposed solution, the idea of using opportunistic
sensing must be abandoned. Rather than that, we propose
the installation of cheap additional sensors to measure the
energy consumption of those appliances. This very interesting
approach was described by Kim [4]. The additionally installed
sensors make the state variables of legacy appliance accessible
from the network. For example, one can install a microphone
connected to a mote next to a “dumb” refrigerator. If the
refrigerators compressor is running, the microphone can record
its characteristic sound. However, the installation of additional
sensors will increase the complexity of the overall system
and also add costs to the energy metering solution. Thus,
the installation of more hardware should be avoided whenever
possible. With the rise of the Internet of Things and machine
to machine communication, this solution will become less
important over time as more and more appliances are equipped
with networking facilities.
2. Devices with network interfaces: In the first case, an electri-
cal appliance in an environment is able to provide the required
state variables via networked interface. Currently, the number
of appliances with those capabilities is rare. But in the short
term future, more and more appliances will be equipped with
networking facilities to make their internal state accessible. An
example of such a device is a microwave oven equipped with
a WiFi interface to inform the user via smartphone about the
currently active program and the temperature inside. Another
example can be an arbitrary network printer. These types
of printers allow querying all relevant information about the
number and kind of print jobs over their network management
interface. However, the approximator cannot run directly on
those appliances, because they do not have the ability to run a
custom computer program. Instead, the approximator for this
device runs on another host somewhere in the local network.
3. Devices with computation facilities and network interfaces:
In the second case, an electrical appliance is capable of
providing the required state variables and also computation
capabilities. In this case, our approximator will directly run on
this device, query the state variables and determine the energy
consumption of this appliance. In this case, the calculated
energy consumption is forwarded to a centralized instance
in this network to accumulate the energy consumption for
this particular appliance. An example of such a device is a
computer terminal. It has sensors to obtain its state variables,
computation capabilities to run the approximator and a net-
work interface to forward the calculated energy consumption.
However, the installation of the approximator software on this

machine is required in order to gather its energy consumption.
In a real world deployment, an energy management system
must be able to cope with frequently changing and moving
appliances. This fact is no challenge at all for our proposed
solution. As our energy models travels with the moving ap-
pliance, it continues to work location independent, as long as
there is connectivity to the data collection unit. Even if there
is no network connectivity for a certain period, the estimations
could be buffered until the network becomes available again.
However, depending on the requirements, it might be necessary
to handover the device to another, responsible data collection
unit.

B. Challenges by Hidden State

Our proposed solution faces several challenges. The most
important challenge is caused by incomplete information.
Neither all electrical appliances are equipped with an net-
work interface nor all relevant state variables are exposed
over those interfaces. While the falling number of legacy
appliances can be equipped with distributed smart meters or
additional sensors, the installation of those units increases the
complexity of our solution significantly. On the other side,
ignoring all non-networked appliances might add a significant
error to the estimations carried out by our system. In addition
to that, even appliances equipped with a network interface
might have hidden state variables which are not exposed to
the energy estimator. If those hidden variables are required
for robust energy estimation, their corresponding models will
yield inaccurate estimations in certain operating modes of the
appliance.

IV. VIRTUAL ENERGY SENSORS

Our software based energy metering relies on a regression
model which transfers the obtained state variables into power
signals. Thus, the regression model is clearly the most im-
portant part of this work. We will briefly describe how our
regression models are created, used and evaluated. While we
evaluate our energy models exemplary for office equipment,
the working principle is usable for arbitrary networked appli-
ances. We kept the description of our algorithms concise as
the whole source code of this project is freely available on
GitHub.

