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Abstract—The increasing presence of renewable sources re-
quires power grid operators to continuously monitor electricity
generation and demand in order to maintain the grid’s stability.
To this end, smart meters have been deployed to collect real-
time information about the current grid load and forward it to
the utility in a timely manner. High resolution smart meter data
can however reveal the nature of appliances and their mode of
operation with high accuracy, and thus endanger user privacy.
In this paper, we investigate the impact on user privacy when the
consumption data collected by distributed smart metering devices
are preprocessed prior to their usage. We therefore assess the
impact on the successful classification of appliances when sensor
readings are (1) quantized, (2) down-sampled at a lower sampling
rate, and (3) averaged by means of an FIR filter. Our evaluation
shows that a combination of these preprocessing steps can provide
a balanced trade-off that is in the interests of both users (privacy
protection) and utilities (near real-time information).

I. INTRODUCTION

The volatile nature of renewal sources requires electric
utilities to constantly maintain up-to-date knowledge about
generation and load in order to avert the risk of power
outages. As a result, many countries have already deployed
smart meters widely, or are currently in the process of doing
so [1]. While this is of benefit to the utilities, the transmission
of precise information about the current activity in people’s
households is often perceived as a threat to user privacy. This
concern is underpinned by research results that have shown
that information about the current user activities and even the
television content can be inferred based solely on smart meter
data (e.g., [2], [3]). So while users may be reluctant to provide
high-resolution data to their utilities because of the possible
privacy implications, utilities require this consumption data at
a high temporal resolution in order to adapt their generation
to the changing demand.

The field of privacy-aware data processing has received
significant attention in orthogonal domains like participatory
sensing ([4], [5]). Due to the different nature of the data collect
by smart meters, e.g., the absence of location information,
the applicability of such mechanisms is however very limited.
Hence, we investigate to which extent preprocessing of the
collected power readings can eliminate possibilities to infer
appliance types solely based on their consumption data. To this
end, we apply different mechanisms to obfuscate the data and
analyze to which degree appliance types can still be identified
after this preprocessing step. More specifically, we investigate

how quantization, down-sampling, and averaging succeed in
eliminating characteristic signatures from the data.

Instead of analyzing data that aggregates a complete house-
hold’s consumption, we herein focus on distributed smart
metering. In this scenario, individual metering devices are
installed between each appliance’s mains plug and the wall
outlet. The reasons for selecting this application scenario are
twofold. Firstly, existing approaches to infer device activity
from smart meter data have shown that the disaggregation
of loads performs significantly better when less appliances
are connected at the same time [6]. A more efficient privacy
protection is thus needed when individual appliances are being
monitored. Secondly, very few household-wide meter data sets
are available, and these only cover a small number of house-
holds (e.g., REDD [7]). In contrast, the Tracebase repository
used in this paper contains more than 1,500 appliance power
consumption traces, and thus allows for a better generalization
of our results. First, we provide an overview of related work
from the domains of data privacy and smart metering in Sec. II.
Subsequently, we describe our designed software framework
and the preprocessing steps in more detail in Sec. III. Our
evaluation settings are explained in Sec. IV, followed by the
discussion of our evaluation results in Sec. V. Finally, we
conclude this paper in Sec. VI.

II. RELATED WORK

The rise of smart meters has led to the availability of
an unprecedented resolution of power consumption readings.
To date, two major applications have emerged that rely on
these data, namely supporting the utilities to match supply
and demand as well as the creation of smart buildings. While
smart building functionalities can be realized when accurate
measurements are available (cf. [8], [9], [10]), the same
methods can be applied by third parties (e.g., the utility or
external attackers) to infer the current situation in a building.
The CEN-CENELEC-ETSI Smart Grid Coordination Group
outlines the information security requirements to the smart grid
in [11]. Although proposing a separation of personal informa-
tion and actual power consumption data, countermeasures to
prevent inferring user activities from their meter data are not
specifically regarded in the document. In order to protect users
from such intrusions into their privacy, several solutions have
thus been presented in related work. Cryptographic means
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to ensure a secure transport of data between end users and
utilities are presented in [12], [13], [14]. Although these
approaches ensure that third party attackers cannot retrieve the
data, they still allow the utility to gain access to the readings in
unaltered form. This limitation is addressed in [15] and [16],
where solutions are presented that aggregate data collected by
multiple meters before relaying it to the utility. While the users
are protected against attacks by utilities in this case, they need
to trust and cooperate with other households owners.

