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Abstract—In order to find energy saving potentials, future
home energy recommender systems needs a large database of
historic energy consumption information from various appliances.
Having reference data, those systems could decide whether an
appliance is wasting energy or not.

However, the collection of this reference data degrades the
user privacy as energy traces contain sensitive information which
allows the exhibition of user behavior. In order to mitigate
those privacy implications, we propose a method of sparse
data collection. Our proposed solution minimizes the amount
of collected reference data by removing energy traces which do
not provide new information for the recommender system. Our
proposed solution is capable of reducing the collected amount of
data by a factor of 2 without lowering the accuracy of the future
home energy recommender system.

I. INTRODUCTION

Recent studies indicate that residential home inhabitants
waste a lot of electricity. According to Fischer 2008 [1],
there is a saving potential of 20% of the total electricity
consumption in residential homes by providing feedback to the
inhabitants. The inhabitants achieve their savings by switching
off unnecessary consumers, switching down electrical appli-
ances to the most energy efficient working mode or replacing
electrical appliances with more energy efficient alternatives.
Currently, an analysis which of those actions are beneficial to
save electricity must be carried out manually by the inhabitant.

However, in the future we expect the rise of systems which
could apply this analysis automatically. Those systems will
most probably need a large stock of reference data from various
environments and appliances. In order to find saving potentials,
those systems will analyze the electricity consumption in
comparison with data from similar appliances or environments.
As result, those systems could determine the delta energy
between the currently observed appliance and the most energy
efficient appliance of the same kind in the reference data set.

For example, the system observed that a refrigerator con-
sumes in average 3 kWh electricity per day. As a singular
value, this information is not meaningful. But, if the system
has a large reference data set obtained from other refrigerators,
it could determine whether this value is too high or appropriate.
For example, if a similar refrigerator requires only 1.5 kWh

per day, the recommender system could recommend the user
to replace its old refrigerator with a new one.

In order to build an extensive set of reference data, mon-
itoring a single environment is not sufficient. Rather than
that, as many environments as possible must be observed to
build a meaningful set of reference data. Thus, we assume the
existence of a collaboratively collected set of energy traces
at a centralized location, i.e. a cloud back-end. However, this
centralized collection of reference data causes serious privacy
implications. Recent studies have shown, that energy traces
allow inferring the user’s occupancy [2], [3], the activity [4]
and the number of residents of a monitored home [5]. While
these studies only show a small subset of all possible privacy
implications, they clearly imply the importance of methods to
reduce privacy implications caused by smart metering.

To mitigate those effects, our proposed solution decides
for each observed electricity trace individually whether it
contains significant information for the reference data set or
not. The trace is only transmitted to the cloud back end,
if it contains significant information. In order to make this
decision, we compare our data depended approach with a
random sampling approach as well as a quota based approach
as baseline. Hereby, our data depended selection mechanism
could filter electricity traces efficiently. In comparison to the
random sampling approach, our data depended electricity trace
selection mechanism reduced the amount of shared electricity
traces by a factor of two without lowering the accuracy of the
home energy recommender system.

This work is structured as follows. First, we briefly discuss
related works and methods for measuring and increasing the
user privacy. Then, we provide an in depth description of our
data selection mechanisms. Building on that, we evaluate and
discuss relevant characteristics of our data selection mecha-
nisms. Finally, we conclude this paper by summarizing the
most important results.

II. RELATED WORK

There are increasing possibilities to monitor the electricity
consumption of buildings with a high level of detail [6], [7].
This monitoring is the foundation for sophisticated energy
management and energy saving recommender systems. How-
ever, detailed metering of the electricity consumption poses
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several threats for the user privacy. With an increasing amount
of collected data, more and more threats on the user privacy
become possible. Even with low time resolution, e.g., 15
minutes sampling interval of whole house metering, it becomes
possible to infer occupancy and demographic information on
the inhabitants [3], [S], [2]. Higher sample rates even allow
to infer present electrical appliances [8], user activities and
common user patterns [4], [9]. An illustrative example of those
privacy threads is the possibility to infer the TV program from
the electricity consumption of a television. As shown by [10],
having time stamped secondly electricity metering data of a
television, it becomes possible to deduct the exact TV program
watched by the user of a television.

In our opinion, relying on cryptographic methods or
anonymizing routing protocols (c.f.[11], [12]) for protecting
the user privacy is no viable solution to this problem. While
those methods are important factors to decouple the personal
references from the collected data, cryptographic methods do
not reduce the amount of privacy threatening data. It still
remains possible for the data collector to re-use the collected
data for other purposes. Thus, we will focus on methods to
reduce the amount of collected data to the bare minimum.