A. Energy Model Generation

A flow diagram showing the method to generate an energy
model for a particular appliance is shown in Figure 1. For
the model generation, it is required to measure the power
consumption of an appliance together with its state variables.
More precisely, a set of training data for fitting multiple
regression models together with a set of verification data for
evaluating the performance of those regression models must
be collected in order to create an accurate energy model
for the device under measure. Each of those data sets is
represented by a multi-dimensional time series of state variable
and a one-dimensional time series with the associated power
consumption. In the next step, these signals are filtered in order
to smooth the recorded signals. Subsequently, the signals are
aligned to remove a time lag between the power signal and
the state variables. Then, different regression models for the
device under measure are fitted using the training data. To

https://github.com/nglrt/virtual_energy_sensor/
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Fig. 1. Steps required for building a device specific energy model.

select the best matching regression model, the verification data
together with an optimization function is used to determine
the performance of each regression model. In the rest of this
section, all those steps will be described with a higher level
of detail.

1) Preprocessing: In order to create high accuracy energy
models of nearly arbitrary appliances, a preprocessing of the
measured variables is required. As shown in Figure 1, the
preprocessing consists of a filtering and a time-lag removal
step. The filtering step smoothen the recorded power traces as
well as state variables to reduce the influence of short-term
variations in the obtained signals. For this filtering task, we
selected a finite impulse response (FIR) filter with a rectangular
kernel function. This kind of digital filter has good numerical
stability and a linear phase response. The positive influence of
pre-filtering on the estimation error of our energy model for
different filter sizes are shown in Figure 2. This figure clearly
shows a reduction of the estimation error with increasing filter
size. Furthermore, the figure shows the error introduced by the
filtering itself. As shown in Figure 2, higher filter sizes reduces
the estimation error of our energy model, due to the removal
of high frequency components. In contrast to that, higher filter
sizes distort the ground truth power signal and thus reduce
the frequency resolution of our energy model. Thus, the best
filter length used for pre-processing is a trade-off between good
frequency resolution and a reduction of the estimation error.
For our appliances under test, we selected a filter size of two.
In our application scenario, this configuration provides a good
trade-off between estimation error and the error introduced by
the filtering.
Furthermore, the preprocessing has to correct a small time lag
between the power signals obtained from the power meter and
the state variable signal obtained from the device under mea-
sure. This time-lag is caused by the integrative measurement
carried out in the energy meter as well as by a transmission
delay between the power meter and the data collection unit.
We use the cross-correlation to calculate and compensate this
time-lag.

2) Model Creation: As each device class requires its own
energy model, the generation of such models should happen
automatically. Given a certain amount of training data together
with ground truth data, state of the art regression models can
be used to build such energy models. To create a particular
regression model, the user has to attach a power meter to
the device under observation. Now its state variables together
with its actual power consumption can be collected. For best
results, the user should bring the device under observation
to all possible operating modes. In the next step, our system
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Fig. 2. Trade-off between error reduction and frequency resolution in the
preprocessing stage.

automatically selects the appropriate regression algorithm and
an appropriate set of features for this particular appliance and
uses the collected training data to fit the model.
Currently, our solution supports eight different regression algo-
rithms. These are listed in Table I. As each of these algorithms
works best on a specific regression problem, our solution
automatically finds the best possible regression algorithm for
each application scenario. E.g. the best algorithm to model
the energy consumption of a refrigerator might be a linear
regressor whereas for determining the energy consumption of
a computer terminal, a tree based regression algorithm might
work better.
As the set of regression algorithms is rather limited, we
selected a brute force algorithm for finding the best option.
Our approach is to fit all available regression algorithms with
the obtained training data. Then, in a second step, our solution
calculates the performance of each algorithm using a set of
verification data. The algorithm winning this competition is
used to create our regression model for a certain class of
devices.
For selecting a good set of features, this brute force approach
would not scale. In this case the number of combinations to
check grows exponentially with the number of features. To
work around this issue we used a simple heuristic to select a
good set of features for the regressor. This heuristic works as
follows. First it calculates the correlation between each feature
and the power signal obtained during training. Next, it sorts the
features based on their correlation in descending order. Then,
it selects the feature with the highest correlation to build a
regression model and it calculates the error of this regression



TABLE I. IMPLEMENTED REGRESSION ALGORITHMS

Short Name Regression Algorithm
ETR Extra Tree Regressor
RFR Random Forest Regressor