Approaches that operate locally have also been presented.
Efthymiou and Kalogridis have shown that by transmitting
smart meter data in an anonymized manner, utilities may be
able to infer household activities, but are unable to link them
to the actual households [17]. The addition of noise to the
measurements can also be applied in smart grids in order to
obfuscate user behavior [18], although it has not yet been
analyzed in the domain of smart electricity grids. Also op-
erating on a local basis, the privacy-aware data preprocessing
step presented in [19] shows that privacy can be increased
by applying filters that eliminate certain characteristics from
the power meter data, but its efficacy is not analyzed in the
domain of smart metering. Finally, instead of manipulating
the collected readings, external storage components have been
discussed as options to alter a building’s consumption and
thus eliminate characteristic features from the data. The use of
batteries to smooth the load curve has been presented in [20],
[21], but the limitations of state-of-the-art battery technology,
e.g., decreasing capacities and high financial cost, render this
technology inapplicable for many scenarios.

III. CONCEPT AND SOFTWARE FRAMEWORK

The primary objective of this paper is to evaluate the extent
of privacy protection that can be achieved by preprocessing the
data collected by distributed smart meters. In order to analyze
the efficacy of this preprocessing, we first quantify the privacy
threat resulting from the unprocessed transmission of power
consumption data. Subsequently, results based on preprocessed
data are compared to this baseline in order to draw reliable
conclusions on the degree of additional protection attained by
preprocessing. To establish the baseline detection accuracy,
we have thus designed a system that is able to detect the
type of an appliance based on its electric power consumption
data. The system extracts specific characteristics that uniquely
represent each appliance type based on its power consumption
behavior, and memorize them in the form of a machine
learning model. When the system is supplied with a power
consumption trace collected from another device, it extracts
the characteristic features from the trace, compares them to
the knowledge stored in its model, and returns the device
type with most similar characteristics. The objective of this
paper, namely obfuscating device-specific characteristics in the
power consumption data, should thus lead to larger number of
false identifications. Hence, we use the fraction of appliances
that can no longer be correctly identified as a measure of the
efficacy of our data preprocessing.
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A. Overall System Architecture

Our overall system is composed of distributed metering
units that connect between the wall outlet and an electric
appliance, as well as a server on which the data analysis is
performed. This architecture is visualized in Fig. 1. Contin-
uous lines indicate mains connections, whereas dashed lines
reflect the wireless data transfer between the meters and the
server. All metering units return their data once per second
to the server, which records the power consumption traces
in its database for their subsequent classification. Before
feeding the resulting stream of power consumption data into
the application identification component, we apply different
preprocessing steps to the data, as outlined in Sec. III-B.
Subsequently, the appliance identification step extracts rep-
resentative features from the data stream and uses a machine
learning component to facilitate the classification of incoming
data. Feature extraction and machine learning are detailed in
Sec. III-C.

B. Data Preprocessing

For our evaluation, we have selected three mechanisms to
alter the data prior to their use for appliance identification.
We explain them as follows and visualize their impact on an
excerpt from a dishwasher’s operation cycle, which is depicted
in Fig. 3a.
Quantization. Value quantization is realized by rounding the
actual power consumption values to a multiple of a pre-defined
quantization factor q. Because the quantization step is stateless
and requires no historical data, no delay is introduced by
the introduction of this preprocessing step. The application of
quantization to the dishwasher’s consumption data is shown
in Fig. 3b for q = 80 watts. It can be seen that quantization
eliminates the slight slope on top of the power-intensive
heating periods while the general shape is maintained.
Down-Sampling. This second preprocessing option reduces
the temporal frequency at which measurements are made avail-
able by returning a sample of the actual power consumption
only every w seconds. For all further samples until the next
sampling point, the previously transmitted value is repeated
instead. Like the quantization step, down-sampling does not
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Fig. 2. Appliance classification architecture

introduce a delay, and Fig. 3c shows the output of the down-
sampling step for w = 150 seconds.
Averaging. The third preprocessing alternative is the combi-
nation of an averaging of the input data over a time window of
w seconds and its down-sampling according to the previous
paragraph. The averaging is thus equivalent to an FIR filter
with rectangular filter function. In contrast to the previously
described preprocessing steps, averaging introduces a time lag
of w seconds, and may thus only be applicable in scenarios
where this can be tolerated by the utility. The output of our
averaging preprocessor for w = 150 seconds is shown in
Fig. 3d, from which the combination of averaging and down-
sampling manifests itself in the form of steps on the steep
edges of the power consumption curve.

C. Classification and Features

The actual classification is based on our previous appli-
ance classification framework [22], which we briefly revisit
as follows. Based on the overall process flow shown in
Fig. 2, power consumption traces of 24 hours duration are
first collected from electric appliances. In a subsequent step,
characteristic features are extracted from each of the traces
and stored in the form of a feature vector that is annotated
by the actual appliance type. Similar to [9] and [23], our
system utilizes more than 500 different features from different
domains in order to describe the characteristic properties of the
power consumption traces. We regard features from both the
temporal and frequency domain in order to incorporate both
the sudden changes encountered on appliance activation as
well as periodicities throughout the day into our classification
model. We combine many different aspects of an appliance’s
power consumption (e.g., peak values and shape) to reach
a high number of correct classification results. Each of the
resulting annotated feature vectors is subsequently forwarded
to the machine learning component, in which a classifier
constructs its model based on the data.

