The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.
Key: | SFR20 |
Author: | Tim Steuer, Anna Filighera, Christoph Rensing |
Date: | July 2020 |
Kind: | In proceedings - use for conference & workshop papers |
Publisher: | Springer International Publishing |
Book title: | Artificial Intelligence in Education |
Editor: | 41 Bittencourt, I.I., Cukurova, M., Muldner, K., Luckin, R., Millán, E. (Eds.) |
Number: | 21 |
Pages: | 512-523 |
ISBN: | 978-3-030-52237-7 |
Language: | En |
Research Area(s): | Knowledge Media |
Abstract: | Reading is a crucial skill in the 21st century. Thus, scaffolding text comprehension by automatically generated questions may greatly profit learners. Yet, the state-of-the-art methods for automatic question generation, answer-aware neural question generators (NQGs), are rarely seen in the educational domain. Hence, we investigate the quality of questions generated by a novel approach comprising an answer- aware NQG and two novel answer candidate selection strategies based on semantic graph matching. In median, the approach generates clear, answerable and useful factual questions outperforming an answer-unaware NQG on educational datasets as shown by automatic and human evalua- tion. Furthermore, we analyze the types of questions generated, showing that the question types differ across answer selection strategies yet re- main factual. |
URL: | doi.org/10.1007/978-3-030-52237-7_41 |
Full paper (pdf) |