ERFR Extra Trees Random Forest Regressor
KNNR K-Next Neighbours Regressor
LinearR Simple Linear Regressor
LassoR Lasso Regressor
LarsR Lars Regressor
DTR Decision Tree Regressor

model. For each additional feature, the feature is only added to
the selection, if it reduces the error of the existing regression
model. The usefulness of this feature selection depends on the
robustness selected regression algorithm and the costs of the
state variable observation.
The supported set of regression algorithms covers a great
variety of different usage scenarios. However, as our solution
should be non-parametric, it selects the best algorithm for the
current model automatically during the fitting phase of the
model. To achieve this goal, our approach requires an opti-
mization function fo to evaluate the accuracy of the generated
classifier for each regression model. To do so, we calculate
a fitness score on an independent set of verification data for
each regression algorithm and select the regression algorithm
with the highest fitness score for our energy model.

3) Optimization Functions: We use different optimization
functions to generate energy models optimized for different
use-cases. In context of this work, we used four different
optimization functions. Namely, these functions are: (1) Pear-
son Correlation, (2) Total Absolute Error, (3) Mean Absolute
Error, and (4) Mean Squared Error. All of those optimization
functions express different similarity measures between the
real power consumption and the estimated power consumption.
We will describe those functions in the following section: The
Pearson correlation expresses the linear correlation between
two variables. In our case, a high Pearson correlation indicates
a high similarity between the real and the estimated power
shapes. However, the Pearson correlation could not be used to
indicate a constant offset between both variables.
The Total Absolute Error etabs is defined as the delta between
the real energy consumed by the device and the approximated
energy consumption. This optimization function selects the
regression algorithm with a minimal energy difference to the
real measurement. This optimization function will lead to
energy models with minimal energy estimation errors.
The Mean Absolute Error emabs is defined as the average dif-
ference between the real and the estimated power consumption.
It leads to energy models with minimal power estimation errors
on a per sample basis.
The Mean Squared Error emse is defined as the squared differ-
ence between the real and the estimated power consumption.
This optimization function leads to energy models with mini-
mal power estimation errors. In contrast to the aforementioned
function, the Mean Squared Error penalizes high variability
disproportionately. Unless stated otherwise, this optimization
function was used as default value.

4) Energy Consumption Approximation: Once a regression
model is build, it can be used to approximate the energy
consumption of a certain device. To do so, the actual state
variables of this particular device must be observed in order
to use them as input parameters for the regression model.

TABLE II. RELEVANT STATE VARIABLES FOR A LAPTOP

Parameter Value Range Update Frequency
CPU Load 0.0-1.0 250...1,000Hz

Disk IO unsigned int Each Block I/O
Net IO unsigned int Each Packet RX/TX

Disp. Brightness 0-1 On Change
GPU Load 0.0-1.0 1 Hz

Battery Level 0.0 - 1.0 1 Hz
Battery Charge float 1 Hz

There is no fixed set of state variables which are usable for all
device classes. Rather, the set of parameters to use, depends
on the device whose energy consumption should be estimated.
For example, the regression model of our computer terminal
requires the state variables CPU load, Disk IO activity, network
utilization, GPU utilization and the screen brightness for good
approximations. On the other hand, the parameters temperature
and door state are sufficient for building a feasible regression
model for our aforementioned refrigerator. Of course, these
parameters must be somehow observable. As installing new
sensors for these parameters would violate the core idea of our
paper, we require the appliances to expose those state variables
via network interface.
If required state variables are not observable, they cannot be
used for applying the regression. This so called hidden state
variables cause a difference between the estimated power con-
sumption and the actual power consumption of the appliance.
An example of such a hidden state variable might be the
thickness of the ice layer in our aforementioned refrigerator
which influences its cooling efficacy.

V. EVALUATION

To evaluate our energy model generator, we conducted
three different experiments. The goal of these experiments is
to test the feasibility of our energy estimation approach. Those
experiments are described in the following sections.