Three main challenges [13] must be solved in order to
enhance the user privacy. First, a solution is needed to make
the privacy measurable. Next, good trade-off between data
quality and privacy must be found. Last but not least, the
user should have the possibility to fine-tune privacy relevant
settings in order to maintain a high perceived privacy. In
order to enhance the user privacy, measurements should be
able to incorporate the achieved level of privacy. Kalogridis
[11] expresses three metrics which could be used to quantify
the privacy level. Namely, those metrics are either based on
the entropy, cluster analysis or regression. However, as those
metrics are tailored to whole household energy measurements,
they are not applicable in our use case with multiple data
streams from different appliances. To increase the user privacy
of smart meter installations, many researchers [14], [15],
[11] recommend the installation of buffer batteries to average
variances in the electricity consumption of a domestic home.
By installing buffer batteries between the electrical consumers
and the smart meter, the real power draw can be decoupled
from the observable power draw. Thus, it becomes possible to
smoothen or reshape the electricity consumption such that the
privacy implications are reduced. Furthermore, those systems
could be used to decrease the electricity bill by shifting
the electricity demand to low-price time windows [15]. A
more general analysis of methods for finding a good trade-
off between privacy and data quality was done by Reinhardt
et al. [16]. This work focused on general methods to enhance
the user privacy by preprocessing the smart meter data. More
specifically, four different privacy enhancing algorithms were
used to determine their effect on the user privacy as well as
on the data quality.

III. ENERGY RECOMMENDER SYSTEMS

Figure 1 shows the architecture of a home energy recom-
mender system. Those systems measure the electricity con-
sumption of all present electrical devices on appliance level.
This is achieved either by designated sensor nodes or by using
non-intrusive appliance load monitoring approaches[17]. The

TABLE 1. DATA GRANULARITY REQUIREMENTS FOR DIFFERENT

KINDS OF FEEDBACK

Aggregated Time Reference
Kind of Feedback Data Resolution Data
Total Consumption yes hours. . . days yes
Device Level Consumption no hours. .. days no
Highlight standby appliances no minutes no
Recommend device replacement no minutes yes
Recommend better operating mode no seconds yes
Recommend device maintenance no seconds yes

collected electricity consumption stream is then forwarded to
the Recommender Algorithm which compares the observed
electricity consumption for each appliance with previously
recorded electricity consumptions to find saving potentials.
As result, those algorithms could rank the observed electricity
consumption with other appliances of the same kind or useful
for the same purpose. Depending on the kind of recommen-
dation, different data granularity levels are required. Those
are shown in Table I. E.g. for comparing the total electricity
consumption with the electricity consumption of friends or
similar households, aggregated data with a time resolution in
the range of multiple hours can be used. With increasing detail
level, finer granularity levels of data are required to derive
those recommendations. Usually, home energy recommender
systems consist of two parts. Firstly, there are sensors and a
gateway node physically installed in each residential home.
Secondly, a centralized server (“cloud back-end”) collects
reference data sets from all connected home installations. In
order to keep the reference data set up to date, the collected
electricity traces are uploaded to a cloud monitoring. The local
part of the system is assumed to be under full control of the
user and thus poses no privacy implications. As a consequence,
our work aims for limiting the privacy implications caused by
the data uploaded to the cloud back end.

One of the most prominent home energy recommender
system was implemented by Plugwise !. This company offers
Zigbee based smart meters which could be plugged between
the wall outlet and arbitrary electrical appliances. The main
purpose of Plugwise sensors is to provide user feedback about
the electricity consumption. However, the Plugwise software
is also capable of uploading the observed readings to a cloud
back end 2. Currently, Plugwise is capable of giving feedback
to the users which and how much electricity is consumed by
present appliances. However, Plugwise announced plans, to
build more detailed energy feedback systems based on the
collected electricity information in the near future.