Our previous results have shown that classification accuracy
values in excess of 90% could be achieved when all of
the presented features were being used for the appliance
classification [22]. In other words, a very large fraction of
the input data (composed of more than a thousand appliance

traces) could be correctly classified solely based on their power
consumption data throughout a day. In our evaluations we have
demonstrated that maximum and average power consumption
values are the most important features for the classification
of appliances. Based on this observation, we have specifically
chosen to preprocess the power consumption data in a way that
alters the consumption characteristics and analyze its impact
on the classification accuracy.

While our previous work has thus effectively promoted anti-

privacy by identifying the types of electric appliances, we
address the opposite target in this paper, namely how data
preprocessing can render our appliance identification system
ineffective.

IV. EVALUATION SETUP

Our evaluation is based on the software system presented
in Sec. III. We have installed the server components on a
dedicated machine that maintains the database, the prepro-
cessing modules, and the appliance identification engine. For
the construction of the classification model, we have used the
Weka data mining toolkit [24]. Based on the comparison of
different classifiers in our previous work, we have chosen to
use the Random Forest classifier for the machine learning step,
as it has been shown to result in both a high classification
accuracy for the task at hand and a fast execution time.

The data for the classification has been taken from our
Tracebase project [22]. The Tracebase already features more
than 1,200 diurnal power consumption traces of more than
30 household appliance types. Furthermore, we have collected
more than 300 additional traces in order to base our evaluation
on an even larger corpus of data. On average, the power
consumption traces have been collected at a high granularity of
one sample per second and with a value resolution of one watt.
We list the appliance types, the number of different instances,
and the total number of traces used in our evaluation in Table I.

In order to put the achieved device classification results
into perspective, we compare them to the baseline, in which
no preprocessing steps are applied (i.e., the parameters are
chosen as q=1 watt, w=1 second, no averaging). Subsequently,
we conduct a comprehensive analysis of the classification
accuracy when varying the parameter values for q and w. We
regard down-sampling window sizes of w=1. . .400 seconds
and analyze quantization factors between q=1. . .180 watts.
Additionally, we consider the case when data are averaged
before the down-sampling and quantization steps are applied.
For this case, we have also used the down-sampling window
size parameter w as the averaging filter’s window size.

V. EVALUATION

We have conducted several evaluations in order to quantify
the improvements to user privacy protection offered by the
presented preprocessing steps. After determining the bounds
for the classification success rates, we thus present the results
of our comprehensive analysis of the parameter space and
quantify the error that is added to the data.
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(a) Unprocessed power trace
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(b) Quantization with a factor q = 80 watts
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(c) Down-sampling with a window size of w = 150 seconds
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(d) Averaged down-sampling with a window size of w = 150 seconds

Fig. 3. Visualization of a dishwasher’s consumption data before and after applying preprocessing steps

TABLE I
POWER TRACES USED IN OUR EVALUATION

Device type # appliances # traces
Alarm clock 1 5

Bean-to-cup coffee maker 1 43
Bread cutter 1 12

Coffee maker 5 77
Cooking stove 1 16

Desktop computer 9 126
Dishwasher 3 65

Ethernet switch 3 11
External USB hard disk drive 4 29

Freezer 1 9
HDTV media center 1 5
HiFi stereo amplifier 3 88

Internet router 1 20
Iron 1 3

Lamp 6 77
Laptop computer 6 50
Microwave oven 5 51
Monitor (CRT) 2 14
Monitor (TFT) 14 178

Playstation 3 console 2 12
Powered USB hub 1 10

Printer 1 6
Projector 1 8

Refrigerator 8 189
Solar-thermal system 1 8

Subwoofer 2 28
Television set 10 138

Toaster 4 21
Tumble dryer 2 9

Vacuum cleaner 1 1
Video projector 1 19

Washing machine 7 50
Water fountain 1 56

Water kettle 8 115
Xmas lights 1 6

Total 119 1,555

A. Baseline Values

In order to put the evaluation results into perspective, we
have first evaluated the baseline detection accuracy for the

input data as listed in Table I. In this case, the application
identification component has returned an achievable accuracy
value of 90.5%, i.e., nine out of ten devices could be cor-
rectly identified solely based on their power consumption.
Likewise, the worst classification result is equal to the random
selection of an appliance class, and can thus be calculated as
1/#appliances. For the given input set of 35 appliance types,
the minimum accuracy thus equals 2.9%.