A. Evaluation Setup

Our evaluation mainly shows the feasibility of energy
models for common computing hardware. We selected those
devices due to two facts: First it is very easy to observe and in-
fluence their state variables. Second, their power consumption
is complicated enough to make them interesting objects for our
studies. However, while our evaluation is mainly focused on
computing machinery, we show that our approaches are also
feasible for other appliances.
In a first step, we wrote a data collection service which collects
the state variables together with the energy consumption for
the particular device under measure. The energy consumption
of all Desktop and laptop computers was measured with a
Plugwise Circle1. The energy consumption of the monitors
was measured with a custom build high-accuracy power meter
[21]. We used this power data as ground truth to fit a regression
model for this particular device. We selected 1Hz as sampling
rate for all observations, which is the maximal sampling rate
of our Plugwise Power meters. The observed state variables in
case of a computer terminal or a laptop are shown in Table II.
To obtain training data, we created a small benchmark which
utilizes the CPU, the network and the hard disk drive with 10
different load levels each. This benchmark has a run time of

1http://www.plugwise.com/
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460 seconds. We ran this benchmark on all machines used in
the evaluation to obtain the training data sets as well as the
verification data sets.
For estimating the energy consumption of the monitors, we
recorded the brightness of the back light as single parameter.
To determine the current brightness of a monitor, it must be
connected to a computer system. Based on our decision to
sample with a frequency of 1 Hz, the energy model is invoked
once per second to determine the actual power consumption
based on the observed state variables. To get the overall energy
over a period, this time series must be integrated.
In case of our laptop or desktop computer, we have an
appliance with computing capabilities. Therefore, we execute
our virtual energy sensor directly on our system under test. Due
to this fact, a certain error is introduced. The estimation of the
actual energy consumption also causes a certain CPU load and
thus certain energy consumption. Therefore, our measurement
influences the quantity to measure.
In case of the office appliances, our virtual sensors were
executed on a dedicated processing node. Our energy model
works with all monitors supporting the DDC/CI DDC2AB
protocol which is required to access the back light setting of
the monitor. In theory, the regression using only the back light
setting should work well for all LCD and TFT monitors. In
those cases, the power consumption mainly depends on the
brightness setting of the back light. However, this approach
is not usable for upcoming OLED monitors. The energy
consumption of those OLED displays depends on the currently
shown image as each Pixel creates its own luminance. In this
case either a histogram stating the color distribution of the
pixels or a sub sampled version of the currently displayed
image would be required as features for the regressor in order
to produce accurate estimations.

B. Model Transferability

Thus, in the first experiment, we show that our generated
energy models are valid for a type series rather than a single
device. This property is important to keep the number of
energy models within manageable bounds. In other words, if
our energy models are transferable, once recorded, our energy
model can be re-used for all appliances of a certain type. Thus,
it is important to know, whether our energy models can be used
for other devices of the same series. We call this property
Transferability.
To conduct this experiment, we measured the state variables
together with the energy consumption for 6 different but

similar desktop computers. Three of them were from the same
series (Lenovo ThinkCentre), two of them had an additional
graphics card (also Lenovo ThinkCentre) and another computer
is from a different manufacturer. During the experiment, we
measured the ground truth energy consumption using Plugwise
power meters together with the state variables described in
table II with a sampling rate of 1 Hz. Over a measurement
period of 20 minutes, we simulated various workloads by
watching a film, surfing in the web, doing common office work,
encoding a video and idling on the desktop.
We used the recording of one computer to fit our regression
model. Hereby, our energy model generator selected the Lasso-
Regression Algorithm as best selection. Then, in a second
step, we validate the energy model generated before with
the recordings from the other computers. The result of this
validation for the Desktop computers is shown in Table III.
The results clearly show robust accuracy, when the model
is migrated to other machines of the same type. The model
is also robust against minor hardware-changes. The error is
still below 3.5% if the model is used on a computer with
a changed hard disk setup. The hereby obtained accuracy
is comparable with the accuracy of cheap distributed energy
meters. Things look different with bigger hardware changes.
The additional graphics card caused a significant change of
the energy consumption which was not covered by the original
model. In this case, the error is around 17%.
To determine if the energy models of computer displays are
also transferable, we repeated the measurements described
above for a set of four different 19” monitors of the same
model series. The results are comparable with the results
obtained for the desktop computer. We fitted our energy
model with training data from one monitor and used the
data measured from the other monitors to verify the results.
Hereby, our algorithm selected a Lars Regressor. During the
measurement, we changed the brightness of the back light in
10 steps from 0 to 100%. After each change of the brightness
setting, we displayed different screen settings on this monitor.
The first setting was a dark web site, the second setting was a
rather white showing a development environment and the third
image was a bluish desktop background image. As indicated
by Table III, the accuracy results obtained for the monitors are
comparable with the accuracy results for the desktop computer.
The errors obtained in this experiment are mainly caused by
hidden state. We will provide a more elaborated explanation
of the reasons in section V-D.