IV. APPROACHES FOR DATA MINIMIZATION

In the last section, we described the general working princi-
ple of home energy recommender systems. Building upon that,
we now describe our contribution to improve the user privacy
of those systems. To do so, our proposed solutions extend the
Data Uploader with a selection mechanism to decide whether a
particular electricity trace from a particular appliance together
with its corresponding appliance label should be uploaded or
not. This selection mechanism takes an electricity trace and

Uhttp://www.plugwise.com

2Side-note: Early versions of the Plugwise Source software uploaded all
observed electricity readings together with the device names regardless if the
user disabled this feature or not. Due to serious privacy concerns in their user
community, Plugwise decided to stop this behavior.
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a locally available subset of the reference data set as input
and makes a binary decision if a electricity trace should be
uploaded. An electricity trace in this context is a time series
of power readings for a particular appliance. This time series
starts when the device is switched on and stops when the
device is switched off. With other words, the start event of this
time series is indicated by a power reading above OW and the
stop event occurs when the power reading of the device under
measure goes down to OW again. For book-keeping purposes,
all electricity traces are stored in a local data set with historic
electricity traces. It is important to mention, that our enhanced
data uploader removes the time relation of the obtained energy
traces. Furthermore, it defers the upload process to a hard-
coded time window which is the same for all instances. The
time relation of electricity traces is most probably not required
for energy analysis. Thus, this information should not be
collected at all if respecting the user’s privacy is required.
Having given a high level overview, it is time to describe the
core working principle of our solution. In the next subsections,
we will describe the implementation of our three data selection
mechanisms.

A. Random Sampling

The general idea of the random sampling selection method
is rather simple. The decision, whether an electricity trace
should be uploaded or not is based on a random variable.
Technically spoken, our algorithm draws a number from an
equally distributed random number generator. If the value of
the number is above a certain threshold, the electricity trace
is uploaded to the cloud back end. Otherwise, the electricity
trace is dropped from the upload queue.
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Fig. 3. Exemplary visualization of the Data Depended heuristic for novel
information discovery

The dropping probability of this selection method could
either be constant or changing over time. This raises the
question how to determine a good function to approximate
the dropping probability. If the dropping probability is too
low, there is no enhancement of the user privacy. On the
other hand, if the dropping probability is too high, it affects
the accuracy of the energy saving recommender. A method
for finding sensible values for the dropping probability is
explained in section V. However, as each user might have
different privacy preferences, this mechanism allows selecting
arbitrary dropping probabilities.

B. Quota Based Sampling

As a core working principle, the quota based sampling
mechanism assigns a quota of n available uploads to each
appliance. With other words, for each appliance at most
n electricity traces are uploaded to the cloud back-end. In
contrast to Random Sampling, this mechanism has a hard limit
of electricity traces which are shared with other users. Our
implementation has no sophisticated methods for determining
which electricity traces to upload. The algorithm uploads all
available electricity traces until the quota for the particular
appliance is exhausted.

However, a recent study [18] has shown that electric
appliances have a huge set of different electricity consumption
patterns. This fact raises the question, if there are more
sophisticated approaches to select samples for uploading.

C. Data Depended Sampling

This mechanism tries to determine whether an electricity
trace contains novel information with relevance for the ref-
erence data set. As the novelty of an electricity trace could
not be measured directly, this mechanism tries to estimate the
novelty.

This mechanism assumes the availability of labels for each
electricity trace. If the system is aware of device names for
all monitored appliances, the device names could be used as
label. Otherwise, the sensor id might be used as label.

To estimate the novelty of a data sample, the following
heuristic is used: First, our algorithm extracts certain features
from the electricity trace to analyze as well as from all
available historic electricity traces which are stored locally.



Next, it uses the k-Nearest-Neighbors (kNN) algorithm to find
k historic traces which are most similar to the current trace.
Finally, our algorithm compares the labels of the k historic
traces with the label of our current trace. If the labels are
equal, the trace contains no novel information. If the labels
are different, the trace might contain novel information. Unless
stated otherwise, our implementation uses a Euclidean distance
metric for finding the nearest neighbors.

This working principle is shown in Figure 3. In this
example, we select two neighbors for comparison: k£ = 2. In
case 1, all neighbors have the same label. Thus, the electricity
trace will most probably contain no novel information and
uploading is not required. Things look different in case 2. Here,
the nearest neighbors have different labels. The reason for this
might be a formerly unobserved behavior of the appliance or
the observation of a new appliance.

Currently, our implementation relies on the following fea-
tures: (1) The total energy of the electricity trace, (2) the length
of the electricity trace, (3) the maximum observed power, (4)
the average power, (5) a finger print extracted from the inrush
power demand.

The supervised machine learning mechanism works best,
if a certain amount of historic data from many different
appliances is available. Only if a broad spectrum of different
features is available in the search space, the algorithm can
decide whether a sample is relevant or not. Nevertheless, this
mechanism has no possibility to specify a user defined trade-
off between data quality and privacy.