B. Quantization and Down-sampling

In this first evaluation step, we analyze the impacts of
quantization and down-sampling only. As both preprocessing
steps influence the classification results, we conduct a two-
dimensional analysis for multiple combinations of down-
sampling and quantization factors within the parameter ranges
specified above. We show the results in Fig. 4a. Note that
for a quantization factor of q=1 watt and a down-sampling
window w=1 second, the classification accuracy is equal to the
90.4% reached in the case without preprocessing, as outlined
above. While both approaches show a significant degradation
of the classification accuracy already for small values of q
and w, their behavior for larger values differs. More precisely,
quantization achieves a degradation of the detection accuracy
from 90.5% to 58.1% when a factor q=180 watt is chosen.
In contrast, the impact of down-sampling in the temporal
domain does not manage to reduce the classification accuracy
below 73.8%, even for a window size of w=400 seconds.
The extremal combination of both quantization and down-
sampling with w=400 seconds and q=180 watts leads to an
overall classification accuracy of 37.7%.

C. Quantization, Down-sampling & Averaging

While the down-sampling in the previous evaluation has
taken a sample from the actual data every w seconds, we
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(a) Classification accuracy without averaging filter
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(b) Classification accuracy when an additional averaging filter is applied

Fig. 4. Classification accuracy values for variations of quantization factor, down-sampling window, and averaging method

investigate the impact of its combination with averaging next.
Again, we conduct a two-dimensional analysis, in which we
vary the quantization factor q as well as the averaging and
down-sampling window size w. Both preprocessing steps share

the same window size, so effectively the average value of the
last w seconds is reported for a duration of w seconds. The
fact that the averaging component integrates over the actual
power consumption in the time domain leads to the expectation



of less privacy-compromising details to be contained in the
trace. The results for this evaluation are visualized in Fig. 4b.
Despite the averaging, however, the figure shows a very similar
behavior to the previous analysis without averaging. In fact,
the quantization step again achieves to degrade the detection
accuracy to 58.1% when a factor q=180 watt is chosen. When
averaging is used, however, down-sampling does not even
manage achieve the degradations of the previous experiment,
but always stays above 78.9%. Again, the using the maximal
values of w=400 seconds and q=180 watts leads to an accuracy
of slightly above 37.5%.

D. Quantization and Down-Sampling Errors

By applying any of the presented preprocessing steps, the
signal is altered from its original form (cf. Fig. 3). As the
transmitted smart meter readings are possibly used for the
capacity planning of utilities, but might significantly differ
from the actual readings due to the preprocessing, we complete
our evaluation with an analysis of the error introduced by
our preprocessing steps. We therefore determine the RMS
error PRMS between the original and the preprocessed power
consumption traces. The results for three devices of different
operating power ranges are shown in Fig. 5. In essence, they
indicate that the quantized values show a comparably small
difference to the original sequence, whereas down-sampling
leads to more significant discrepancies and might hence be
less favorable for electric utilities.

E. Discussion

The results in Fig. 4 show that increasing the parameters
for both down-sampling and quantization (i.e., w and q)
lead to increased levels of privacy protection. Their impact
however differs, as down-sampling with a window size w=400
seconds only succeeds in reducing the classification accuracy
by approximately 16 percentage points. In contrast, value
quantization has been shown to have a significantly better
performance in terms of privacy protection and succeeded in
degrading the classification accuracy by up to 53 percentage
points for large values of q. Averaging the consumption
traces did not have any measurable impact on the privacy
protection, and even led to a slightly worse privacy protection.
In other words, the privacy-preserving effect of down-sampling
is effectively reduced by prepending it with an averaging filter.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have analyzed how preprocessing dis-
tributed smart metering data can decrease the possibility
of attributing a power consumption trace to the underlying
electric appliance. To this end, we have studied the impact
of quantization, down-sampling, and averaging on more than
1,500 daily power consumption traces. More than 500 charac-
teristic features were extracted from the traces, which allowed
for the correct classification of appliances at 90.4% accuracy
when no preprocessing was applied. After the application
of the presented preprocessing steps, however, the detection
accuracy experienced a measurable degradation. For example,
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Fig. 5. RMS error analysis

quantization to q=40 watts and down-sampling to w=40 sec-
onds already lead to a situation in which 30% less appliances
could be detected properly, whereas the average error was
still comparably small. In terms of privacy protection, value
quantization has been shown to lead to better results than
down-sampling or averaging alone. While keeping the error
between the actual and the recorded data within definable
bounds, its application to distributed smart metering data
can strongly enhance user privacy. As a general result, our
comprehensive study enables application designers to carefully
choose the required trade-off between timeliness, intentional
inaccuracy, and privacy protection.
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