TABLE III. RESULTS OF THE REGRESSION ALGORITHM WITH
MIGRATED ENERGY MODELS FOR DIFFERENT APPLIANCES

Device emabs Comment
Lenovo 1 3.22% Single HDD only
Lenovo 2 1.53%
Lenovo 3 0.75%
Lenovo 4 17.01% With GPU
Lenovo 5 17.01% With GPU

Dell 1 13.28% Other Series
Dell A04 2.21% Monitor
Dell A04 2.09% Monitor
Dell A04 2.11% Monitor
Dell A05 3.56% Monitor

TABLE IV. RESULTS OF THE REGRESSION ALGORITHM WITH ENERGY
MODELS FOR DIFFERENT NETWORKED APPLIANCES

Machine Regressor etabs Class
Dell 1 ERFR 2.067 % 3

Lenovo 1 ERFR 0.683 % 3
Lenovo 2 KNNR 2.685 % 3
Macbook LassoR 0.162 % 3

Gaming PC LassoR 3.400 % 3
Philips Hue KNNR 4.539% 2

Fan RFR 1.322% 1
Canon Printer ERFR 3.757% 1..2

Vending Machine DTR 10.8% 1

C. Model Adaptability

There exists a uncountable number of different device
series. In a perfect world, our energy model generator would
be able to support all of them. However, as this goal might
not be within reachability, we measure how well our model
generator performs in different scenarios. We call this property
Adaptability. If the adaptability is high, our energy model
generator can be used to determine the energy consumption
of arbitrary networked appliances with high accuracy. To
determine the adaptability of our energy model generator,
we measured the energy consumption together with state
parameters for different classes (c.f. III-A) consisting of five
different computer systems and four common office appli-
ances. During the measurement, we simulated different, device
specific workloads. For the computer systems, we performed
the five activities surfing in the Internet, doing office work,
converting video files, watching video files and idling. For
each machine under measurement, we collected an independent
training and test set with a length of 20 Minutes. We took care,
that our testing set covers the full range of input parameters.
With other words, we tried to utilize the CPU, the network
interfaces as well as the available hard disks with different
load parameters.
For the Philips Hue Lamp, we compared the real power
consumption of the lamp with the calculated power consump-
tion in 120 different randomly chose color and brightness
settings. The fan, printer and vending machine were observed
under normal office conditions for multiple hours. As those
devices did not provide an interface for observing their state
information, we installed an additional sensor to observe their
operating mode. More precisely, we attached a microphone to
those devices, recorded their noise emissions with a sampling
rate of 44.100kHz. To extract features, we chopped this audio
stream in small windows and extracted 13 MFCC and 10
Band Energy features from each window (c.f. [22]). Using
this approach, we obtained device state information from audio
emissions with a sampling rate of 10 Hz. Once this training
data was available, building the energy model happened as