V. EVALUATION

We evaluate the efficacy of our proposed data minimization
approaches in this section. First, we describe general assump-
tion we made, in order to test our mechanisms. Next we
describe the concrete evaluation setup. Finally, we demonstrate
the effects of our approaches on the user privacy in our
particular scenario.

The evaluation of our selection mechanisms is challenging.
The reasons for this fact are twofold. First, there is no single
measure which could be used to measure the privacy. To work
around this issue, we assume a negative correlation between
the amount of uploaded data and the user privacy. Thus, from
a privacy point of view, it is best to upload as few electricity
traces as possible. The second challenge is due to the fact that
no ground-truth data for home energy saving recommender
systems is available. Thus, the demanded amount of reference
data for home energy recommender systems is still unknown
and we could not directly measure the impact of our data
minimization approach on the accuracy of those systems. In
order to address this issue, we use a rather limited approach
to generate energy recommendations. First, we use a device
identification algorithm [19] to cross-check the label of the
electricity trace. If the expected and the classified label match,
we search for an instance with the same label and energy
consumption lower than the energy consumption of the ac-
tual electricity trace instance. If such an instance exists, our
algorithm could have made an energy saving recommendation.
Next, we count all cases where a recommendation was made
and all cases where no recommendation was possible. Building
upon that, we define the accuracy of our recommender system

as the number of recommendations found divided by the total
number of all recommendations:

o Count(rpossivie) (M

count(rqy)

Using this metric, we could indicate whether the energy
saving recommendation system is capable of finding energy
wastage. However, this metric does not express the height of
the saving potential. A reliable set of ground truth data would
be required in order to apply such a metric.

A. Evaluation Setup

We used the publicly available Tracebase [19] data set
to evaluate our data minimization algorithms. This data set
consists of energy traces from different common household
appliances which were collected in different residential homes.
More precisely, this data set consists of 1,270 power con-
sumption records from 122 different appliances grouped in 31
different classes. Each of those power consumption records
contains power measurements for a single appliance with a
sample rate of roughly 1Hz over a period of 24h. Those records
were collected using Plugwise Circles. Prior to the evaluation,
we extracted 8,200 electricity traces from those power con-
sumption records. According to our definition in Section III,
each electricity starts when an appliance is switched on and
stops when the appliance is switched off again.

B. Trade-off between Data Reduction and Accuracy Loss

The goal of this experiment is to determine the trade-off
between data reduction and accuracy. Good selection mecha-
nisms should reduce the number of uploaded electricity traces
as much as possible without reducing the recommendation
accuracy. We test the effects of our selection mechanisms on
the data reduction as well as on the recommendation accuracy
in this experiment.

The setup of this experiment is as follows: We use the
full set of 8,200 electricity traces as input for our selection
mechanisms. The selection mechanism then decides for each
input data sample whether it is important or not. Finally, we use
all selected electricity traces to build an energy recommender
and evaluate its performance as described in Section V-A. As
the obtained results may depend on random variables or the
order of the input data, we repeated this whole procedure 30
times.

The result of this experiment is shown in Figure 4. The x-
axis of the plot shows the resulting data reduction and the
y-axis shows the accuracy-loss. To evaluate Random Sam-
pling mechanism, we varied the selection probability p from
p = 0.05 to p = 0.9. For high selection probabilities above
60%, this mechanism shows solid results with a low accuracy
loss. For lower selection probabilities, the mechanism has a
significant decrease of the accuracy. This effect is caused by an
inappropriate selection of relevant electricity traces. Obviously,
the resulting data reduction directly depends on the selection
probability. To evaluate Quota based Sampling, we varied the
quota ¢ from 20 samples per class to 1,000 samples per class.
However, this mechanism performs worse than the Random
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Fig. 4. The Data Depended Sampling provides a better trade-off between data reduction and accuracy loss than Random Sampling or Quota based Sampling.

Sampling for quotas below ¢ = 30. For a quota values above
q = 30, the mechanism converges to RandomSampling. For
the Data Depended Sampling we varied k from 1 to 10. This
selection mechanism performs significantly better than random
sampling. This mechanism can achieve high data reductions
with very small accuracy losses. Furthermore, values of k
above 4 were not beneficial at all. For all values of k£ above 4,
there was nearly no clear accuracy-loss observable. However,
this mechanism cannot achieve arbitrary low data reductions.
The lowest possible remaining data set size of 25% was
achieved with k£ = 1.