TABLE V. LONG TERM STABILITY OF THE ENERGY MODEL

Appliance Laptop 1 Laptop 2 Laptop 3
Samples 53,269 20,279 107,661
Manufacturer Dell Lenovo Lenovo
Kind Latitude 6440 T440s T430s
Operating System Linux Win Win
Duration [h] 14h 48m 7h 20m 29h 50m
Pmean[W] 29.83 37.19 15.66
emabs[%] 6.02 2.19 5.00
Pmabs[W] 1.8 0.81 0.78
σ [W] 3.56 0.33 0.44
Regressor ETR ERFR ERFR

described in section IV. However, if a device vendor decides
to integrate a virtual energy sensor directly in the firmware
of an electronic device, this audio based observation step is
obviously not required.
The results of this experiment are shown in Table IV. A
definition of this error metrics is available in section IV-A3.
The results of this evaluation look promising. It is possible,
to generate stable energy models for a wide set of different
machines including computers, laptops, printers, lamps and
vending machines using a single, non-parametric model gen-
eration algorithm. For most devices the mean absolute error
etabs is below 5%.

D. Long Term Stability

In order to test the stability under real world conditions,
we conducted a long term study. We used our benchmark suit
to generate training and verification datasets for three different
laptops. Then, we collected the power consumption together
with the state variables for a period of one month. During this
time window, the laptops were used for normal office work
as well as research activities during this study. The Laptops
were even moved to other locations within the office on a
regular basis. Having an extensive set of testing data, we used
our algorithm to generate energy models for those appliances
using the training and verification data set. We evaluated the
accuracy of our energy model using the previously recorded
test data set. To evaluate the test data, we created chunks of 60
seconds each and calculated the Mean Absolute Error for each
chunk of estimations independently. We selected this approach
to improve the visibility of time windows with high error
rates. The results of this experiment are shown in Table V.
The estimation errors measured in this experiment confirm the
results from experiment 1 and 2. Furthermore, the standard
deviation σ of the estimation error for both Lenovo laptops
is rather small whereas the Dell Laptop has a much higher
variance in the estimation error. This third experiment clearly
shows that our software based energy estimation is usable in
real world scenarios.

E. Energy Demand of Virtual Sensors

Furthermore, it is important to discuss the power consump-
tion caused by our software based energy estimation approach.
This self-consumption should be as low as possible, in order
to limit the energy wastage caused by energy metering. The
consumption of our approach directly depends on the number,
kind and sampling frequency of observed state variables. We
took no particular care to select state variables which are cheap
to observe in terms of computation complexity.
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Fig. 4. Overhead caused by software based energy metering measured on
Lenovo T430s under Linux.

To verify the self-consumption of software-based energy me-
tering, we measured the difference in the power consumption
of our energy estimator running at different sampling frequen-
cies. More precisely, we executed our energy model on a
Lenovo T430s under Linux. In order to get numerically stable
results, we repeated this power measurement for each sampling
frequency over 400 times. The results of this measurement are
shown in Figure 4.
Obviously, using the energy model significantly increases
the self-consumption of our system under measure. This is
caused by two facts. First our implementation is currently not
optimized with regard to computational efficiency. Second a
broad set of state variables are observed, however most of those
state variables are not used by the particularly fitted energy
model. We expect a much lower overhead if only a selected
set of sensors is observed and a better implementation is used.

VI. CONCLUSION

In this work we have presented our approach to generate
energy models for arbitrary networked appliances. Instead of
deploying a distributed smart meter per appliance, we measure
observable state variables of this appliance to approximate its
energy consumption. We have shown the feasibility of this
approach exemplary for office equipment. Our implementation
is capable of approximating the energy consumption of nine
different appliances with an error between 2.19% and 10.8%.
While currently our measurements are limited with regard to
the spectrum of electrical appliances, the results indicate a
broad applicability of our virtual energy sensors.
Our proposed solution can be used to determine the energy
consumption of an increasing number of networked appliances.
As our solution is purely software based, it could be installed
or integrated in a broad spectrum of appliances with minimal
cost. Thus, our solution is usable in a large scale environments
for finding energy saving potentials, giving appropriate user
feedback and for developing more energy-efficient appliances.
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