In this experiment, the Quota based Sampling provides no
benefits over the Random Sampling mechanism. It had equal or
even worse results and is slightly more complex to configure.
In this experiment, the Data Depended Sampling mechanism
performed best. It was capable of reducing the resulting data
set size by a factor of 2 without significant effects on the
accuracy.

C. Time Dependence of Selection Mechanisms

While observing macroscopic effects of our selection
mechanisms in the first experiment, we now analyze the
dropping probability over time. In terms of increasing the
user privacy, the dropping probability of selection mechanisms
should increase to 100% over time. When a system is newly
installed, it is perfectly ok, if the selection mechanism finds
new electricity traces to upload. However, when the system
is used for a certain time window and no new appliances are
present, the dropping probability should rise to 100%.

In order to evaluate this behavior, we used all electricity
traces from our test data set and observed the selection deci-
sions based on the number of previously available reference
data points. The results of this experiment are shown in
Figure 5. As expected, the Random Sampling has a constant
dropping probability. The dropping probability of the Data
Depended Sampling mechanism starts very low but rises
quickly with an increasing set of reference data. However,
during our experiments, it never reached a point where no new
information is discovered. The reason for this may be a limited
test data set observed in diverse environments. Nevertheless,
the Data Depended Sampling mechanism achieved dropping
probabilities of up to 80%. In this experiment, the Quota based
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Fig. 5. The dropping probability of our Data Depended selection mechanism
increases over time up to 80%.

Sampling mechanism worked best. With a low quota of 20
electricity traces per class, this mechanism could achieve very
high dropping probabilities.

VI. DISCUSSION AND FUTURE WORKS

In this section we will discuss our findings and their
impact on energy saving recommendation systems. First, we
will discuss the appropriate data granularity and then we will
review means to enable privacy control for the user. Finally,
we discuss how our approaches can be generalized to other
problem domains.

In general, the data granularity should be as low as possi-
ble. A lower data granularity causes lower information content
and thus fewer possibilities for privacy threats. This raises the
question on the lowest possible data granularity for energy
saving recommender systems. Unfortunately, there is no simple
answer to this question. If the recommender system should be
able to give appliance level recommendations, the total energy
as well as the usage time for each appliance is sufficient in
order to generate recommendations. If the recommender sys-
tem should be able of detecting and recommending appropriate
operating modes of an electrical appliance, much more data
will be needed.

For the end user, the perceived privacy is very important.
Only if the user feels comfortable with the behavior and
capabilities of a sensing system, he starts to accept the system.
Thus, it is important that the user has the possibility to fine-
tune his preferences for privacy protection. As shown in Figure
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6, we propose four different levels for privacy control:

1)  Disable sharing: No electricity traces are uploaded to
the cloud back-end

2)  High: No data sample is uploaded automatically. The
system selects the most relevant electricity traces.
Those traces are presented to the user for manual
review and only uploaded if the user acknowledges
this.

3)  Medium: The system selects the most relevant elec-
tricity traces and uploads them automatically

4)  Low: The system selects all relevant electricity traces
and uploads them automatically.

We plan to implement this privacy control in our data col-
lection toolbox. The different privacy protection levels could
be achieved by using Data Dependent Sampling for the Low
privacy protection level. The Data Dependent Sampling with
k = 4 combines a data reduction by a factor of 2 with
nearly no accuracy loss. The Medium privacy protection level
could be realized by combining Data Dependent Sampling
for the selection of relevant data together with a Quota
based selection mechanism for limiting the total amount of
transmitted data. The high privacy protection level could be
achieved by extending the medium setting with means for user
review before the data is uploaded to the cloud back-end.

Finally, we discuss how our selection mechanisms for
finding transmission relevant data could be generalized to be
applicable in other, similar application domains. Our proposed
solution can be used directly in other problem domains where
a selection of labeled data should be made. However, most
probably our presented relevance metric is not re-usable. A
domain specific relevance metric or a more general privacy
metric is needed in order evaluate the performance of our
selection mechanisms.

VII. CONCLUSION

In this paper we analyzed different selection mechanisms
for transmission relevant, privacy sensitive electricity traces.
We compared three different selection mechanisms Random
Sampling, Quota based Sampling, and Data Dependent Sam-
pling. These sampling mechanisms can reduce the amount
of collected data by a factor of 2 without significant effects
on the accuracy of electricity saving recommender systems.

Furthermore, we showed options how a user could set up

the selection mechanisms in order to match custom privacy
requirements. Thus, our work greatly enhances the perceived
privacy of home electricity saving recommender systems. This
is an important step to foster user acceptance for those systems.
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